DOI QR코드

DOI QR Code

상용 Al2O3 분말의 비교분석 및 이를 이용하여 제조한 슬러리의 분산 특성

Comparative Analysis of Commercial Al2O3 Powders and the Dispersion Characteristics of Slurries Produced Using Them

  • 권모세 (한국세라믹기술원 이천분원) ;
  • 유승준 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 정경훈 (대한세라믹스) ;
  • 이종근 (대한세라믹스) ;
  • 김응수 (한국세라믹기술원 이천분원)
  • Mo-Se Kwon (Icheon Laboratory, Korea Institute of Ceramic Engineering & Technology) ;
  • Seung-Joon Yoo (Icheon Laboratory, Korea Institute of Ceramic Engineering & Technology) ;
  • Jin-Ho Kim (Icheon Laboratory, Korea Institute of Ceramic Engineering & Technology) ;
  • Kyoung-Hoon Jeong (Daehan Ceramics Co., Ltd.) ;
  • Jong-Keun Lee (Daehan Ceramics Co., Ltd.) ;
  • Ung-Soo Kim (Icheon Laboratory, Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2023.10.24
  • 심사 : 2023.11.27
  • 발행 : 2024.01.27

초록

Al2O3 has excellent sintering properties and is important in semiconductor manufacturing processes that require high-temperature resistance and chemical inertness in a plasma environment. In this study, a comprehensive analysis of the chemical characteristics, physical properties, crystal structure, and dispersion stability of three commercially available Al2O3 powders was conducted. The aim was to provide a technological foundation for selecting and utilizing appropriate Al2O3 powders in practical applications. All powders exhibited α-Al2O3 as the main phase, with the presence of beta-phase Na2O-11Al2O3 as the secondary phase. The highest Na+ ion leaching was observed in the aqueous slurry state due to the presence of the secondary phase. Although the average particle size difference among the three powders was not significant, distinct differences in particle size distribution were observed. ALG-1SH showed a broad particle size distribution, P162 exhibited a bimodal distribution, and AES-11 displayed a uniform unimodal distribution. High-concentration Al2O3 slurries showed differences in viscosity due to ion release when no dispersant was added, affecting the electrical double-layer thickness. Polycarboxylate was found to effectively enhance the dispersion stability of all three powders. In the dispersion stability analysis, ALG-1SH exhibited the slowest sedimentation tendency, as evidenced by the low TSI value, while P162 showed faster precipitation, influenced by the particle size distribution.

키워드

과제정보

This research is supported by the research grant from the Ministry of Trade, Industry and Energy and the Korea Planning & Evaluation Institute of Industrial Technology (KEIT) in 2020 (20012914).

참고문헌

  1. J. S. Choi, Semiconductor Process Equipment Engineering, p.64-238, Bookshill, Seoul, Korea (2021).
  2. T. A. Otitoju, P. U. Okoye, G. Chen, Y. Li, M. O. Okoye and S. Li, J. Ind. Eng. Chem. (Amsterdam, Neth.), 85, 34 (2020).
  3. D. M. Kim, S. M. Lee, S. W. Kim, H. Y. Kim and Y. S. Oh, J. Korean Ceram. Soc., 45, 405 (2008).
  4. H. K. Lee, K. S. Cho and M. Y. Kim, J. Korean Ceram. Soc., 46, 385 (2009).
  5. A. Tsetsekou, C. Agrafiotis and A. Milias, J. Eur. Ceram. Soc., 21, 363 (2001).
  6. S. Leo, C. Tallon and G. V. Franks, J. Am. Ceram. Soc., 99, 3883 (2016).
  7. Z. Yousefian, G. Dini, M. Milani and E. Arastoo, Mater. Chem. Phys., 273, 125097 (2021).
  8. J. A. Lewis, J. Am. Ceram. Soc., 83, 2341 (2000).
  9. R. Moreno, A. Salomoni and S. M. Castanho, J. Eur. Ceram. Soc., 19, 49 (1999).
  10. Y. Ergun, D. Dirier and M. Tanoglu, Mater. Sci. Eng., A, 385, 279 (2004).
  11. Sumitomo Chemical Product Databook. Retrieved November 22, 2022 from https://www.sumitomo-chem.co.jp/engli sh/products/files/docs/en_a06000.pdf
  12. Alteo Alumina Product Databook. Retrieved November 22, 2022 from https://www.alteo-alumina.com/wp-content/uplo ads/2019/07/ALTEO_2022_Brochure-Technical-Ceramics_ web.pdf
  13. S. H. Eom, J. H. Pee, J. K. Lee, K. T. Hwang, W. S. Cho and K. J. Kim, J. Powder Mater., 16, 431 (2009).
  14. H. N. Paik, T. S. Suh and C. H. Kwak, J. Korean Ceram. Soc., 25, 655 (1988).
  15. Y. I. Cho, S. G. Chung, S. Y. Cho and S. J. Kim, J. Korean Ceram. Soc., 39, 51 (2002).
  16. F. R. Feret, D. Roy and C. Boulanger, Spectrochim. Acta, Part B, 55, 1051 (2000).
  17. R. Sevens and J. G. P. Binner, J. Mater. Sci., 19, 695 (1984).
  18. J. D. Hodge, J. Am. Ceram. Soc., 66, 166 (1983).
  19. P. Mikkolaa, P. Ylha, E. Levanenb and J. B. Rosenholma, Ceram. Int., 30, 291 (2004).
  20. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed., p.1-10, 174-261, Butterworth-Heinemann, London, England (1992).
  21. N. Mishchuk, J. Colloid Interface Sci., 320, 599 (2008).
  22. B. Rand and I. E. Melton, J. Colloid Interface Sci., 60, 308 (1977).
  23. T. Hideo, S. Nobuhiro, O. Masataro, M. Okumiya, K. Uematsu, J. Tsubaki, I. Yuji and K. Hidehiro, J. Am. Ceram. Soc., 78, 903 (1995).
  24. J. Cesarano III, I. A. Aksay and A. Bleier, J. Am. Ceram. Soc., 71, 250 (1988).
  25. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Colloids Surf., A, 152, 111 (1999).
  26. W. Kang, B. Xu, B, Y. Wang, Y. Li, X. Shan, F. An and J. Liu, Colloids Surf., A, 384, 555 (2011).