DOI QR코드

DOI QR Code

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim (Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST) ;
  • Myung-Ho Kim ( Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST) ;
  • Ji In Kang (Biomedical Science and Engineering Interdisciplinary Program, KAIST) ;
  • Jong-In Baek (Department of Biological Sciences, KAIST) ;
  • Byeong-Min Jeon (Department of Biological Sciences, KAIST) ;
  • Ho Min Kim (Biomedical Science and Engineering Interdisciplinary Program, KAIST) ;
  • Sun-Chang Kim (Department of Biological Sciences, KAIST) ;
  • Won-Il Jeong (Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST)
  • Received : 2023.08.02
  • Accepted : 2023.10.19
  • Published : 2024.01.01

Abstract

Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT, (2021R1A2C3004589, RS-2023-00223831, 2022M3A9B6017654), and the Ministry of Education (2022R1A6A3A13071493), Korean government, South Korea.

References

  1. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Preprint at Hepatology 2023. https://doi.org/10.1097/HEP.0000000000000520.
  2. Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015;1:15080.
  3. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, Congly SE, Kaplan GG, Shaheen AA. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022;7(9):851-61.
  4. Bilotta MT, Petillo S, Santoni A, Cippitelli M. Liver X receptors: regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol 2020;11:584303.
  5. Steffensen KR, Gustafsson JA. Putative metabolic effects of the liver X receptor (LXR). Diabetes 2004;53(Suppl 1):S36-42. https://doi.org/10.2337/diabetes.53.2007.S36
  6. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 1999;96(1):266-71. https://doi.org/10.1073/pnas.96.1.266
  7. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012;13(4):213-24. https://doi.org/10.1038/nrm3312
  8. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 2018;14(8):452-63. https://doi.org/10.1038/s41574-018-0037-x
  9. Pawar A, Botolin D, Mangelsdorf DJ, Jump DB. The role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol Chem 2003;278(42):40736-43. https://doi.org/10.1074/jbc.M307973200
  10. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamuta M, Takayanagi R, et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 2008;38(11):1122-9. https://doi.org/10.1111/j.1872-034X.2008.00382.x
  11. Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ, Abe Y, Ego KM, Bruni CM, Deng Z, Schlachetzki JCM, et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain kupffer cell identity. Immunity 2019;51(4):655-670 e658.
  12. N AG, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 2009;31(2):245-58. https://doi.org/10.1016/j.immuni.2009.06.018
  13. N AG, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta 2011;1812(8):982-94. https://doi.org/10.1016/j.bbadis.2010.12.015
  14. Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, Bennett H, Bruni CM, Ouyang Z, Li RZ, Sun X, et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 2020;52(6):1057-1074 e1057.
  15. Park M, Yoo JH, Lee YS, Park EJ, Lee HJ. Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice. J Ginseng Res 2020;44(2):350-61. https://doi.org/10.1016/j.jgr.2019.09.004
  16. Ruckdeschel JC. Management of malignant pleural effusion: an overview. Semin Oncol 1988;15(3 Suppl 3):24-8.
  17. Kim MH, Kim HH, Jeong JM, Shim YR, Lee JH, Kim YE, Ryu T, Yang K, Kim KR, Jeon BM, et al. Ginsenoside F2 attenuates chronic-binge ethanol-induced liver injury by increasing regulatory T cells and decreasing Th17 cells. J Ginseng Res 2020;44(6):815-22. https://doi.org/10.1016/j.jgr.2020.03.002
  18. Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus Niger g.848. J Ginseng Res 2015;39(3):221-9. https://doi.org/10.1016/j.jgr.2014.12.003
  19. Shin JY, Lee JM, Shin HS, Park SY, Yang JE, Cho SK, Yi TH. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats. J Ginseng Res 2012;36(1):86-92. https://doi.org/10.5142/jgr.2012.36.1.86
  20. Shin HS, Park SY, Hwang ES, Lee DG, Song HG, Mavlonov GT, Yi TH. The inductive effect of ginsenoside F2 on hair growth by altering the WNT signal pathway in telogen mouse skin. Eur J Pharmacol 2014;730:82-9. https://doi.org/10.1016/j.ejphar.2014.02.024
  21. Park SH, Seo W, Eun HS, Kim SY, Jo E, Kim MH, Choi WM, Lee JH, Shim YR, Cui CH, et al. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem Biophys Res Commun 2016;478(4):1713-9. https://doi.org/10.1016/j.bbrc.2016.09.009
  22. Zhou J, Zhang J, Li J, Guan Y, Shen T, Li F, Li X, Yang X, Hu W. Ginsenoside F2 suppresses adipogenesis in 3T3-L1 cells and obesity in mice via the AMPK pathway. J Agric Food Chem 2021;69(32):9299-312. https://doi.org/10.1021/acs.jafc.1c03420
  23. Kim DE, Chang BY, Jeon BM, Baek JI, Kim SC, Kim SY. SGL 121 attenuates nonalcoholic fatty liver disease through adjusting lipid metabolism through AMPK signaling pathway. Int J Mol Sci 2020;21(12).
  24. Trott O, Olson AJ, Vina AutoDock. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455-61.
  25. Weiskirchen R, Friedman SL. Hepatic stellate cells : methods and protocols. New York, NY: New York, NY: Humana Press; 2023.
  26. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7(3):293-302. https://doi.org/10.2174/157016109788340767
  27. Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H, George J, Schuppan D, Gronbaek H. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019;16(3):145-59. https://doi.org/10.1038/s41575-018-0082-x
  28. Kim SY, Jeong JM, Kim SJ, Seo W, Kim MH, Choi WM, Yoo W, Lee JH, Shim YR, Yi HS, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun 2017;8(1):2247.
  29. Gu D, Yi H, Jiang K, Fakhar SH, Shi J, He Y, Liu B, Guo Y, Fan X, Li S. Transcriptome analysis reveals the efficacy of ginsenoside-Rg1 in the treatment of nonalcoholic fatty liver disease. Life Sci 2021;267:118986.
  30. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 2018;41(11):1638-44. https://doi.org/10.1248/bpb.b18-00132
  31. Lund EG, Peterson LB, Adams AD, Lam MH, Burton CA, Chin J, Guo Q, Huang S, Latham M, Lopez JC, et al. Different roles of liver X receptor alpha and beta in lipid metabolism: effects of an alpha-selective and a dual agonist in mice deficient in each subtype. Biochem Pharmacol 2006;71(4):453-63. https://doi.org/10.1016/j.bcp.2005.11.004
  32. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, Hogenesch J, O'Connell R M, Cheng G, Saez E, et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 2004;119(2):299-309. https://doi.org/10.1016/j.cell.2004.09.032
  33. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012;151(1):138-52. https://doi.org/10.1016/j.cell.2012.06.054
  34. Treuter E. New wrestling rules of anti-inflammatory transrepression by oxysterol receptor LXR revealed. Cell Res 2011;21(5):711-4. https://doi.org/10.1038/cr.2011.52
  35. Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, Gratton E, Parks J, Tontonoz P. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 2015;4:e08009.
  36. Gonzalez de la Aleja A, Herrero C, Torres-Torresano M, de la Rosa JV, Alonso B, Capa-Sardon E, Muller IB, Jansen G, Puig-Kroger A, Vega MA, et al. Activation of LXR nuclear receptors impairs the anti-inflammatory gene and functional profile of M-CSF-dependent human monocyte-derived macrophages. Front Immunol 2022;13:835478.
  37. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021;18(1):45-56.