DOI QR코드

DOI QR Code

Applications of CRISPR technologies to the development of gene and cell therapy

  • Chul-Sung Park (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Omer Habib (R&D, RedGene Inc.) ;
  • Younsu Lee (R&D, RedGene Inc.) ;
  • Junho K. Hur (Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2023.11.14
  • Accepted : 2023.12.26
  • Published : 2024.01.31

Abstract

Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-to-thymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (grant numbers: 2021M3A9I4024452, 2023R1A2C1005623, 2023R1A6C101A009, RS-2023-00261114) and the Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health & Welfare (grant number: HI22C0636) and to J.K.H.

References

  1. Kim H and Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15, 321-334  https://doi.org/10.1038/nrg3686
  2. Lee SH, Park YH, Jin YB, Kim SU and Hur JK (2020) CRISPR diagnosis and therapeutics with single base pair precision. Trends Mol Med 26, 337-350  https://doi.org/10.1016/j.molmed.2019.09.008
  3. Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29-44  https://doi.org/10.1016/j.cell.2015.12.035
  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821  https://doi.org/10.1126/science.1225829
  5. Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278  https://doi.org/10.1016/j.cell.2014.05.010
  6. Lee SH, Kim S and Hur JK (2018) CRISPR and target-specific DNA endonucleases for efficient DNA knock-in in eukaryotic genomes. Mol Cells 41, 943-952 
  7. Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264 
  8. Liu Y, Ma G, Gao Z et al (2022) Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 50, 3456-3474  https://doi.org/10.1093/nar/gkac153
  9. Alvarez MM, Biayna J and Supek F (2022) TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat Commun 13, 4520 
  10. Tsai SQ and Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17, 300-312  https://doi.org/10.1038/nrg.2016.28
  11. Kang SH, Lee WJ, An JH et al (2020) Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nat Commun 11, 3596 
  12. Yen ST, Zhang M, Deng JM et al (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393, 3-9  https://doi.org/10.1016/j.ydbio.2014.06.017
  13. Midic U, Hung PH, Vincent KA et al (2017) Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet 26, 2678-2689  https://doi.org/10.1093/hmg/ddx154
  14. Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, Cobos-Figueroa J, Ousinde O and Bermejo-Alvarez P (2019) Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9, 14900 
  15. Mehravar M, Shirazi A, Nazari M and Banan M (2019) Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 445, 156-162  https://doi.org/10.1016/j.ydbio.2018.10.008
  16. Yeh CD, Richardson CD and Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21, 1468-1478  https://doi.org/10.1038/s41556-019-0425-z
  17. Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44, D862-868  https://doi.org/10.1093/nar/gkv1222
  18. Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424  https://doi.org/10.1038/nature17946
  19. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471  https://doi.org/10.1038/nature24644
  20. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157  https://doi.org/10.1038/s41586-019-1711-4
  21. Kim S and Kim JS (2011) Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Rep 5, 9-17  https://doi.org/10.1007/s11816-010-0161-0
  22. Ul Ain Q, Chung JY and Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205, 120-127  https://doi.org/10.1016/j.jconrel.2014.12.036
  23. Petersen B (2017) Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 52 Suppl 3, 4-13  https://doi.org/10.1111/rda.13012
  24. Nemudryi AA, Valetdinova KR, Medvedev SP and Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6, 19-40 
  25. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826  https://doi.org/10.1126/science.1232033
  26. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823  https://doi.org/10.1126/science.1231143
  27. Huang CJ, Adler BA and Doudna JA (2022) A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell 82, 2148-2160 e2144 
  28. Kato K, Zhou W, Okazaki S et al (2022) Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324-2337 e2316 
  29. Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46, 505-529  https://doi.org/10.1146/annurev-biophys-062215-010822
  30. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949  https://doi.org/10.1016/j.cell.2014.02.001
  31. Jiang F and Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30, 100-111  https://doi.org/10.1016/j.sbi.2015.02.002
  32. Jiang F, Zhou K, Ma L, Gressel S and Doudna JA (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477-1481  https://doi.org/10.1126/science.aab1452
  33. Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871  https://doi.org/10.1126/science.aad8282
  34. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832  https://doi.org/10.1038/nbt.2647
  35. Fonfara I, Le Rhun A, Chylinski K et al (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590  https://doi.org/10.1093/nar/gkt1074
  36. Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573  https://doi.org/10.1038/nature13579
  37. Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63  https://doi.org/10.1038/nature26155
  38. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485  https://doi.org/10.1038/nature14592
  39. Li X and Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99-113  https://doi.org/10.1038/cr.2008.1
  40. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211  https://doi.org/10.1146/annurev.biochem.052308.093131
  41. Sfeir A and Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40, 701-714  https://doi.org/10.1016/j.tibs.2015.08.006
  42. Chapman JR, Taylor MR and Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47, 497-510  https://doi.org/10.1016/j.molcel.2012.07.029
  43. Shrivastav M, De Haro LP and Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-147  https://doi.org/10.1038/cr.2007.111
  44. Deriano L and Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47, 433-455  https://doi.org/10.1146/annurev-genet-110711-155540
  45. Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139  https://doi.org/10.1146/annurev-genet-051710-150955
  46. Krejci L, Altmannova V, Spirek M and Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40, 5795-5818  https://doi.org/10.1093/nar/gks270
  47. Sakuma T, Nakade S, Sakane Y, Suzuki KT and Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11, 118-133  https://doi.org/10.1038/nprot.2015.140
  48. Bae S, Kweon J, Kim HS and Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11, 705-706  https://doi.org/10.1038/nmeth.3015
  49. Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232  https://doi.org/10.1038/nbt.2507
  50. Scharenberg SG, Poletto E, Lucot KL et al (2020) Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat Commun 11, 3327 
  51. Maxwell KG, Augsornworawat P, Velazco-Cruz L et al (2020) Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 12, eaax9106 
  52. Smith C, Abalde-Atristain L, He C et al (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23, 570-577  https://doi.org/10.1038/mt.2014.226
  53. Shin JW, Kim KH, Chao MJ et al (2016) Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25, 4566-4576 
  54. Monteys AM, Ebanks SA, Keiser MS and Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25, 12-23  https://doi.org/10.1016/j.ymthe.2016.11.010
  55. Cai W, Liu J, Chen X, Mao L and Wang M (2022) Orthogonal chemical activation of enzyme-inducible CRISPR/Cas9 for cell-selective genome editing. J Am Chem Soc 144, 22272-22280  https://doi.org/10.1021/jacs.2c10545
  56. Frangoul H, Altshuler D, Cappellini MD et al (2020) CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384, 252-260 
  57. Sheridan C (2023) The world's first CRISPR therapy is approved: who will receive it? Nat Biotechnol doi: 10.1038/d41587-023-00016-6 
  58. Gillmore JD, Gane E, Taubel J et al (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493-502  https://doi.org/10.1056/NEJMoa2107454
  59. Christie KA, Courtney DG, DeDionisio LA et al (2017) Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep 7, 16174 
  60. Li P, Kleinstiver BP, Leon MY et al (2018) Allele-Specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant Retinitis Pigmentosa. CRISPR J 1, 55-64  https://doi.org/10.1089/crispr.2017.0009
  61. Rees HA, Yeh WH and Liu DR (2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10, 2212 
  62. Ling X, Xie B, Gao X et al (2020) Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv 6, eaaz0051 
  63. Yu Y, Guo Y, Tian Q et al (2020) An efficient gene knock-in strategy using 5'-modified double-stranded DNA donors with short homology arms. Nat Chem Biol 16, 387-390  https://doi.org/10.1038/s41589-019-0432-1
  64. Nguyen DN, Roth TL, Li PJ et al (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol 38, 44-49  https://doi.org/10.1038/s41587-019-0325-6
  65. Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A and Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560, E5-E7  https://doi.org/10.1038/s41586-018-0379-5
  66. Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 
  67. Komor AC, Zhao KT, Packer MS et al (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3, eaao4774 
  68. Zafra MP, Schatoff EM, Katti A et al (2018) Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 36, 888-893  https://doi.org/10.1038/nbt.4194
  69. Koblan LW, Doman JL, Wilson C et al (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36, 843-846  https://doi.org/10.1038/nbt.4172
  70. Kurt IC, Zhou R, Iyer S et al (2020) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41-46  https://doi.org/10.1038/s41587-020-0609-x
  71. Lin Q, Zong Y, Xue C et al (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38, 582-585  https://doi.org/10.1038/s41587-020-0455-x
  72. Surun D, Schneider A, Mircetic J et al (2020) Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes 11, 511 
  73. Liu Y, Li X, He S et al (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6, 27 
  74. Chen PJ, Hussmann JA, Yan J et al (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652 e5629 
  75. Park SJ, Jeong TY, Shin SK et al (2021) Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 22, 170 
  76. Yarnall MTN, Ioannidi EI, Schmitt-Ulms C et al (2023) Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol 41, 500-512  https://doi.org/10.1038/s41587-022-01527-4
  77. Yeh WH, Chiang H, Rees HA, Edge ASB and Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9, 2184 
  78. Arbab M, Matuszek Z, Kray KM et al (2023) Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, eadg6518 
  79. Ryu SM, Koo T, Kim K et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36, 536-539  https://doi.org/10.1038/nbt.4148
  80. Gehrke JM, Cervantes O, Clement MK et al (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36, 977-982  https://doi.org/10.1038/nbt.4199
  81. Rovai A, Chung B, Hu Q et al (2022) In vivo adenine base editing reverts C282Y and improves iron metabolism in hemochromatosis mice. Nat Commun 13, 5215 
  82. McAuley GE, Yiu G, Chang PC et al (2023) Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell 186, 1398-1416  https://doi.org/10.1016/j.cell.2023.02.027
  83. Reichart D, Newby GA, Wakimoto H et al (2023) Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 29, 412-421  https://doi.org/10.1038/s41591-022-02190-7
  84. Hong SA, Kim SE, Lee AY et al (2022) Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther 30, 2664-2679  https://doi.org/10.1016/j.ymthe.2022.06.005
  85. Jang H, Jo DH, Cho CS et al (2022) Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng 6, 181-194  https://doi.org/10.1038/s41551-021-00788-9
  86. Qin H, Zhang W, Zhang S et al (2023) Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med 220, e20220776 
  87. Walton RT, Christie KA, Whittaker MN and Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296  https://doi.org/10.1126/science.aba8853
  88. Jang G, Kweon J and Kim Y (2023) CRISPR prime editing for unconstrained correction of oncogenic KRAS variants. Commun Biol 6, 681