DOI QR코드

DOI QR Code

Phosphine-Functionalized Mesoporous Silica for the Adsorption of Heavy Metal Ions in Water

수중 중금속이온 흡착을 위한 포스핀 기능화된 메조다공성 실리카

  • Sung Soo Park (Department of Polymer Nano Engineering, Dong-Eui University) ;
  • Mi-Ra Kim (Department of Polymer Nano Engineering, Dong-Eui University) ;
  • Weontae Oh (Department of Polymer Nano Engineering, Dong-Eui University) ;
  • Minjae Kim (Busanil Science High School) ;
  • Taegeon Son (Busanil Science High School) ;
  • Hamin Lee (Busanil Science High School) ;
  • Sunghwan Jang (Busanil Science High School) ;
  • Dojun Jung (Busanil Science High School)
  • 박성수 (동의대학교 고분자나노공학과) ;
  • 김미라 (동의대학교 고분자나노공학과) ;
  • 오원태 (동의대학교 고분자나노공학과) ;
  • 김민재 (부산일과학고등학교) ;
  • 손태건 (부산일과학고등학교) ;
  • 이하민 (부산일과학고등학교) ;
  • 장성환 (부산일과학고등학교) ;
  • 정도준 (부산일과학고등학교)
  • Received : 2024.08.19
  • Accepted : 2024.10.15
  • Published : 2024.12.31

Abstract

In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array (p6mm) through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 990 nm. The surface area and pore diameter were 676 m2g-1 and 70.2 Å, respectively. Meanwhile, 2-(diphenylphosphino) ethyltriethoxysilane (DPPTES) with phosphine atom was grafted into the mesopores using a post-synthesis method. (DPPTES-SBA-15) Mesoporous silica (DPPTES-SBA-15) modified with DPPTES had a well-ordered pore structure (p6mm) and well-maintained particle shape of short rods. The surface area and pore diameter of DPPTES-SBA-15 decreased to 598 m2g-1 and 64.5 Å, respectively. The adsorption study on heavy metal ions was performed using DPPTES-SBA-15 as an adsorbent, and the results showed excellent adsorption capacities of 3.6 (749.6 mg Pb2+ g-1), 3.9 (249.2 mg Cu2+g-1), and 3.9 mmolg-1 (773.6 mg Hg2+g-1) for Pb2+, Cu2+, and Hg2+ heavy metal ions, respectively

본 연구에서는 실리카원으로 Tetraethyl orthosilicate (TEOS)를 사용하고 주형으로 트리블럭 공중합체 (P123)를 사용하여 산성 조건에서 자기조립 방법과 수열합성 과정을 거쳐서 잘 배열된 육방체 구조(p6mm)의 메조세공 배열구조를 가지는 다공성 실리카 물질 (Surfactant-extracted SBA-15)을 합성하였다. Surfactant-extracted SBA-15는 약 990 nm의 크기를 가지는 짧은 로드의 입자 모양을 보여주었다. 그리고 표면적과 세공 직경은 각각 676 m2g-1와 70.2 Å이었다. 한편, 포스트-합성방법 (post-synthesis method)을 이용하여, 메조세공 표면에 포스핀 (P)이 포함된 유기 기능기 {2-(diphenylphosphino)ethyltriethoxysilane, DPPTES}를 그래프팅 (grafting) 하였다. (DPPTES-SBA-15) DPPTES-SBA-15는 잘 배열된 이차원 메조세공구조 (p6mm)를 가지고 짧은 로드의 입자모양을 잘 유지하였다. DPPTES-SBA-15의 표면적과 세공 직경은 각각 598 m2g-1와 64.5Å으로 감소하였다. DPPTES-SBA-15를 흡착제로 사용하여 중금속 이온 흡착 연구를 수행한 결과, Pb2+, Cu2+ 그리고 Hg2+ 중금속 이온에 대해 각각 3.6 (749.6 mg Pb2+ g-1), 3.9 (249.2 mg Cu2+ g-1), 3.9 mmolg-1 (773.6 mg Hg2+ g-1)의 우수한 흡착능을 보여주었다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부/한국연구재단의 지역대학 우수과학자 지원 사업(NRF-2021R1I1A3059777) 프로그램의 지원을 받아 수행되었습니다. 그리고 2023학년도 부산일과학고등학교 R&E 프로그램 일환으로 수행되었습니다. 이에 감사드립니다.

References

  1. M. Sun, B. Sun, Y. Liu, Q.-D. Shen, and S. Jiang, Sci. Rep., 6, 22368 (2016).
  2. C.-G. Qian, Y.-L. Chen, P.-J. Feng, X.-Z. Xiao, M. Dong, J.-C. Yu, Q.-Y. Hu, Q.-D. Chen, and Z. Gu, Acta Pharmacol. Sin., 38, 764 (2017).
  3. X. Feng, L. Liu, S. Wang, and D. Zhu, Chem. Soc. Rev., 39, 2411 (2010).
  4. T. Chen, W. Xu, Z. Huang, H. Peng, Z. Ke, X. Lu, Y. Yan, and R. Liu, J. Mater. Chem. B, 3, 3564 (2015).
  5. C. Yang, S. Huang, X. Wang, and M. Wang, Polym. Chem., 7, 7455 (2016).
  6. B. Muthuraj, S. Mukherjee, C. R. Patra, and P. K. Iyer, ACS Appl. Mater. Interfaces, 8, 32220 (2016).
  7. N. Y. Kwon, D. Kim, G. Jang, J. H. Lee, J.-H. So, C.-H. Kim, T. H. Kim, and T. S. Lee, ACS Appl. Mater. Interfaces, 4, 1429 (2012).
  8. S. Seo, J. Kim, G. Jang, D. Kim, and T. S. Lee, ACS Appl. Mater. Interfaces, 6, 918 (2014).
  9. A. Kaeser and A. P. H. J. Schenning, Adv. Mater., 22, 2985 (2010)
  10. D. Tuncel and H. V. Demir, Nanoscale, 2, 484 (2010).
  11. J. Pecher and S. Mecking, Chem. Rev., 110, 6260 (2010).
  12. K. Li and B. Liu, J. Mater. Chem., 22, 1257 (2012).
  13. Z. Tian, J. Yu, C. Wu, C. Szymanski, and J. D. McNeill, Nanoscale, 2, 1999 (2010).
  14. U. Asawapirom, F. Bulut, T. Farrell, C. Gadermaier, S. Gamerith, R. Güntner, T. Kietzke, S. Patil, T. Piok, R. Montenegro, B. Stiller, B. Tiersch, K. Landfester, E. J. W. List, D. Neher, C. Sotomayor Torres, and U. Scherf, Macromol. Symp., 212, 83 (2004).
  15. J. Suk and A. Bard, J. Solid State Electrochem., 15, 2279 (2011).
  16. C. Wu, C. Szymanski, and J. McNeill, Langmuir, 22, 2956 (2006).
  17. Wu, Y. Zheng, C. Szymanski, and J. D. McNeill, J. Phys. Chem. C, 112, 1772 (2008).
  18. Wu, C. Szymanski, Z. Cain, and J. D. McNeill, J. Am. Chem. Soc., 129, 12904 (2007).
  19. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, J. Am. Chem. Soc., 132, 15410 (2010).
  20. C. Wu, H. Peng, Y. Jiang, and J. D. McNeill, The Journal of Physical Chemistry B, 110, 14148 (2006).
  21. E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 91, 954 (2007).
  22. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990).
  23. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater., 16, 4556 (2024).
  24. L. Torsi, N. Cioffi, C. Di Franco, L. Sabbatini, P. G. Zambonin, and T. Bleve- Zacheo, Solid State Electron. Lett., 45, 1479 (2001).
  25. C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, ACS Nano, 2, 2415 (2008).
  26. C. Kim, S.-Y. Kim, Y. T. Lim, and T. S. Lee, Macromol. Res., 25, 572 (2017).
  27. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, ACS Nano, 7, 5320–5329 (2013). https://doi.org/10.1021/nn4011686
  28. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, Nat. Rev. Cancer., 3, 380–387 (2003). https://doi.org/10.1038/nrc1071
  29. C. Yin, X. Zhen, Q. Fan, W. Huang, and K. Pu, ACS Nano, 11, 4174 (2017).
  30. J. Yang, J. Choi, D. Bang, E. Kim, E.-K. Lim, H. Park, J.-S. Suh, K. Lee, E.-K. Kim, Y.-M. Huh, and S. Haam, Angew. Chem., Int. Ed. Engl., 50, 441 (2011).
  31. L. Guo, W. Liu, G. Niu, P. Zhang, X. Zheng, Q. Jia, H. Zhang, J. Ge, and P. Wang, J. Mater. Chem. B, 5, 2832 (2017).
  32. J. Kim and T. S. Lee, Small, 14, 1702758 (2018)
  33. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, and W. J. Parak, Nano Lett., 5, 331 (2005).
  34. N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Masuhara, Chem. Eur. J., 5, 1609 (2004).
  35. S. J. Lee, J. M. Lee, H.-Z. Cho, W. G. Koh, I. W. Cheong, and J. H. Kim, Macromolecules, 43, 2484 (2010).
  36. J. Kim, J. Lee, T. S. Lee, Nanoscale, 12, 2492 (2020).
  37. H. Wang, Y. Xu, T. Tsuboi, H. Xu, Y. Wu, Z. Zhang, Y. Miao, Y. Hao, X. Liu, B. Xu, and W. Huang, Org. Electron., 14, 827 (2013).
  38. S. Bourke, Y. T. Gonzalez, F. Donà, M. Panamarova, K. Suhling, U. Eggert, L. A. Dailey, P. Zammit, and M. A. Green, RSC Adv., 9, 37971 (2019).
  39. D. Kim and T. S. Lee, ACS Appl. Mater. Interfaces, 8, 34770 (2016).
  40. Y. S. L. V. Narayana, S. Basak, M. Baumgarten, K. Müllen, and R. Chandrasekar, Adv. Funct. Mater., 23, 5875 (2013).
  41. Y.-L. Chang, R. E. Palacios, F.-R. F. Fan, A. J. Bard, and P. F. Barbara, J. Am. Chem. Soc., 130, 8906 (2008).
  42. S. Kim, K. Landfester, and C. T. J. Ferguson, ACS Nano, 16, 17041 (2022).
  43. S. Kim, X. Zhou, Y. Li, Q. Yang, X. Liu, R. Graf, P. W. M. Blom, C. T. J. Ferguson, K. Landfester, Adv. Mater., 36, 2404054 (2024).