DOI QR코드

DOI QR Code

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat (Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University) ;
  • Sarunya Donrussamee (Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University) ;
  • Phatcharanan Smanmit (Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University) ;
  • Samlit Jikjak (Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University) ;
  • Tappagorn Leelatam (Biomass Energy Research Laboratory, Center of Excellence on Alternative Energy, Research and Development Institution, Sakon Nakhon Rajabhat University) ;
  • Sunti Phewphong (Biomass Energy Research Laboratory, Center of Excellence on Alternative Energy, Research and Development Institution, Sakon Nakhon Rajabhat University) ;
  • Krittiyanee Namwongsa (Department of Biochemistry, Faculty of Medicine, Khon Kaen University) ;
  • Preecha Moonsin (Program of Chemistry, Faculty of Science, Ubon Ratchathani Rajabhat University) ;
  • Vinich Promarak (Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology)
  • Received : 2023.11.23
  • Accepted : 2023.12.12
  • Published : 2024.01.27

Abstract

This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Keywords

Acknowledgement

The authors acknowledge financial support from the National Research Council of Thailand (NRCT) (grant no. N42A650196) and Sakon Nakhon Rajabhat University, Thailand. Additionally, the authors express gratitude to the Program of Chemistry and Innovation in Chemistry for Community Research Unit under the Faculty of Science and Technology, and the Biomass Energy Research Laboratory under the Center of Excellence on Alternative Energy, Sakon Nakhon Rajabhat University, Thailand, for their support in providing the necessary equipment and tools for this project.

References

  1. S. Phewphong, W. Roschat, S. Inthachai, K. Namwongsa, P. Wongka, N. Khotsuno, C. Janlakorn, P. Moonsin, B. Yoosuk and V. Promarak, Asia-Pac. J. Sci. Technol., 28, APST-28 (2023).
  2. P. Moonsin, W. Roschat, S. Phewphong, T. Leelatam, K. Namwongsa, A. Thangthong, S. Panyakom, B. Yoosuk and V. Promarak, Trends Sci., 20, 6809 (2023).
  3. L. I. Saeed, A. M. Khalaf and A. B. Fadhil, Asia-Pac. J. Chem. Eng., 16, e2647 (2021). https://doi.org/10.1002/apj.2647
  4. W. Roschat, S. Phewphong, T. Kaewpuang and V. Promarak, Mater. Today: Proc., 5, 13909 (2018).
  5. W. Roschat, M. Kacha, B. Yoosuk, T. Sudyoadsuk and V. Promarak, Fuel, 98, 194 (2012).
  6. Y. Zhou, F. Ouyang, Z. B. Song, Z. Yang and D. J. Tao, Catal. Commun., 66, 25 (2015). https://doi.org/10.1016/j.catcom.2015.03.011
  7. H. W. Tan, A. R. Abdul Aziz and M. K. Aroua, Renewable Sustainable Energy Rev., 27, 118 (2013).
  8. F. D. Pitta, A. M. Domingosc and A. A. C. Barros, S. Afr. J. Chem. Eng., 29, 42 (2019).
  9. N. F. Nasir, M. F. Mirus and M. Ismail, IOP Conf. Ser.: Mater. Sci. Eng., 243, 012015 (2017). https://doi.org/10.1088/1757-899X/226/1/012015
  10. T. Attarbachi, M. D. Kingsley and V. Spallina, Fuel, 340, 127485 (2023).
  11. C. G. Chol, R. Dhabhai, A. K. Dalai and M. Reaney, Fuel Process. Technol., 178, 78 (2018).
  12. M. Turk Sekulic, S. Pap, Z. Stojanovic, N. Boskovic, J. Radonic and T. Solevic Knudsen, Sci. Total Environ., 613-614, 736 (2018).
  13. S. L. Barbosa, M, S. de Freitas, W. T. P. Santos, D. L. Nelson, M. B. de Freitas Marques, S. I. Klein, G. C. Clososki, F. J. Caires, E. J. Nassar, L. D. Zanatta, F. A. Agblevor, C. A. M. Afonso and A. C. Moraes Baroni. Biomass Convers. Biorefin., 12, 2441 (2022).
  14. C. C. O. Alves, M. V. Faustino, A. S. Franca and L. S. Oliveira, Int. J. Eng. Technol., 7, 465 (2014).
  15. S. M. Yakout and G. Sharaf El-Deen, Arabian J. Chem., 9, S1155 (2016).
  16. E. M. Mistar, T. Alfatah and M. D. Supardan, J. Mater. Res. Technol., 9, 6278 (2020).
  17. R. I. Kosheleva, A. C. Mitropoulos and G. Z. Kyzas, Environ. Chem. Lett., 17, 429 (2019).
  18. T. M. Dao and T. L. Luu, Bioresour. Technol. Rep., 2, 100583 (2020).
  19. M. S. Ardi, M. K. Aroua and N. A. Hashim, Renewable Sustainable Energy Rev., 42, 1164 (2015).
  20. S. Subphaso, Y. Sriudom, C. Saenpao, W. Khudsai and K. Premprayoon, J. Sci. Technol. Northern, 3, 21 (2022).
  21. T. Singhasiri, KKU En. J., 41, 527 (2014).
  22. F. D. Pitt, A. M. Domingos, A. A. Chivanga Barros, S. Afr. J. Chem. Eng., 29, 42 (2019).
  23. R. J. Ramalingam, M. Sivachidambaram, J. J. Vijaya, H. A. Al-Lohedan and M. R. Muthumareeswaran, Biomass Bioenergy, 142, 105800 (2020).
  24. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono and D. Prasetyoko, Mater. Today Chem., 16, 100233 (2020).
  25. S. Baskar, C. Murugesan and P. Barpanda, ECS Trans., 80, 425 (2017).
  26. A. Sahasrabudhe, S. Kapri and S. Bhattacharyya, Carbon, 107, 395 (2016).
  27. J. Rahul, R. Joshi, H. Z. Amanah, F. Z. M. Akbar and P. K. Jayapal, Korean J. Agric. Sci., 48, 299 (2021).
  28. M. Hunsom and C. Autthanit, J. Mater. Cycles Waste Manage., 19, 213 (2017).
  29. R. Dhalaria, D. Kumar, H. Kumar, E. Nepovimova, K. Kuca, M. T. Islam and R. Verma, Agronomy, 10, 815 (2020).
  30. European Committee for Food Contact Materials and Articles (Partial Agreement) (CD-P-MCA), 2nd ed. Retrieved December 6, 2023 from https://www.edqm.eu/documents/5 2006/280175/EDQM-TG+METALS+AND+ALLOYS+Dr aft+2nd+edition-for+stakeholder+consultation.pdf/4aedf4b d-028f-cdfa-b912-2d3796bf479f?t=1647867178660.
  31. P. Palawong and T. Mahacharoen, J. Criminol. Forensic Sci., 6, 121 (2020).