DOI QR코드

DOI QR Code

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad (Department of Medical Biotechnology, Yeungnam University) ;
  • Hee Jin Chun (Department of Medical Biotechnology, Yeungnam University) ;
  • Khurshid Ahmad (Department of Medical Biotechnology, Yeungnam University) ;
  • Inho Choi (Department of Medical Biotechnology, Yeungnam University)
  • Received : 2023.04.28
  • Accepted : 2023.06.09
  • Published : 2024.01.01

Abstract

Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2020R1A6A1A03044512) and by the National Research Foundation of Korea (NRF), and funded by the Korean government (NRF-2021R1A2C2004177).

References

  1. Holmberg J, Durbeej M. Laminin-211 in skeletal muscle function. Cell Adh Migr 2013;7(1):111-21. https://doi.org/10.4161/cam.22618
  2. Ahmad K, Shaikh S, Ahmad SS, Lee EJ, Choi I. Cross-talk between extracellular matrix and skeletal muscle: implications for myopathies. Front Pharmacol 2020;11:142.
  3. Ahmad K, Choi I, Lee YH. Implications of skeletal muscle extracellular matrix remodeling in metabolic disorders: diabetes perspective. Int J Mol Sci 2020;28(11):3845. 21.
  4. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015;5(3):1027-59. https://doi.org/10.1002/cphy.c140068
  5. Baig MH, Jan AT, Rabbani G, Ahmad K, Ashraf JM, Kim T, Min HS, Lee YH, Cho WK, Ma JY. et al. Methylglyoxal and Advanced Glycation End products: insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep 2017;7(1):5916.
  6. Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 1989;138(2):311e5.
  7. Spangenburg EE, Booth FW. Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 2002;283(1):C204-11. https://doi.org/10.1152/ajpcell.00574.2001
  8. Bentzinger CF, von Maltzahn J, Rudnicki MA. Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 2010;1(3):27.
  9. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev 2013;93(1):23e67.
  10. Chal J, Pourquie O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 2017;144(12):2104-22. https://doi.org/10.1242/dev.151035
  11. Lim JH, Ahmad K, Chun HJ, Hwang YC, Qadri AF, Ali S, Ahmad SS, Shaikh S, Choi J. Kim J.,et al. IgLON4 regulates myogenesis via promoting cell adhesion and maintaining myotube orientation. Cells 2022;11(20).
  12. Lim JH, Beg MMA, Ahmad K, Shaikh S, Ahmad SS, Chun HJ, Choi D, Lee WJ, Jin JO. Kim J.et al. IgLON5 regulates the adhesion and differentiation of myoblasts. Cells 2021;10(2).
  13. Lee EJ, Jan AT, Baig MH, Ahmad K, Malik A, Rabbani G, Kim T, Lee IK, Lee YH, Park SY, et al. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J 2018;32(2):768-81. https://doi.org/10.1096/fj.201700665R
  14. Lee EJ, Nam JH, Choi I. Fibromodulin modulates myoblast differentiation by controlling calcium channel. Biochem Biophys Res Commun 2018;503(2):580-5. https://doi.org/10.1016/j.bbrc.2018.06.041
  15. Lee EJ, Shaikh S, Baig MH, Park SY, Lim JH, Ahmad SS, Ali S, Ahmad K, Choi I. MIF1 and MIF2 myostatin peptide inhibitors as potent muscle mass regulators. Int J Mol Sci 2022;23(8).
  16. Ahmad SS, Ahmad K, Lee EJ, Shaikh S, Choi I. Computational identification of dithymoquinone as a potential inhibitor of myostatin and regulator of muscle mass. Molecules 2021;26(17).
  17. Zhang S, Chen C, Lu W, Wei L. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds. Phytother Res 2018;32(11):2155-63. https://doi.org/10.1002/ptr.6167
  18. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immune-modulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur J Immunol 2006;36(1):37-45. https://doi.org/10.1002/eji.200535138
  19. Ginseng. Drugs and lactation database. Bethesda (MD): LactMed(R)); 2006.
  20. Braz AS, Morais LC, Paula AP, Diniz MF, Almeida RN. Effects of Panax ginseng extract in patients with fibromyalgia: a 12-week, randomized, double-blind, placebo-controlled trial. Braz J Psychiatry 2013;35(1):21e8.
  21. Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One 2013;8(4):e61271.
  22. Barton DL, Liu H, Dakhil SR, Linquist B, Sloan JA, Nichols CR, McGinn TW, Stella PJ, Seeger GR, Sood A, et al. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. J Natl Cancer Inst 2013;105(16):1230-8. https://doi.org/10.1093/jnci/djt181
  23. Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003;68(8):1539-42.
  24. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  25. Kim S, Shin BC, Lee MS, Lee H, Ernst E. Red ginseng for type 2 diabetes mellitus: a systematic review of randomized controlled trials. Chin J Integr Med 2011;17(12):937-44. https://doi.org/10.1007/s11655-011-0937-2
  26. Wang Y, Yang G, Gong J, Lu F, Diao Q, Sun J, Zhang K, Tian J, Liu J, et al. Ginseng for Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem 2016;16(5):529-36. https://doi.org/10.2174/1568026615666150813143753
  27. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42(3):239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  28. Wang CZ, Moss J, Yuan CS. Commonly used dietary supplements on coagulation function during surgery. Medicines (Basel) 2015;2(3):157-85. https://doi.org/10.3390/medicines2030157
  29. Ang-Lee MK, Moss J, Yuan CS. Herbal medicines and perioperative care. JAMA 2001;286(2):208-16.
  30. Bostock E, Kirkby K, Garry M, Taylor B, Hawrelak JA. Mania associated with herbal medicines, other than cannabis: a systematic review and quality assessment of case reports. Front Psychiatry 2018;9:280.
  31. Hou CW, Lee SD, Kao CL, Cheng IS, Lin YN, Chuang SJ, Chen CY, Ivy JL, Huang CY, Kuo CH, et al. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1. PLoS One 2015;10(1):e0116387.
  32. You S, Shi X, Yu D, Zhao D, An, Wang D, Zhang J, Li M, Wang C. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complementary Medicine and Therapies 2021;21(1):34.
  33. Dai D, Zhang CF, Williams S, Yuan CS, Wang CZ. Ginseng on cancer: potential role in modulating inflammation-mediated angiogenesis. Am J Chin Med 2017;45(1):13-22. https://doi.org/10.1142/S0192415X17500021
  34. Park SH, Chung S, Chung MY, Choi HK, Hwang JT, Park JH. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: a systematic review and meta-analysis. J Ginseng Res 2022;46(2):188-205. https://doi.org/10.1016/j.jgr.2021.10.002
  35. Chishtar E, Sievenpiper JL, Djedovic V, Cozma AI, Ha V, Jayalath VH, Jenkins DJ, Meija SB, de Souza RJ, Jovanovski E, et al. The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 2014;9(9):e107391. https://doi.org/10.1371/journal.pone.0107391
  36. Li Z, Ji GE. Ginseng and obesity. J Ginseng Res 2018;42(1):1-8. https://doi.org/10.1016/j.jgr.2016.12.005
  37. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38(3):161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  38. Cho DE, Choi GM, Lee YS, Hong JP, Yeom M, Lee B, Hahm DH. Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice. J Ginseng Res 2022;46(5):657-65. https://doi.org/10.1016/j.jgr.2021.12.001
  39. Han MJ, Shin JE, Park SJ, Choung SY. Synergetic effect of soluble whey protein hydrolysate and Panax ginseng berry extract on muscle atrophy in hindlimb-immobilized C57BL/6 mice. J Ginseng Res 2022;46(2):283-9. https://doi.org/10.1016/j.jgr.2021.06.010
  40. Kim TJ, Pyun DH, Kim MJ, Jeong JH, Abd El-Aty AM, Jung TW. Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress. J Ginseng Res 2022;46(3):444-53. https://doi.org/10.1016/j.jgr.2021.09.002
  41. Kim R, Kim JW, Lee SJ, Bae GU. Ginsenoside Rg3 protects glucocorticoid-induced muscle atrophy in vitro through improving mitochondrial biogenesis and myotube growth. Mol Med Rep 2022;25(3).
  42. Kim AR, Kim SW, Lee BW, Kim KH, Kim WH, Seok H, Lee JH, Um J, Yim SH, Ahn Y, et al. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh(2) as an enhancer of skeletal and cardiac muscle regeneration. Sci Rep 2020;10(1):4967.
  43. Go GY, Jo A, Seo DW, Kim WY, Kim YK, So EY, Chen Q, Kang JS, Bae GU, Lee SJ. Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation. J Ginseng Res 2020;44(3):435-41. https://doi.org/10.1016/j.jgr.2019.01.007
  44. Tanaka Y, Eda H, Tanaka T, Udagawa T, Ishikawa T, Horii I, Ishitsuka H, Kataoka T, Taguchi T. Experimental cancer cachexia induced by transplantable colon 26 adenocarcinoma in mice. Cancer Res 1990;50(8):2290-5.
  45. Lee SJ, Bae JH, Lee H, Lee H, Park J, Kang JS, Bae GU. Ginsenoside Rg3 upregulates myotube formation and mitochondrial function, thereby protecting myotube atrophy induced by tumor necrosis factor-alpha. J Ethnopharmacol 2019;242:112054.
  46. Wijaya YT, Setiawan T, Sari IN, Park K, Lee CH, Cho KW, Lee YK, Lim JY, Yoon JK, Lee SH, et al. Ginsenoside Rd ameliorates muscle wasting by suppressing the signal transducer and activator of transcription 3 pathway. J Cachexia Sarcopenia Muscle 2022;13(6):3149-62. https://doi.org/10.1002/jcsm.13084
  47. Li F, Li X, Peng X, Sun L, Jia S, Wang P, Ma S, Zhao H, Yu Q, Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med 2017;14(2):1241-7. https://doi.org/10.3892/etm.2017.4615
  48. Seok YM, Yoo JM, Nam Y, Kim J, Kim JS, Son JH, Kim HJ. Mountain ginseng inhibits skeletal muscle atrophy by decreasing muscle RING fi nger protein-1 and atrogin1 through forkhead box O3 in L6 myotubes. J Ethnopharmacol 2021;270:113557.
  49. Lee SY, Go GY, Vuong TA, Kim JW, Lee S, Jo A, An JM, Kim SN, Seo DW. Kim J.S. et al. Black ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth. J Ginseng Res 2018;42(1):116-21. https://doi.org/10.1016/j.jgr.2017.08.009
  50. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 2008;23:160-70. https://doi.org/10.1152/physiol.00041.2007
  51. Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008;295(4):E785-97. https://doi.org/10.1152/ajpendo.00646.2007
  52. Gupta A, Gupta Y. Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab 2013;17(5):913-6. https://doi.org/10.4103/2230-8210.117215
  53. Lee EJ, Ahmad SS, Lim JH, Ahmad K, Shaikh S, Lee YS, Park SJ, Jin JO, Lee YH, Choi I. Interaction of fibromodulin and myostatin to regulate skeletal muscle aging: an opposite regulation in muscle aging, diabetes, and intracellular lipid accumulation. Cells 2021;10(8).
  54. Ma YL, Sun YZ, Yang HH. [Protective effect of RenShen compound and DanHuang compound on muscle atrophy in suspended rats]. Space Med Med Eng (Beijing) 1999;12(4):281-3.
  55. Jiang R, Wang M, Shi L, Zhou J, Ma R, Feng K, Chen X, Xu X, Li X, Li T, et al. Panax ginseng total protein facilitates recovery from dexamethasone-induced muscle atrophy through the activation of glucose consumption in C2C12 myotubes. Biomed Res Int 2019;2019:3719643.
  56. Go GY, Lee SJ, Jo A, Lee J, Seo DW, Kang JS, Kim SK, Kim SN, Kim YK, Bae GU. Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth. J Ginseng Res 2017;41(4):608-14. https://doi.org/10.1016/j.jgr.2017.05.006
  57. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 2007;6(5):376-85. https://doi.org/10.1016/j.cmet.2007.09.009
  58. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 2014;307(6):E469-84. https://doi.org/10.1152/ajpendo.00204.2014
  59. Ahmad SS, Ahmad K, Lee EJ, Lee YH, Choi I. Implications of insulin-like growth factor-1 in skeletal muscle and various diseases. Cells 2020;9(8).
  60. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127(5 Suppl). 990S-1S. https://doi.org/10.1093/jn/127.5.990S
  61. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231-43. https://doi.org/10.1067/mlc.2001.113504
  62. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 2010;21(4):543-59. https://doi.org/10.1007/s00198-009-1059-y
  63. Frontera WR, Zayas AR, Rodriguez N. Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am 2012;23(1):201-7 [xiii]. https://doi.org/10.1016/j.pmr.2011.11.012
  64. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 2013;45(10):2191-9. https://doi.org/10.1016/j.biocel.2013.05.016
  65. Guo B, Zhang ZK, Liang C, Li J, Liu J, Lu A, Zhang BT, Zhang G. Molecular communication from skeletal muscle to bone: a review for muscle-derived myokines regulating bone metabolism. Calcif Tissue Int 2017;100(2):184-92. https://doi.org/10.1007/s00223-016-0209-4
  66. Semba RD, Gonzalez-Freire M, Tanaka T, Biancotto A, Zhang P, Shardell M, Moaddel R, CHI Consortium, Ferrucci L. Elevated plasma growth and differentiation factor 15 is associated with slower gait speed and lower physical performance in healthy community-dwelling adults. J Gerontol A Biol Sci Med Sci 2020;75(1):175-80. https://doi.org/10.1093/gerona/glz071
  67. Bhasin S, Jasjua GK, Pencina M, D'Agostino Sr R, Coviello AD, Vasan RS. Travison T.G.Sex hormone-binding globulin, but not testosterone, is associated prospectively and independently with incident metabolic syndrome in men: the framingham heart study. Diabetes Care 2011;34(11):2464-70. https://doi.org/10.2337/dc11-0888
  68. Chase PB, Szczypinski MP, Soto EP. Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J Muscle Res Cell Motil 2013;34(3-4):275-84. https://doi.org/10.1007/s10974-013-9356-7
  69. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018;14(9):513-37. https://doi.org/10.1038/s41574-018-0062-9
  70. Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a treatment for fatigue: a systematic review. J Altern Complement Med 2018;24(7):624-33. https://doi.org/10.1089/acm.2017.0361
  71. Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2018;42(1):90-7. https://doi.org/10.1016/j.jgr.2017.01.003
  72. Park K, Ahn CW, Kim Y, Nam JS. The effect of Korean Red Ginseng on sarcopenia biomarkers in type 2 diabetes patients. Arch Gerontol Geriatr 2020;90:104108.
  73. Jeong YJ, Hwang MJ, Hong CO, Yoo DS, Kim JS, Kim DY, Lee KW. Anti-hyperglycemic and hypolipidemic effects of black ginseng extract containing increased Rh4, Rg5, and Rk1 content in muscle and liver of type 2 diabetic db/db mice. Food Sci Biotechnol 2020;29(8):1101-12. https://doi.org/10.1007/s10068-020-00753-3
  74. Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer cachexia: its mechanism and clinical significance. Int J Mol Sci 2021;22(16).
  75. Ahmad SS, Ahmad K, Shaikh S, You HJ, Lee EY, Ali S, Lee EJ, Choi I. Molecular mechanisms and current treatment options for cancer cachexia. Cancers (Basel) 2022;14(9).
  76. von Haehling S, Anker SD. Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle 2014;5(4):261-3. https://doi.org/10.1007/s13539-014-0164-8
  77. Inacio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcantara PS, Tokeshi F, Nascimento CM. Cancer as a proinflammatory environment: metastasis and cachexia. Mediators Inflamm 2015;2015:791060.
  78. Ernst E, Cassileth BR. The prevalence of complementary/alternative medicine in cancer: a systematic review. Cancer 1998;83(4):777-82. https://doi.org/10.1002/(SICI)1097-0142(19980815)83:4<777::AID-CNCR22>3.0.CO;2-O
  79. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137(1 Suppl). 183S-5S. https://doi.org/10.1093/jn/137.1.183S
  80. Yao FD, Yang JQ, Huang YC, Luo MP, Yang WJ, Zhang B, Liu XJ. Anti-nociceptive effects of Ginsenoside Rb1 in a rat model of cancer-induced bone pain. Exp Ther Med 2019;17(5):3859-66.
  81. Chen S, Li X, Wang Y, Mu P, Chen C, Huang P, Liu D. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion-induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol Med Rep 2019;19(5):3633-41. https://doi.org/10.3892/mmr.2019.10018
  82. Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 2017;13(4):851-63. https://doi.org/10.5114/aoms.2016.58928
  83. Pineda E, Sanchez-Romero LM, Brown M, Jaccard A, Jewell J, Galea G, Webber L, Breda J. Forecasting future trends in obesity across Europe: the value of improving surveillance. Obes Facts 2018;11(5):360-71. https://doi.org/10.1159/000492115
  84. Reisin E, Jack AV. Obesity and hypertension: mechanisms, cardio-renal consequences, and therapeutic approaches. Med Clin North Am 2009;93(3):733-51. https://doi.org/10.1016/j.mcna.2009.02.010
  85. Ricci R, Bevilacqua F. The potential role of leptin and adiponectin in obesity: a comparative review. Vet J 2012;191(3):292-8. https://doi.org/10.1016/j.tvjl.2011.04.009
  86. Tremblay A, Royer MM, Chaput JP, Doucet E. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int J Obes (Lond) 2013;37(6):759-64. https://doi.org/10.1038/ijo.2012.124
  87. Hwalla N, Jaafar Z. Dietary management of obesity: a review of the evidence. Diagnostics (Basel). 2020;11(1).
  88. Chung SH, Choi CG, Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch Pharm Res 2001;24(3):214-8. https://doi.org/10.1007/BF02978260
  89. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51(6):1851-8. https://doi.org/10.2337/diabetes.51.6.1851
  90. Lebrasseur NK. Building muscle, browning fat and preventing obesity by inhibiting myostatin. Diabetologia 2012;55(1):13-7. https://doi.org/10.1007/s00125-011-2361-8
  91. Zhang C, McFarlane C, Lokireddy S, Masuda S, Ge X, Gluckman PD, Sharma M, Kambadur R. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 2012;55(1):183-93. https://doi.org/10.1007/s00125-011-2304-4
  92. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364(4):1002-8. https://doi.org/10.1016/j.bbrc.2007.10.125
  93. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72(11):2815-23. https://doi.org/10.1271/bbb.80205
  94. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198(3):561-9. https://doi.org/10.1677/JOE-08-0104
  95. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 2009;23(2):262-6. https://doi.org/10.1002/ptr.2606
  96. Huang YC, Lin CY, Huang SF, Lin HC, Chang WL, Chang TC. Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2010;58(10):6039-47. https://doi.org/10.1021/jf9034755
  97. Niu CS, Yeh CH, Yeh MF, Cheng JT. Increase of adipogenesis by ginsenoside (Rh2) in 3T3-L1 cell via an activation of glucocorticoid receptor. Horm Metab Res 2009;41(4):271-6. https://doi.org/10.1055/s-0028-1103277
  98. Cheon JM, Kim DI, Kim KS. Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J Ginseng Res 2015;39(4):331-7. https://doi.org/10.1016/j.jgr.2015.03.005
  99. Lee SH, Lee HJ, Lee YH, Lee BW, Cha BS, Kang ES, Ahn CW, Park JS, Kim HJ. Lee E.Y., et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytother Res 2012;26(1):142-7. https://doi.org/10.1002/ptr.3610
  100. Shin JE, Jeon SH, Lee SJ, Choung SY. The administration of panax ginseng berry extract attenuates high-fat-diet-induced sarcopenic obesity in C57BL/6 mice. Nutrients 2022;14(9).