DOI QR코드

DOI QR Code

Development of Heterogeneous Damage Cause Estimation Technology for Bridge Decks using Random Forest

랜덤포레스트를 활용한 교량 바닥판의 이종손상 원인 추정 기술 개발

  • 정현진 (인하대학교 토목공학과) ;
  • 박기태 (한국건설기술연구원 구조연구본부) ;
  • 김재환 (한국건설기술연구원 구조연구본부) ;
  • 권태호 (한국건설기술연구원 구조연구본부) ;
  • 이종한 (인하대학교 토목공학과)
  • Received : 2023.11.23
  • Accepted : 2024.01.02
  • Published : 2024.02.01

Abstract

An investigation into the detailed safety diagnosis report indicates that domestic highway bridges mainly suffer from defects, deterioration, and damage due to physical forces. In particular, deterioration is an inevitable damage that occurs due to various environmental and external factors over time. In particular, bridge deck is very vulnerable to cracks, which occur along with various types of damages such as rebar corrosion and surface delamination. Thus, this study evaluates a correlation between heterogeneous damage and deterioration environment and then identifies the main causes of such heterogeneous damage. After all, a bridge heterogeneous damage prediction model was developed using random forests to determine the top five factors contributing to the occurrence of the heterogeneous damage. The results of the study would serve as a basic data for estimating bridge maintenance and budget.

정밀안전진단보고서를 분석한 결과 국내 고속도로 교량은 결함, 열화, 물리력에 의한 손상이 주요하게 발생한다. 특히 열화는 시간이 경과함에 따라 다양한 환경 영향인자와 외부적 요인에 의해 발생하는 필연적인 손상이다. 교량 바닥판의 경우 열화가 가장 빠른 부재로, 균열부를 중심으로 철근부식, 박리/박락 등의 여러 가지 유형의 이종손상이 함께 발생하는 것으로 분석된다. 따라서 교량의 이종손상과 열화환경 간의 상관관계를 밝히고 이를 통해 교량의 이종손상 발생 원인을 규명해야 한다. 본 연구에서는 랜덤포레스트를 활용하여 교량의 이종손상 예측 모델을 개발하였으며, 개발된 모델을 통해 이종손상 발생에 영향을 미치는 상위 5가지 영향인자를 도출하였다. 이를 통해 장래 교량의 유지관리 및 예산을 추정하는 분야에 활용하는 기초자료가 될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Research for this paper was carried out under the KICT Research Program (project no. 20230073-001, Development of DNA-based smart maintenance platform and application technologies for aging bridges) funded by the Ministry of Science and ICT.

References

  1. Agrawal, A., Kawaguchi, A. and Chen, Z. (2010). "Deterioration rates of typical bridge elements in New York." Journal of Bridge Engineering, ASCE, Vol. 15, No. 4, pp. 419-429, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000123.
  2. Aneta, N. M. (2013). "Water-binder ratio influence on de-icing salt scaling of fly ash conceretes." Procedia Engineering, Elsevier, Vol. 57, pp. 823-829, https://doi.org/10.1016/j.proeng.2013.04.104.
  3. Bien, J., Kuzawa, M. and Laminski, T. (2020). "Strategies and tools for the monitoring of concrete bridges." Structural Concrete, FIB, Vol. 21, No. 4, pp. 1227-1239, https://doi.org/10.1002/suco.201900410.
  4. Callow, D., Lee, J., Blumenstein, M., Guan, H. and Loo, Y. C. (2013). "Development of hybrid optimization method for artificial intelligence based bridge deterioration model feasibility study." Automation in Construction, Elsevier, Vol. 31, pp. 83-91, https://doi.org/10.1016/j.autcon.2012.11.016.
  5. Chan, J. Y., Leow, S. M., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W. and Chen, Y. L. (2022). "Mitigating the multicollinearity problem and its machine learning approach: a review." Mathematics, MDPI, Vol. 10, No. 8, 1283, https://doi.org/10.3390/math10081283.
  6. Choi, Y. S., Jang, P. S., Choi, J. S., Kim, Y. G. and Yang, E. I. (2014). "A comparative study of evaluation and test methods for effects of de-icing salts on concrete freeze-thaw resistance." Proceedings of the Korea Institute for Structural Maintenance and Inspection Conference, KSMI, Jeju, Korea, Vol. 18, No. 2, pp. 308-310 (in Korean).
  7. Chung, J. S., Kim, B. H. and Kim, I. S. (2014). "A case study on chloride corrosion for the end zone of concrete deck subjected to de-icing salts added calcium chloride." Journal of the Korean Society of Safety, KOSOS, Vol. 29, No. 6, pp. 87-93, https://doi.org/10.14346/JKOSOS.2014.29.6.087 (in Korean).
  8. Cusson, D., Lounus, Z. and Daigle, L. (2011). "Durability monitoring for improved service life predictions of concrete bridge decks in corrosive environments." Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 26, No. 7, pp. 524-541, https://doi.org/10.1111/j.1467-8667.2010.00710.x.
  9. Fujiu, M., Minami, T. and Takayama, J. (2022). "Environmental influence on bridge deterioration based on periodic inspection data from ishikawa prefecture." Infrastructures, MDPI, Vol. 7, No. 10, 130, https://doi.org/10.3390/infrastructures7100130.
  10. Grace, N., Jensen, E., Eamon, C. and Shi, X. (2012). "Life-cycle cost analysis of carbon fiber-reinforced polymer reinforced concrete bridges." Structural Journal, ACI, Vol. 109, No. 5, pp. 697-704, https://doi.org/10.14359/51684047.
  11. Hairani, H., Anggrawan, A. and Priyanto, D. (2023). "Improvement performance of the random forest method on unbalanced diabetes data classification using Smote-Tomek Link." JOIV International Journal on Informatics Visualization, Information Technology Department Politeknik Negeri Padang, Vol. 7, No. 1, pp. 258-264, http://dx.doi.org/10.30630/joiv.7.1.1069.
  12. Hong, J. and Jeon, S. J. (2023). "Prediction of safety grade of bridges using the classification models of decision tree and random forest." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 43, No. 3, pp. 397-411, https://doi.org/10.12652/Ksce.2023.43.3.0397 (in Korean).
  13. Jeon, J. C., Lee, I. K., Park, C. H. and Lee, H. H. (2017). "A study on improvement of inspection activity based upon condition analysis of expressway bridges." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 37, No. 1, pp. 19-28, https://doi.org/10.12652/Ksce.2017.37.1.0019 (in Korean).
  14. Jeong, Y. S., Min, G. H., Lee, I. K., Yoon, I. R. and Kim, W. S. (2021). "Comparative study of bridge maintenance: United States, United Kingdom, Japan, and Korea." Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, Vol. 25, No. 5, pp. 114-126, https://doi.org/10.11112/jksmi.2021.25.5.114 (in Korean).
  15. Jung, H. J., An, H. J., Park, K. T., Jung, K. S., Kim, Y. H. and Lee, J. H. (2021). "Correlation analysis between damage of expansion joints and response of deck in RC bridges." Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, Vol. 25, No. 6, pp. 245-253, https://doi.org/10.11112/jksmi.2021.25.6.245 (in Korean).
  16. Kazemitabar, J., Amini, A., Bloniarz, A. and Talwalker, A. (2017). "Variable importance using decision trees." Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS 2017), NIPS, Long Beach, CA, pp. 425-434.
  17. Kim, H. S., Lee, I. K. and Park, Y. H. (2021). "Deterioration patterns and chloride attacks of expressway bridges under de-icing slats environments." Magazine of the Korea Concrete Institute, KCI, Vol. 33, No. 4, pp. 14-18 (in Korean).
  18. Korea Authority of Land and Infrastructure Safety (KALIS) (2022). Detailed Guidelines for the Safety and Maintenance of Facilities (Safety Inspection and Diagnosis) for Bridges (in Korean).
  19. Korea Expressway Corporation (KEC) (2020). A Study on Establishment of Maintenance Strategy to Extend the Service Life of Bridge Deck Slab, KECRI-2020-42-534.9607 (in Korean).
  20. Lee, B. D., Choi, Y. S., Kim, Y. G., Choi, J. S. and Kim, I. S. (2016). "A study on the durability improvement of highway-subsidiary concrete structure exposed to deicing salt and freeze-thaw." Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, Vol. 20, No. 4, pp. 128-135, https://doi.org/10.11112/jksmi.2016.20.4.128 (in Korean).
  21. Lee, I. K., Kim, W. S., Kang, H. T. and Seo, J. W. (2015). "Analysis and prediction of highway bridge deck slab deterioration." Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, Vol. 19, No. 2, pp. 68-75, https://doi.org/10.11112/jksmi.2015.19.2.068 (in Korean).
  22. Ministry of Land, Infrastructure and Transport (MOLIT) (2021a). Special act on the safety control and maintenance of establishments.
  23. Ministry of Land, Infrastructure and Transport (MOLIT) (2021b). National bridge standard data (in Korean).
  24. Ministry of Land, Infrastructure and Transport (MOLIT) (2023). Road Bridge and Tunnel Status Report (in Korean).
  25. Nowak, A. and Szerszen, M. (2003). "Life-cycle deterioration models for concrete deck slabs." Proceedings of Life-Cycle Performance of Deteriorating Structures, ASCE, Lausanne, Switzerland, pp. 133-140, https://doi.org/10.1061/40707(240)15.
  26. Raffaniello, A., Baur, M., Safiuddin, M. and El-Hakin, M. (2022). "Traffic and climate impacts on rutting and thermal cracking in flexible and composite pavements." Infrastructures, MDPI, Vol. 7, No. 8, 100, https://doi.org/10.3390/infrastructures7080100.
  27. Zhang, Y., O'Connor, S. M., Linden, G. W., Parakash, A. and Lynch, J. (2016). "SenStore: A scalable cyberinfrastructure platform for implementation of data-to-decision frameworks for infrastructure health management." Journal of Computing in Civil Engineering, ASCE, Vol. 30, No. 5, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000560.