DOI QR코드

DOI QR Code

Biomass-based and Depolymerizable Polymer with High Toughness and Strength

해중합 가능한 고신축성과 고강도 바이오매스 기반 고분자 합성

  • Nawon Kang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chungryong Choi (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 강나원 (금오공과대학교 고분자공학과) ;
  • 최청룡 (금오공과대학교 고분자공학과)
  • Received : 2024.10.11
  • Accepted : 2024.10.25
  • Published : 2024.12.31

Abstract

The widespread use of polymer materials has caused environmental pollution. To address this challenge, the development of eco-friendly polymers and chemical recycling technologies has emerged as a critical focus. This study aims to synthesize an eco-friendly polymer, Poly(LA)/Poly(MA) blend, by combining biomass-derived lipoic acid (LA) and petroleum-based methacrylic amide (MA), which exhibits enhancement of mechanical properties through hydrogen bonding, and to explore its potential for complete chemical recyclability.

고분자 재료의 광범위한 사용은 환경오염과 재활용 한계 등의 문제를 야기하고 있다. 이를 해결하기 위해 친환경 고분자와 화학적 재활용 기술 개발이 중요한 과제로 떠오르고 있다. 본 연구는 바이오매스 기반 재료인 lipoic acid (LA)와 석유화학 기반 methacrylic amide (MA)를 결합하여 수소 결합 네트워크를 통해 향상된 기계적 성질을 갖는 친환경 고분자 Poly(LA)/Poly(MA)를 합성하고, 화학적으로 완전한 재활용 가능성을 탐구하는 것을 목표로 한다.

Keywords

Acknowledgement

이 연구는 국립금오공과대학교 대학 연구과제비로 지원되었음(2022~2024).

References

  1. R. Geyer, J. R. Jambeck, and K. L. Law, Sci. Adv., 3, e1700782 (2017).
  2. Solutions for plastic pollution. Nat. Geosci., 16, 655 (2023).
  3. M. MacLeod, H. P. H. Arp, M. B. Tekman, and A. Jahnke, Science, 373, 61 (2021).
  4. W. W. Lau, Y. Shiran, R. M. Bailey, E. Cook, M. R. Stuchtey, J. Koskella, C. A. Velis, L. Godfrey, J. Boucher, and M. B. Murphy, Science, 369, 1455 (2022).
  5. Sustainable chemistry in practice. Nat. Rev. Methods Primers, 2, 61 (2022).
  6. G. Kwon, D.-W. Cho, J. Park, A. Bhatnagar, and H. A. Song, J. Chem. Eng., 464, 142771 (2023).
  7. Z. O. Schyns, and M. P. Shaver, Macromol. Rapid Commun., 42, 2000415 (2021).
  8. S. Billiet, and S. R. Trenor, ACS Macro Lett., 9, 1376 (2020).
  9. P. Waribam, T. R. Katugampalage, P. Opaprakasit, C. Ratanatawanate, W. Chooaksorn, L. P. Wang, C.-H. Liu, and P. Sreearunothai, J. Chem. Eng., 473, 145349 (2023).
  10. J. Zheng, and S. Suh, Nat. Clim. Change, 9, 374 (2019).
  11. D. Woo, N. Kang, H. Park, S. Myoung, G. Lee, J. K. Kim, and C. Choi, J. Chem. Eng., 488, 150818 (2024).
  12. A. Kumar, N. von Wolff, M. Rauch, Y.-Q. Zou, G. Shmul, Y. Ben-David, G. Leitus, L. Avram, and D. Milstein, J. Am. Chem. Soc., 142, 14267 (2020).
  13. J. H. Jeon, J. H. Jung, and C. Choi, J. Polym. Sci., 62, 662 (2024).
  14. Y.-M. Tu, X.-M. Wang, X. Yang, H.-Z. Fan, F.-L. Gong, Z. Cai, and J.-B. Zhu, J. Am. Chem. Soc., 143, 20591 (2021).
  15. X.-L. Li, R. W. Clarke, J.-Y. Jiang, T.-Q. Xu, and E. Y.-X. Chen, Nat. Chem., 15, 278 (2023).
  16. M. A. Alraddadi, V. Chiaradia, C. J. Stubbs, J. C. Worch, and A. P. Dove, Polym. Chem., 12, 5796 (2021).
  17. R. Xue, N. Zhou, S. Yin, Z. Qian, Z. Dai, and Y. Xiong, J. Chem. Eng., 465, 143072 (2023).
  18. K. Liu, Y. Kang, X. Dong, Q. Li, Y. Wang, X. Wu, X. Yang, Z. Chen, H. Dai, Chem. Eng. J., 470, 143987 (2023).