DOI QR코드

DOI QR Code

Multi-amplitude voltage vector MPTC for dual three-phase PMSMs with low torque ripple

  • Shuang Wang (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Qianru Zhang (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Deliang Wu (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Jianfei Zhao (School of Mechatronic Engineering and Automation, Shanghai University)
  • Received : 2023.03.22
  • Accepted : 2023.08.01
  • Published : 2024.01.20

Abstract

In model predictive torque control (MPTC), voltage vectors with a fixed amplitude have poor performance in torque tracking. In this paper, a multi-amplitude MPTC (MA-MPTC) method for dual three-phase permanent magnet synchronous motor (PMSM) is proposed, which can effectively reduce torque ripple by combining virtual voltage vectors (VVVs) and actual voltage vectors (AVVs). First, the deadbeat (DB) technique is used to simplify voltage vector selection and to avoid the enumeration of all the possible voltage vectors. After calculating the reference voltage vector (RVV) using this method, four vectors with different amplitudes can be selected as candidate voltage vectors (CVVs) according to the angle of the RVV. Then a new cost function is used to calculate the four candidate vectors, and the vector that minimizes the cost function is the optimal vector. Therefore, the MA-MPTC strategy has the advantages of both the MPTC method and the DB method, which can effectively reduce the torque ripple with a low computational cost. In addition, VVVs are used to reduce the influence of harmonic currents while suppressing torque ripple. Finally, the stability and dynamic response are investigated on the test bench. When compared with a contrast method, the torque ripple is reduced by nearly half and the advantage of fast response is maintained. The experimental results confirm the effectiveness of the proposed method.

Keywords

Acknowledgement

Natural Science Foundation of Shanghai, 19ZR1418600, Shuang Wang.

References

  1. Cervone, A., Slunjski, M., Levi, E., et al.: Optimal third-harmonic current injection for asymmetrical multiphase permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 68(4), 2772-2783 (2021) https://doi.org/10.1109/TIE.2020.2982099
  2. Duran, M.J., Gonzalez-Prieto, I., Barrero, F., et al.: A simple braking method for six-phase induction motor drives with unidirectional power fow in the base-speed region. IEEE Trans. Ind. Electron. 64(8), 6032-6041 (2017) https://doi.org/10.1109/TIE.2017.2682006
  3. Nair, S.V., Harikrishnan, P., Hatua, K.: Six-step operation of a symmetric dual three-phase PMSM with minimal circulating currents for extended speed range in electric vehicles. IEEE Trans. Ind. Electron. 69(8), 7651-7662 (2022) https://doi.org/10.1109/TIE.2021.3104587
  4. Han, Y., Nie, Z., Xu, J., et al.: Mathematical model and vector control of a six-phase linear induction motor with the dynamic end efect. J. Power Electron 20(3), 698-709 (2020) https://doi.org/10.1007/s43236-020-00059-x
  5. Pandit, J.K., Aware, M.V., Nemade, R.V., et al.: Direct torque control scheme for a six-phase induction motor with reduced torque ripple. IEEE Trans. Power Electron. 32(9), 7118-7129 (2017) https://doi.org/10.1109/TPEL.2016.2624149
  6. Fan, S., Tong, C.: Model predictive current control method for PMSM drives based on an improved prediction model. J. Power Electron. 20(6), 1456-1466 (2020)
  7. Aissa, O., Moulahoum, S.C., et al.: Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control. Environ. Sci. Pollut. Res. 25(25), 24548-24560 (2018) https://doi.org/10.1007/s11356-017-0396-1
  8. N. Hamouda, B. Babes, S. Kahla, et al.: Predictive control of a grid connected PV system incorporating active power filter functionalities. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). 1-6 (2019)
  9. Li, T., Sun, X., Lei, G., et al.: Finite-control-set model predictive control of permanent magnet synchronous motor drive systems-an overview. IEEE/CAA J. Autom. Sin. 9(12), 2087-2105 (2022) https://doi.org/10.1109/JAS.2022.105851
  10. Zhou, C., Yang, G., Su, J.: PWM strategy with minimum harmonic distortion for dual three-phase permanent-magnet synchronous motor drives operating in the overmodulation region. IEEE Trans. Power Electron. 31(2), 1367-1380 (2016) https://doi.org/10.1109/TPEL.2015.2414437
  11. Goncalves, P.F.C., Cruz, S.M.A., Mendes, A.M.S.: Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics. IEEE Trans. Ind. Electron. 69(1), 130-140 (2022) https://doi.org/10.1109/TIE.2021.3053885
  12. N. Hamouda, B. Babes, S. Kahla, et al.: Real time implementation of grid connected wind energy systems: predictive current controller. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). 1-6 (2019)
  13. Luo, Y., Liu, C.: A simplified model predictive control for a dual three-phase PMSM with reduced harmonic currents. IEEE Trans. Ind. Electron. 65(11), 9079-9089 (2018) https://doi.org/10.1109/TIE.2018.2814013
  14. Gonzalez-Prieto, I., Duran, M.J., Aciego, J.J., et al.: Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Trans. Ind. Electron. 65(1), 27-37 (2018) https://doi.org/10.1109/TIE.2017.2714126
  15. Luo, Y., Liu, C.: Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor. IEEE Trans. Power Electron. 34(7), 6960-6972 (2019) https://doi.org/10.1109/TPEL.2018.2874893
  16. Liu, S., Liu, C.: Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans. Ind. Electron. 68(3), 2048-2058 (2021) https://doi.org/10.1109/TIE.2020.2973905
  17. Ji, J., Jin, S., Zhao, W., et al.: Simplified three-vector-based model predictive direct power control for dual three-phase PMSG. IEEE Trans. Energy Conversion 37(2), 1145-1155 (2022) https://doi.org/10.1109/TEC.2021.3131961
  18. Agoro, S., Husain, I.: Model-free predictive current and disturbance rejection control of dual three-phase PMSM drives using optimal virtual vector modulation. IEEE J. Emerg. Selected Top. Power Electron. 11(2), 1432-1443 (2022) https://doi.org/10.1109/JESTPE.2022.3171166
  19. Ren, Y., Zhu, Z.Q.: Reduction of both harmonic current and torque ripple for dual three-phase permanent-magnet synchronous machine using modified switching-table-based direct torque control. IEEE Trans. Ind. Electron. 62(11), 6671-6683 (2015) https://doi.org/10.1109/TIE.2015.2448511
  20. Wang, W., Liu, C., Liu, S., et al.: Model predictive torque control for dual three-phase PMSMs with simplified deadbeat solution and discrete space-vector modulation. IEEE Trans. Energy Conversion. 36(2), 1491-1499 (2021) https://doi.org/10.1109/TEC.2021.3052132
  21. Gu, M., Yang, Y., Fan, M., et al.: Finite control set model predictive torque control with reduced computation burden for PMSM based on discrete space vector modulation. IEEE Trans. Energy Convers. 38(1), 703-712 (2022)
  22. Yan, Y., Wang, S., Xia, C.L., et al.: Hybrid control set-model predictive control for field-oriented control of VSI-PMSM. IEEE Trans. Energy Conversion. 31(4), 1622-1633 (2016) https://doi.org/10.1109/TEC.2016.2598154
  23. Amiri, M., Milimonfared, J., Khaburi, D.A.: Predictive torque control implementation for induction motors based on discrete space vector modulation. IEEE Trans. Ind. Electron. 65(9), 6881-6889 (2018) https://doi.org/10.1109/TIE.2018.2795589
  24. Nikzad, M.R., Asaei, B., Ahmadi, S.O.: Discrete duty-cycle-control method for direct torque control of induction motor drives with model predictive solution. IEEE Trans. Power Electron. 3(3), 2317-2329 (2018) https://doi.org/10.1109/TPEL.2017.2690304
  25. Vafaie, M.H., Dehkordi, B.M., Moallem, P., et al.: A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM. IEEE Trans. on Power Electro. 31(5), 3738-3753 (2016) https://doi.org/10.1109/TPEL.2015.2462116
  26. Wang, H., Zhao, W., Tang, H., et al.: Improved fault-tolerant model predictive torque control of five-phase PMSM by using deadbeat solution. IEEE Trans. on Energy Conversion. 37(1), 210-219 (2022) https://doi.org/10.1109/TEC.2021.3099813
  27. Li, X.L., Xue, Z.W., Zhang, L.X., et al.: A low-complexity three-vector-based model predictive torque control for SPMSM. IEEE Trans. on Power Electro. 36(11), 13002-13012 (2021) https://doi.org/10.1109/TPEL.2021.3079147
  28. Guo, L., Zhang, K., Li, Y.: Double-voltage vector-based model predictive control for three-phase grid-connected ac/dc converters. J. Power Electron. 20(1), 236-244 (2020) https://doi.org/10.1007/s43236-019-00012-7
  29. Luo, Y., Liu, C.: Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function. IEEE Trans. Ind. Electron. 67(2), 969-979 (2020) https://doi.org/10.1109/TIE.2019.2901636
  30. Yifan Zhao, T.A.: Lipo: Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Electron. 31(5), 1100-1109 (1995)
  31. Lee, J.S., Choi, C.H., Seok, J.K., et al.: Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer. IEEE Trans. Ind. Appl. 47(4), 1749-1758 (2011) https://doi.org/10.1109/TIA.2011.2154293
  32. Wang, Y., Wang, X.C., Xie, W., et al.: Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives. IEEE Trans. Ind. Electron. 64(5), 3537-3547 (2017) https://doi.org/10.1109/TIE.2017.2652338