DOI QR코드

DOI QR Code

Risk Factor Analysis of Cryopreserved Autologous Bone Flap Resorption in Adult Patients Undergoing Cranioplasty with Volumetry Measurement Using Conventional Statistics and Machine-Learning Technique

  • Yohan Son (Department of Neurosurgery, Dankook University Hospital) ;
  • Jaewoo Chung (Department of Neurosurgery, Dankook University Hospital)
  • 투고 : 2023.07.06
  • 심사 : 2023.09.13
  • 발행 : 2024.01.01

초록

Objective : Decompressive craniectomy (DC) with duroplasty is one of the common surgical treatments for life-threatening increased intracranial pressure (ICP). Once ICP is controlled, cranioplasty (CP) with reinsertion of the cryopreserved autologous bone flap or a synthetic implant is considered for protection and esthetics. Although with the risk of autologous bone flap resorption (BFR), cryopreserved autologous bone flap for CP is one of the important material due to its cost effectiveness. In this article, we performed conventional statistical analysis and the machine learning technique understand the risk factors for BFR. Methods : Patients aged >18 years who underwent autologous bone CP between January 2015 and December 2021 were reviewed. Demographic data, medical records, and volumetric measurements of the autologous bone flap volume from 94 patients were collected. BFR was defined with absolute quantitative method (BFR-A) and relative quantitative method (BFR%). Conventional statistical analysis and random forest with hyper-ensemble approach (RF with HEA) was performed. And overlapped partial dependence plots (PDP) were generated. Results : Conventional statistical analysis showed that only the initial autologous bone flap volume was statistically significant on BFR-A. RF with HEA showed that the initial autologous bone flap volume, interval between DC and CP, and bone quality were the factors with most contribution to BFR-A, while, trauma, bone quality, and initial autologous bone flap volume were the factors with most contribution to BFR%. Overlapped PDPs of the initial autologous bone flap volume on the BRF-A crossed at approximately 60 mL, and a relatively clear separation was found between the non-BFR and BFR groups. Therefore, the initial autologous bone flap of over 60 mL could be a possible risk factor for BFR. Conclusion : From the present study, BFR in patients who underwent CP with autologous bone flap might be inevitable. However, the degree of BFR may differ from one to another. Therefore, considering artificial bone flaps as implants for patients with large DC could be reasonable. Still, the risk factors for BFR are not clearly understood. Therefore, chronological analysis and pathophysiologic studies are needed.

키워드

과제정보

The present research was supported by the research fund of Dankook University in 2021.

참고문헌

  1. Aguilaniu B, Hess D, Kelkel E, Briault A, Destors M, Boutros J, et al. : A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data. PLoS One 16 : e0255977, 2021 https://doi.org/10.1371/journal.pone.0255977
  2. Anderson J : Decompressive craniectomy in diffuse traumatic brain Injury : Cooper DJ, Rosenfeld JV, Murray L, et al. N Engl J Med 2011; 364: 1493-502. J Emerg Med 41 : 450, 2011 https://doi.org/10.1056/NEJMoa1102077
  3. Ashayeri K, Jackson EM, Huang J, Brem H, Gordon CR : Syndrome of the trephined: a systematic review. Neurosurgery 79 : 525-534, 2016 https://doi.org/10.1227/NEU.0000000000001366
  4. Barzaghi LR, Parisi V, Gigliotti CR, Giudice L, Snider S, Dell'Acqua A, et al. : Bone resorption in autologous cryopreserved cranioplasty: quantitative evaluation, semiquantitative score and clinical significance. Acta Neurochir (Wien) 161 : 483-491, 2019 https://doi.org/10.1007/s00701-018-03789-x
  5. Beez T, Munoz-Bendix C, Ahmadi SA, Steiger HJ, Beseoglu K : From decompressive craniectomy to cranioplasty and beyond-a pediatric neurosurgery perspective. Childs Nerv Syst 35 : 1517-1524, 2019 https://doi.org/10.1007/s00381-019-04303-z
  6. Bhaskar IP, Yusheng L, Zheng M, Lee GY : Autogenous skull flaps stored frozen for more than 6 months: do they remain viable? J Clin Neurosci 18 : 1690-1693, 2011 https://doi.org/10.1016/j.jocn.2011.02.046
  7. Bowers CA, Riva-Cambrin J, Hertzler DA 2nd, Walker ML : Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11 : 526-532, 2013 https://doi.org/10.3171/2013.1.PEDS12483
  8. Breiman L : Random forests. Mach Learn 45 : 5-32, 2001 https://doi.org/10.1023/A:1010933404324
  9. Brommeland T, Rydning PN, Pripp AH, Helseth E : Cranioplasty complications and risk factors associated with bone flap resorption. Scand J Trauma Resusc Emerg Med 23 : 75, 2015 https://doi.org/10.1186/s13049-015-0155-6
  10. Broughton E, Pobereskin L, Whitfield PC : Seven years of cranioplasty in a regional neurosurgical centre. Br J Neurosurg 28 : 34-39, 2014 https://doi.org/10.3109/02688697.2013.815319
  11. Chung J, Cheong JH, Kim JM, Lee DH, Yi HJ, Choi KS, et al. : Is fetal-type posterior cerebral artery a risk factor for recurrence in coiled internal carotid artery-incorporating posterior communicating artery aneurysms? Analysis of conventional statistics, computational fluid dynamics, and random forest with hyper-ensemble approach. Neurosurgery 93 : 611-621, 2023
  12. Coulter IC, Pesic-Smith JD, Cato-Addison WB, Khan SA, Thompson D, Jenkins AJ, et al. : Routine but risky: a multi-centre analysis of the outcomes of cranioplasty in the Northeast of England. Acta Neurochir (Wien) 156 : 1361-1368, 2014 https://doi.org/10.1007/s00701-014-2081-1
  13. da Costa Benalia VH, Pedrozo CAG, Kormanski MK, Veiga JCE, de Aguiar GB : Spontaneous bone flap resorption following cranioplasty using autologous bone. J Craniofac Surg 32 : 293-296,
  14. Dabadi S, Dhungel RR, Sharma U, Shrestha D, Gurung P, Shrestha R, et al. : Customized cost-effective polymethyl-methacrylate cranioplasty implant using three-dimensional printer. Asian J Neurosurg 16 : 150-154,
  15. Dowlati E, Pasko KBD, Molina EA, Felbaum DR, Mason RB, Mai JC, et al. : Decompressive hemicraniectomy and cranioplasty using subcutaneously preserved autologous bone flaps versus synthetic implants: perioperative outcomes and cost analysis. J Neurosurg 137 : 1831-1838, 2022 https://doi.org/10.3171/2022.3.JNS212637
  16. Ernst G, Qeadan F, Carlson AP : Subcutaneous bone flap storage after emergency craniectomy: cost-effectiveness and rate of resorption. J Neurosurg 129 : 1604-1610, 2018 https://doi.org/10.3171/2017.6.JNS17943
  17. Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C : Complications of delayed cranial repair after decompressive craniectomy in children less than 1 year old. Acta Neurochir (Wien) 154 : 927-933, 2012 https://doi.org/10.1007/s00701-011-1253-5
  18. Friedman JH : Greedy function approximation: a gradient boosting machine. Ann Stat 29 : 1189-1232, 2001 https://doi.org/10.1214/aos/1013203451
  19. Gooch MR, Gin GE, Kenning TJ, German JW : Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 26 : E9, 2009 https://doi.org/10.3171/2009.3.FOCUS0962
  20. Gosain AK, Gosain SA, Sweeney WM, Song LS, Amarante MTJ : Regulation of osteogenesis and survival within bone grafts to the calvaria: the effect of the dura versus the pericranium. Plast Reconstr Surg 128 : 85-94, 2011 https://doi.org/10.1097/PRS.0b013e31821740cc
  21. Gottsche J, Mende KC, Schram A, Westphal M, Amling M, Regelsberger J, et al. : Cranial bone flap resorption-pathological features and their implications for clinical treatment. Neurosurg Rev 44 : 2253-2260,
  22. Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD : Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100(2 Suppl Pediatrics) : 163-168, 2004 https://doi.org/10.3171/ped.2004.100.2.0163
  23. Gupta D : Novel solutions to cranioplasty: from exchange cranioplasty to synthetic patient-specific implants. Neurol India 69 : 618-619,
  24. Halani SH, Chu JK, Malcolm JG, Rindler RS, Allen JW, Grossberg JA, et al. : Effects of cranioplasty on cerebral blood flow following decompressive craniectomy: a systematic review of the literature. Neurosurgery 81 : 204-216, 2017 https://doi.org/10.1093/neuros/nyx054
  25. Hersh DS, Anderson HJ, Woodworth GF, Martin JE, Khan YM : Bone flap resorption in pediatric patients following autologous cranioplasty. Oper Neurosurg (Hagerstown) 20 : 436-443,
  26. Iwama T, Yamada J, Imai S, Shinoda J, Funakoshi T, Sakai N : The use of frozen autogenous bone flaps in delayed cranioplasty revisited. Neurosurgery 52 : 591-596; discussion 595-596, 2003 https://doi.org/10.1227/01.NEU.0000047891.86938.46
  27. Kim JH, Kim JH, Kwon TH, Chong K, Hwang SY, Yoon WK : Aseptic bone flap resorption after cranioplasty with autologous bone: incidence, risk factors, and clinical implications. World Neurosurg 115 : e111-e118, 2018 https://doi.org/10.1016/j.wneu.2018.03.197
  28. Kim JK, Lee SB, Yang SY : Cranioplasty using autologous bone versus porous polyethylene versus custom-made titanium mesh : a retrospective review of 108 patients. J Korean Neurosurg Soc 61 : 737-746, 2018 https://doi.org/10.3340/jkns.2018.0047
  29. Korhonen TK, Salokorpi N, Niinimaki J, Serlo W, Lehenkari P, Tetri S : Quantitative and qualitative analysis of bone flap resorption in patients undergoing cranioplasty after decompressive craniectomy. J Neurosurg 130 : 312-321, 2018 https://doi.org/10.3171/2017.8.JNS171857
  30. Korhonen TK, Tetri S, Huttunen J, Lindgren A, Piitulainen JM, Serlo W, et al. : Predictors of primary autograft cranioplasty survival and resorption after craniectomy. J Neurosurg 130 : 1672-1679, 2018
  31. Li J, von Campe G, Pepe A, Gsaxner C, Wang E, Chen X, et al. : Automatic skull defect restoration and cranial implant generation for cranioplasty. Med Image Anal 73 : 102171,
  32. Liaw A, Wiener M : Classification and regression by randomForest. R News 2 : 18-22, 2002
  33. Lunardon N, Menardi G, Torelli N : ROSE: a package for binary imbalanced learning. R J 6: 79-89, 2014 https://doi.org/10.32614/RJ-2014-008
  34. Malcolm JG, Rindler RS, Chu JK, Chokshi F, Grossberg JA, Pradilla G, et al. : Early cranioplasty is associated with greater neurological improvement: a systematic review and meta-analysis. Neurosurgery 82 : 278-288, 2018 https://doi.org/10.1093/neuros/nyx182
  35. Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, et al. : Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156 : 813-824, 2014 https://doi.org/10.1007/s00701-014-2021-0
  36. Na MK, Won YD, Kim CH, Kim JM, Cheong JH, Ryu JI, et al. : Opportunistic osteoporosis screening via the measurement of frontal skull Hounsfield units derived from brain computed tomography images. PLoS One 13 : e0197336, 2018 https://doi.org/10.1371/journal.pone.0197336
  37. Parichay PJ, Khanapure K, Joshi KC, Aniruddha TJ, Sandhya M, Hegde AS : Clinical and radiological assessment of cerebral hemodynamics after cranioplasty for decompressive craniectomy - a clinical study. J Clin Neurosci 42 : 97-101, 2017 https://doi.org/10.1016/j.jocn.2017.04.005
  38. Park SP, Kim JH, Kang HI, Kim DR, Moon BG, Kim JS : Bone flap resorption following cranioplasty with autologous bone: quantitative measurement of bone flap resorption and predictive factors. J Korean Neurosurg Soc 60 : 749-754, 2017 https://doi.org/10.3340/jkns.2017.0203.002
  39. Petrini A, Mesiti M, Schubach M, Frasca M, Danis D, Re M, et al. : parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants. GigaScience 9 : giaa052, 2020 https://doi.org/10.1093/gigascience/giaa052
  40. Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ : Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10 : 268-272, 2012 https://doi.org/10.3171/2012.6.PEDS1268
  41. Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP : Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg 83 : 708-714, 2015 https://doi.org/10.1016/j.wneu.2015.01.014
  42. Polin RS, Shaffrey ME, Bogaev CA, Tisdale N, Germanson T, Bocchicchio B, et al. : Decompressive bifrontal craniectomy in the treatment of severe refractory posttraumatic cerebral edema. Neurosurgery 41 : 84-94; discussion 92-94, 1997 https://doi.org/10.1097/00006123-199707000-00018
  43. Rashidi A, Sandalcioglu IE, Luchtmann M : Aseptic bone-flap resorption after cranioplasty - incidence and risk factors. PLoS One 15 : e0228009, 2020 https://doi.org/10.1371/journal.pone.0228009
  44. Rocque BG, Agee BS, Thompson EM, Piedra M, Baird LC, Selden NR, et al. : Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study. J Neurosurg Pediatr 22 : 225-232, 2018 https://doi.org/10.3171/2018.3.PEDS17234
  45. Schoekler B, Trummer M : Prediction parameters of bone flap resorption following cranioplasty with autologous bone. Clin Neurol Neurosurg 120 : 64-67, 2014 https://doi.org/10.1016/j.clineuro.2014.02.014
  46. Schubach M, Re M, Robinson PN, Valentini G : Imbalance-aware machine learning for predicting rare and common disease-associated noncoding variants. Sci Rep 7 : 2959, 2017 https://doi.org/10.1038/s41598-017-03011-5
  47. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. : Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 29 : 1888-1893, 1998 https://doi.org/10.1161/01.STR.29.9.1888
  48. Scotter J, Iorga R, Stefanou D, Wilson MH : Management of malignant middle cerebral artery infarction following a cardiac stab wound--the role of early decompressive craniectomy. Br J Neurosurg 28 : 534-535, 2014 https://doi.org/10.3109/02688697.2013.841855
  49. Shah AM, Jung H, Skirboll S : Materials used in cranioplasty: a history and analysis. Neurosurg Focus 36 : E19, 2014 https://doi.org/10.3171/2014.2.FOCUS13561
  50. Shahid AH, Mohanty M, Singla N, Mittal BR, Gupta SK : The effect of cranioplasty following decompressive craniectomy on cerebral blood perfusion, neurological, and cognitive outcome. J Neurosurg 128 : 229-235, 2018 https://doi.org/10.3171/2016.10.JNS16678
  51. Signorelli F, Giordano M, Caccavella VM, Ioannoni E, Gelormini C, Caricato A, et al. : A systematic review and meta-analysis of factors involved in bone flap resorption after decompressive craniectomy. Neurosurg Rev 45 : 1915-1922, 2022
  52. Smedley D, Schubach M, Jacobsen JOB, Kohler S, Zemojtel T, Spielmann M, et al. : A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am J Hum Genet 99 : 595-606, 2016 https://doi.org/10.1016/j.ajhg.2016.07.005
  53. Sorek S, Miller A, Griepp D, Moawad S, Zanzerkia R, Rahme R : Skull reconstruction using a custom-made, three-dimensional-printed, hydroxyapatite-titanium cranioplasty implant: largest single-center U.S. experience. World Neurosurg 167 : e1387-e1394, 2022 https://doi.org/10.1016/j.wneu.2022.09.050
  54. Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM : Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am 79 : 1-16, 1997 https://doi.org/10.2106/00004623-199701000-00001
  55. Sultan SM, Davidson EH, Butala P, Schachar JS, Witek L, Szpalski C, et al. : Interval cranioplasty: comparison of current standards. Plast Reconstr Surg 127 : 1855-1864, 2011 https://doi.org/10.1097/PRS.0b013e31820e89a5
  56. Team R Core : R: A language and environment for statistical computing. Available at : https://www.r-project.org/
  57. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. : Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke 38 : 2506-2517, 2007 https://doi.org/10.1161/STROKEAHA.107.485235
  58. Voss HU, Heier LA, Schiff ND : Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clin Imaging 35 : 253-258, 2011 https://doi.org/10.1016/j.clinimag.2010.07.008
  59. Yoon HG, Ko Y, Kim YS, Bak KH, Chun HJ, Na MK, et al. : Efficacy of 3D-printed titanium mesh-type patient-specific implant for cranioplasty. Korean J Neurotrauma 17 : 91-99, 2021 https://doi.org/10.13004/kjnt.2021.17.e25
  60. Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC : Cranioplasty: review of materials. J Craniofac Surg 27 : 2061-2072, 2016 https://doi.org/10.1097/SCS.0000000000003025
  61. Zhu S, Chen Y, Lin F, Chen Z, Jiang X, Zhang J, et al. : Complications following titanium cranioplasty compared with nontitanium implants cranioplasty: a systematic review and meta-analysis. J Clin Neurosci 84 : 66-74, 2021  https://doi.org/10.1016/j.jocn.2020.12.009