DOI QR코드

DOI QR Code

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition

초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성

  • Ki-Won Lee (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • yeong-Hun Jo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hyo-Jin Ahn (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이기원 (서울과학기술대학교 신소재공학과) ;
  • 조명훈 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2023.12.04
  • Accepted : 2024.01.12
  • Published : 2024.01.27

Abstract

Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00209244).

References

  1. D. M. Carballeda-Galicia, R. Castanedo-Perez, O. JimenezSandoval, S. Jimenez-Sandoval, G. Torres-Delgado and C. I. Zuniga-Romero, Thin Solid Films, 371, 105 (2000).
  2. C. G. Granqvist and A. Hultaker, Thin Solid Films, 411, 1 (2002).
  3. K. A. Sierros, N. J. Morris, K. Ramji and D. R. Cairns, Thin Solid Films, 517, 2590 (2009).
  4. S. Yu, L. Li, X. Lyu and W. Zhang, Sci. Rep., 6, 20399 (2016).
  5. B.-J. Li, M. Zhou, M. Ma, W. Zhang and W.-Y. Tang, Appl. Surf. Sci., 265, 637 (2013).
  6. M.-H. Jo, B.-R. Koo, K.-H. Kim and H.-J. Ahn, Chem. Eng. J., 431, 134036 (2022).
  7. M.-H. Jo, B.-R. Koo and H.-J. Ahn, Ceram. Int., 46, 25066 (2020).
  8. O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales-Acevedo and G. Contreras-Puente, Thin Solid Films, 361-362, 53 (2000).
  9. J. Krc, M. Zeman, O. Kluth, F. Smole and M. Topic, Thin Solid Films, 462, 296 (2003).
  10. A. Dolgonos, T. O. Mason and K. R. Poeppelmeier, J. Solid State Chem., 240, 43 (2016).
  11. W. Wu, S. H. Brongersma, M. Van Hove and K. Maex, Appl. Phys. Lett., 84, 2838 (2004).
  12. F. Lacy, Nanoscale Res. Lett., 6, 636 (2011).
  13. J. A. Mendez-Gamboa, R. Castro-Rodriguez, I. V. Perez-Quintana, R. A. Medina-Esquivel and A. Martel-Arbelo, Thin Solid Films, 599, 14 (2016).