DOI QR코드

DOI QR Code

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure

지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구

  • 김태영 (순천대학교 토목공학과) ;
  • 류희환 (한국전력공사 전력연구원 송변전연구소) ;
  • 정성훈 (순천대학교 토목공학과)
  • Received : 2023.11.21
  • Accepted : 2023.12.26
  • Published : 2024.02.01

Abstract

Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

급격한 도시화로 인한 지하의 무분별한 개발은 기존 지하매설물의 점검과 교체 그리고 새로운 지하시설물 설치에 지연을 일으키고 있다. 최근에는 체계화된 시스템을 도입하여 지하시설물을 관리하고 있지만, 실제 시공은 현장 여건에 따라서 설계 도면과 다르게 진행되기 때문에 기존 지하매설물의 부정확한 위치 정보로 사고가 끊임없이 발생하고 있다. 한편, 전기비저항 탐사는 전극을 지반에 관입시켜 전극 간 전위차로 지반의 전기저항을 측정하는 방식이며, 비파괴 물리탐사 기법으로서 널리 이용되고 있다. 그리고 다수의 전극 쌍을 이용하여 복잡한 지하 구조를 영상화하고, 딥러닝 알고리즘을 활용한 데이터 해석 기술들이 비약적으로 발전하였지만, 아직 지하매설물의 기하학적 조건에 따른 전기저항 변화를 정량적으로 평가한 기초적인 연구로서는 진행된 바가 없다. 본 연구에서는 전극과 지하매설물의 기하학적 매개 변수 해석을 통해서 전기저항 변화를 평가하였다. 먼저, 이론식과 수치 해석의 전기저항값 차이가 작게 나타난 정량화된 메쉬를 적용하여 3차원 전기저항 수치 해석 모듈을 개발하고, 매설물의 깊이, 크기, 그리고 전극과 매설물 간 이격거리에 따른 매개 변수 해석을 통해서 정상 직류 상태에서 전기저항 변화를 정량적으로 비교하였다. 전기저항은 매설물이 얕은 깊이에 위치하고, 크기가 크고, 전극과의 이격거리가 가까울수록 높게 측정되었다. 추가적으로 전극과 지하매설물 주변에 형성된 전위 및 전류밀도 분포를 분석하여 터미널 전극 주변에서 측정된 전기저항을 고찰하였다.

Keywords

Acknowledgement

This research work was funded by Korea Electric Power Corporation, grant number R21SA02. This paper has been written by modifying and supplementing the KSCE 2023 CONVENTION paper.

References

  1. Arifuzzaman and Anisuzzaman, M. (2022). "An initiative to correlate the SPT and CPT data for an alluvial deposit of Dhaka city." International Journal of Geo-Engineering, Springer, Vol. 13, No. 1, 5, https://doi.org/10.1186/s40703-021-00170-3.
  2. COMSOL Multiphysics (2023). AC/DC module user's guide, COMSOL AB, Stockholm, Sweden, Available at http://www.comsol.com (Accessed: November 11, 2023).
  3. De la Paz-Bonilla, I. and Vidot-Vega, A. L. (2017). "Application of a performance-displacement based method for the seismic assessment of earth dams." International Journal of Geo-Engineering, Springer, Vol. 8, No. 1, 10, https://doi.org/10.1186/s40703-017-0048-9.
  4. Ezersky, M. G. (2017). "Behavior of seismic-acoustic parameters during deforming and failure of rock samples, large blocks and underground opening: base for monitoring." International Journal of Geo-Engineering, Springer, Vol. 8, No.1, 13, https://doi.org/10.1186/s40703-017-0050-2.
  5. Ho, C. Y. and Chu, T. K. (1977). Electrical resistivity and thermal conductivity of nine selected aisi stainless steels, ADA129160, Thermophysical and Electronic Properties Information Analysis Center Lafayette In, West Lafayette, Indiana.
  6. Hong, C. H., Chong, S. H. and Cho, G. C. (2020). "Electrical resistivity measurement with spherical-tipped cylindrical electrode embedded on two layers." Materials, MDPI, Vol. 13, No. 9, 2144, https://doi.org/10.3390/ma13092144.
  7. Hong, C. H., Chong, S. H., Hong, E. S., Cho, G. C. and Kwon, T. H. (2019). "Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 21, No. 2, pp. 267-278, https://doi.org/10.9711/KTAJ.2019.21.2.267 (in Korean).
  8. Hong, C. H., Kim, J. S. and Chong, S. H. (2022). "Theoretical resistance in cylindrical electrodes with conical tip." Geomechanics and Engineering, Techno-Press, Vol. 30, No. 4, pp. 337-343, https://doi.org/10.12989/gae.2022.30.4.337.
  9. Kang, K. N., Kim, W. R., Hwang, S. H. and An, J. S. (2021). "Development of 3D underground information construction and visualization system based on IUGIM." Journal of the Korean Society of Surveying, KSGPC, Vol. 39, No. 6, pp. 497-505, https://doi.org/10.7848/ksgpc.2021.39.6.497 (in Korean).
  10. Kim, T. Y., Lee, S. H., Ryu, H. H. and Chong, S. H. (2023). "Influence of electrode geometry on electrical resistivity survey: Numerical study." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 25, No. 2, pp. 101-120, https://doi.org/10.9711/KTAJ.2023.25.2.101 (in Korean).
  11. Lee, I. M., Choi, S. S., Kim, S. T., Kim, C. K. and Jun, J. S. (2002). "3D analysis of fracture zones ahead of tunnel face using seismic reflection." Journal of Korean Tunnelling and Underground Space Association, Vol. 4, No. 4, pp. 301-318 (in Korean).
  12. Lee, K. H., Park, J. H., Park, J., Lee, I. M. and Lee, S. W. (2019). "Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling." Geomechanics and Engineering, Techno-Press, Vol. 19, No. 1, pp. 93-104, https://doi.org/10.12989/gae.2019.19.1.093.
  13. Nazifi, H. M., Gulen, L., Gurbuz, E. and Peksen, E. (2022). "Time-lapse electrical resistivity tomography (ERT) monitoring of used engine oil contamination in laboratory setting." Journal of Applied Geophysics, Elsevier, Vol. 197, pp. 104531, https://doi.org/10.1016/j.jappgeo.2022.104531.
  14. Ramesh, S. and Arof, A. K. (2000). "Electrical conductivity studies of polyvinyl chloride-based electrolytes with double salt system." Solid State Ionics, Elsevier, Vols. 136-137, pp. 1197-1200, https://doi.org/10.1016/S0167-2738(00)00598-1.
  15. Ryu, H. H., Cho, S. A., Kim, K. Y. and Cho, G. C. (2017). "Exploration of underground utilities using method predicting an anomaly(II) - field application." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 19, No. 3, pp. 449-461, https://doi.org/10.9711/KTAJ.2017.19.3.449 (in Korean).
  16. Ryu, H. H., Cho, G. C., Yang, S. D. and Shin, H. K. (2011). "Development of tunnel electrical resistivity prospecting system and its application." Proceedings of 1st International Workshop on Geoelectrical Monitoring GELMON, Geological Survey of Austria, Vienna, Austria, pp. 179-183.
  17. Ryu, H. H., Kim, K. Y., Lee, K. R., Lee, D. S. and Cho, G. C. (2015). "Exploration of underground utilities using method predicting an anomaly." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 17, No. 3, pp. 205-214, https://doi.org/10.9711/KTAJ.2015.17.3.205 (in Korean).
  18. Sun, C.-G., Cho, H.-I., Kim, H.-S. and Lee, M.-G. (2022). "Determining N value from SPT blows for 30 cm penetration in weathered strata." Geomechanics and Engineering, Techno-Press, Vol. 28, No. 6, pp. 625-636, https://doi.org/10.12989/gae.2022.28.6.625.
  19. Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N. and Kupongsak, S. (2016). "Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand." International Journal of Geo-Engineering, Springer, Vol. 7, pp. 1-9, https://doi.org/10.1186/s40703-016-0017-8.
  20. Yamasaki, M. T., Peixoto, A. S. and Garcia, L. C. (2014). "Evaluation of electrical resistivity in a tropical sandy soil compacted." Electronic Journal of Geotechnical Engineering, Vol. 19, pp. 629-644.
  21. Yi, M. J., Kim, N. Y., Lee, S., Hwang, B., Ha, M. J., Kim, K. S. and Lee, K. H. (2022). "Numerical simulation study on applicability of electrical resistivity survey at tunnel face." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 24, No. 3, pp. 279-292, https://doi.org/10.9711/KTAJ.2022.24.3.279 (in Korean).