DOI QR코드

DOI QR Code

Current status and future of gene engineering in livestock

  • Dong-Hyeok Kwon (Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University) ;
  • Gyeong-Min Gim (LARTBio Inc.) ;
  • Soo-Young Yum (LARTBio Inc.) ;
  • Goo Jang (Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University)
  • 투고 : 2023.09.25
  • 심사 : 2023.12.04
  • 발행 : 2024.01.31

초록

The application of gene engineering in livestock is necessary for various reasons, such as increasing productivity and producing disease resistance and biomedicine models. Overall, gene engineering provides benefits to the agricultural and research aspects, and humans. In particular, productivity can be increased by producing livestock with enhanced growth and improved feed conversion efficiency. In addition, the application of the disease resistance models prevents the spread of infectious diseases, which reduces the need for treatment, such as the use of antibiotics; consequently, it promotes the overall health of the herd and reduces unexpected economic losses. The application of biomedicine could be a valuable tool for understanding specific livestock diseases and improving human welfare through the development and testing of new vaccines, research on human physiology, such as human metabolism or immune response, and research and development of xenotransplantation models. Gene engineering technology has been evolving, from random, time-consuming, and laborious methods to specific, time-saving, convenient, and stable methods. This paper reviews the overall trend of genetic engineering technologies development and their application for efficient production of genetically engineered livestock, and provides examples of technologies approved by the United States (US) Food and Drug Administration (FDA) for application in humans.

키워드

과제정보

This study was financially supported by the National Research Foundation of Korea (NRF-2021R1F1A1051953) and the Materials/Parts Technology Development Program (20023353, Development of composite formulation with a sustained release [gene] for the treatment of companion animal sarcopenia) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). All of the figures in this paper were created with BioRender. com.

참고문헌

  1. Martin MA and Axelrod D (1969) SV40 gene activity during lytic infection and in a series of SV40 transformed mouse cells. Proc Natl Acad Sci U S A 64, 1203-1210 https://doi.org/10.1073/pnas.64.4.1203
  2. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433
  3. Meyer M, de Angelis MH, Wurst W and Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107, 15022-15026 https://doi.org/10.1073/pnas.1009424107
  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  5. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  7. Laible G, Cole SA, Brophy B et al (2021) Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics 22, 856
  8. Kalds P, Crispo M, Li C et al (2022) Generation of double-muscled sheep and goats by CRISPR/Cas9-mediated knockout of the myostatin gene. Methods Mol Biol 2495, 295-323 https://doi.org/10.1007/978-1-0716-2301-5_16
  9. Gim GM, Eom KH, Kwon DH et al (2023) Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation. J Anim Sci Biotechnol 14, 103
  10. Whitworth KM, Rowland RR, Ewen CL et al (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34, 20-22 https://doi.org/10.1038/nbt.3434
  11. Jaenisch R and Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71, 1250-1254 https://doi.org/10.1073/pnas.71.4.1250
  12. Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A 73, 1260-1264 https://doi.org/10.1073/pnas.73.4.1260
  13. Segura MM, Alba R, Bosch A and Chillon M (2008) Advances in helper-dependent adenoviral vector research. Curr Gene Ther 8, 222-235 https://doi.org/10.2174/156652308785160647
  14. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD and Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77, 7415-7419 https://doi.org/10.1073/pnas.77.12.7415
  15. Yao X, Zhang M, Wang X et al (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell 45, 526-536 e525
  16. Chen H, Li Y and Tollefsbol TO (2013) Cell senescence culturing methods. Methods Mol Biol 1048, 1-10 https://doi.org/10.1007/978-1-62703-556-9_1
  17. Sharpey-Schafer EP (1961) Venous tone. Br Med J 2, 1589- 1595 https://doi.org/10.1136/bmj.2.5267.1589
  18. Krimpenfort P, Rademakers A, Eyestone W et al (1991) Generation of transgenic dairy cattle using 'in vitro' embryo production. Biotechnology (N Y) 9, 844-847 https://doi.org/10.1038/nbt0991-844
  19. Hyttinen JM, Peura T, Tolvanen M et al (1994) Generation of transgenic dairy cattle from transgene-analyzed and sexed embryos produced in vitro. Biotechnology (N Y) 12, 606-608 https://doi.org/10.1038/nbt0694-606
  20. Eyestone WH (1999) Production and breeding of transgenic cattle using in vitro embryo production technology. Theriogenology 51, 509-517 https://doi.org/10.1016/S0093-691X(98)00244-1
  21. Lin Y, Li J, Li C et al (2022) Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol 10, 919155
  22. Yan BW, Zhao YF, Cao WG, Li N and Gou KM (2013) Mechanism of random integration of foreign DNA in transgenic mice. Transgenic Res 22, 983-992 https://doi.org/10.1007/s11248-013-9701-z
  23. Wang Z (2015) Genome engineering in cattle: recent technological advancements. Chromosome Res 23, 17-29 https://doi.org/10.1007/s10577-014-9452-6
  24. Lillico SG, Proudfoot C, Carlson DF et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3, 2847
  25. Shamshirgaran Y, Liu J, Sumer H, Verma PJ and Taheri-Ghahfarokhi A (2022) Tools for efficient genome editing; ZFN, TALEN, and CRISPR. Methods Mol Biol 2495, 29-46 https://doi.org/10.1007/978-1-0716-2301-5_2
  26. Eid A and Mahfouz MM (2016) Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med 48, e265
  27. Cui Z, Liu H, Zhang H et al (2021) The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy. Mol Ther Nucleic Acids 26, 1466-1478 https://doi.org/10.1016/j.omtn.2021.08.008
  28. Zhang J, Liu J, Yang W et al (2019) Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats. Theriogenology 132, 1-11 https://doi.org/10.1016/j.theriogenology.2019.03.029
  29. Wilmut I, Schnieke AE, McWhir J, Kind AJ and Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813 https://doi.org/10.1038/385810a0
  30. Dai Y, Vaught TD, Boone J et al (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20, 251-255 https://doi.org/10.1038/nbt0302-251
  31. Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089-1092 https://doi.org/10.1126/science.1068228
  32. Xing B, Xu Y, Cheng Y, Liu H and Du M (2007) Overexpression of IGF2R and IGF1R mRNA in SCNT-produced goats survived to adulthood. J Genet Genomics 34, 709-719 https://doi.org/10.1016/S1673-8527(07)60080-0
  33. Luo Y, Wang Y, Liu J et al (2015) Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res 24, 875-883 https://doi.org/10.1007/s11248-015-9898-0
  34. Li H, Wang G, Hao Z et al (2016) Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep 6, 33675
  35. Wall RJ, Powell AM, Paape MJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23, 445-451 https://doi.org/10.1038/nbt1078
  36. Salamone D, Baranao L, Santos C et al (2006) High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J Biotechnol 124, 469-472 https://doi.org/10.1016/j.jbiotec.2006.01.005
  37. Richt JA, Kasinathan P, Hamir AN et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25, 132-138 https://doi.org/10.1038/nbt1271
  38. Gao G, Wang S, Zhang J et al (2019) Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid- to late gestation. Sci Rep 9, 20035
  39. Biase FH, Rabel C, Guillomot M et al (2016) Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. Proc Natl Acad Sci U S A 113, 14492-14501 https://doi.org/10.1073/pnas.1520945114
  40. Zhou C, Wang Y, Zhang J et al (2019) H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J 33, 4638-4652 https://doi.org/10.1096/fj.201801887R
  41. Liu Z, Cai Y, Wang Y et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172, 881-887 e887
  42. Bauersachs S, Ulbrich SE, Zakhartchenko V et al (2009) The endometrium responds differently to cloned versus fertilized embryos. Proc Natl Acad Sci U S A 106, 5681-5686 https://doi.org/10.1073/pnas.0811841106
  43. Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680-683 https://doi.org/10.1038/315680a0
  44. Bosselman RA, Hsu RY, Boggs T et al (1989) Germline transmission of exogenous genes in the chicken. Science 243, 533-535 https://doi.org/10.1126/science.2536194
  45. Wieghart M, Hoover JL, McGrane MM et al (1990) Production of transgenic pigs harbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fusion gene. J Reprod Fertil Suppl 41, 89-96
  46. Le QA, Tanihara F, Wittayarat M et al (2021) Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res Notes 14, 7
  47. Xin J, Yang H, Fan N et al (2013) Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8, e84250
  48. Crispo M, Mulet AP, Tesson L et al (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10, e0136690
  49. Petersen B, Frenzel A, Lucas-Hahn A et al (2016) Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 23, 338-346 https://doi.org/10.1111/xen.12258
  50. Chen S, Sun S, Moonen D et al (2019) CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep 27, 3780-3789 e3784
  51. Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019 https://doi.org/10.1101/gr.171322.113
  52. Gim GM, Uhm KH, Kwon DH et al (2022) Germline transmission of MSTN knockout cattle via CRISPR-Cas9. Theriogenology 192, 22-27 https://doi.org/10.1016/j.theriogenology.2022.08.021
  53. Yang H, Zhang J, Zhang X et al (2018) CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res 151, 63-70 https://doi.org/10.1016/j.antiviral.2018.01.004
  54. Proudfoot C, Carlson DF, Huddart R et al (2015) Genome edited sheep and cattle. Transgenic Res 24, 147-153 https://doi.org/10.1007/s11248-014-9832-x
  55. Gim GM, Kwon DH, Eom KH et al (2022) Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J 17, e2100198
  56. Owen JR, Hennig SL, McNabb BR et al (2021) One-step generation of a targeted knock-in calf using the CRISPRCas9 system in bovine zygotes. BMC Genomics 22, 118
  57. Kasimanickam R and Kasimanickam V (2021) Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows. Sci Rep 11, 14839
  58. Wankar AK, Rindhe SN and Doijad NS (2021) Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Trop Anim Health Prod 53, 70
  59. Sosa F, Santos JEP, Rae DO et al (2022) Effects of the SLICK1 mutation in PRLR on regulation of core body temperature and global gene expression in liver in cattle. Animal 16, 100523
  60. Gallegos J (2022) Gene-edited cows just secured record-fast FDA approval - here's why. Alliance For Science MARCH 29, 2022, https://allianceforscience.org/blog/2022/03/gene-edited-cows-just-secured-record-fast-fda-approvalheres-why/
  61. DiFonzo K (2022) FDA makes low-risk determination for marketing of products from genome-edited beef cattle after safety review. US FDA MARCH 07, 2022, https://www.fda.gov/news-events/press-announcements/fda-makes-low-risk-determination-marketing-products-genome-edited-beef-cattle-after-safety-review#:~:text=Today%2C%20the%20U.S.%20Food%20and,(low%2Drisk%20determination)
  62. Yu S, Luo J, Song Z, Ding F, Dai Y and Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21, 1638-1640 https://doi.org/10.1038/cr.2011.153
  63. Sun Z, Wang M, Han S et al (2018) Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Sci Rep 8, 15430
  64. Qian L, Tang M, Yang J et al (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5, 14435
  65. Rao S, Fujimura T, Matsunari H et al (2016) Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev 83, 61-70 https://doi.org/10.1002/mrd.22591
  66. Wang K, Tang X, Xie Z et al (2017) CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26, 799-805 https://doi.org/10.1007/s11248-017-0044-z
  67. Wang K, Ouyang H, Xie Z et al (2015) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5, 16623
  68. Bi Y, Hua Z, Liu X et al (2016) Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6, 31729
  69. Hirata M, Wittayarat M, Namula Z et al (2021) Generation of mutant pigs by lipofection-mediated genome editing in embryos. Sci Rep 11, 23806
  70. Ciccarelli M, Giassetti MI, Miao D et al (2020) Donorderived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci U S A 117, 24195-24204 https://doi.org/10.1073/pnas.2010102117
  71. Wang X, Niu Y, Zhou J et al (2016) Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 6, 32271
  72. Wang X, Cai B, Zhou J et al (2016) Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One 11, e0164640
  73. Liu X, Wang Y, Tian Y et al (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci 281, 20133368
  74. Wu H, Wang Y, Zhang Y et al (2015) TALE nickasemediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A 112, E1530-1539
  75. Ikeda M, Matsuyama S, Akagi S et al (2017) Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle. Sci Rep 7, 17827
  76. Workman AM, Heaton MP, Vander Ley BL et al (2023) First gene-edited calf with reduced susceptibility to a major viral pathogen. PNAS Nexus 2, pgad125
  77. Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91, 78
  78. Burkard C, Opriessnig T, Mileham AJ et al (2018) Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol 92, e00415-e00418 https://doi.org/10.1128/JVI.00415-18
  79. Wang H, Shen L, Chen J et al (2019) Deletion of CD163 Exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci 15, 1993-2005 https://doi.org/10.7150/ijbs.34269
  80. Sade RM and Mukherjee R (2022) Ethical issues in xeno-transplantation: the first pig-to-human heart transplant. Ann Thorac Surg 113, 712-714 https://doi.org/10.1016/j.athoracsur.2022.01.006
  81. Zou X, Ouyang H, Pang D, Han R and Tang X (2021) Pathological alterations in the gastrointestinal tract of a porcine model of DMD. Cell Biosci 11, 131
  82. Al-Mashhadi RH, Sorensen CB, Kragh PM et al (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5, 166ra161
  83. Fang B, Ren X, Wang Y et al (2018) Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech 11, dmm036632
  84. Huang L, Hua Z, Xiao H et al (2017) CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 8, 37751-37760 https://doi.org/10.18632/oncotarget.17154
  85. Holm IE, Alstrup AK and Luo Y (2016) Genetically modified pig models for neurodegenerative disorders. J Pathol 238, 267-287 https://doi.org/10.1002/path.4654
  86. Yan S, Zheng X, Lin Y et al (2023) Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 7, 629-646 https://doi.org/10.1038/s41551-023-01007-3
  87. Lee SE, Hyun H, Park MR et al (2017) Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One 12, e0177933
  88. Yao J, Huang J, Hai T et al (2014) Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4, 6926
  89. Wang X, Cao C, Huang J et al (2016) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6, 20620
  90. AskCVM@fda.hhs.gov (2023) Intentional genomic alterations (IGAs) in animals.
  91. US FDA (2023) Intentional genomic alterations (IGAs) in animals. US FDA JULY 3, 2023, https://www.fda.gov/animalveterinary/biotechnology-products-cvm-animals-and-animal-food/intentional-genomic-alterations-igas-animals#:~:text=IGAs%20in%20animals%20are%20changes,insertions%2C%20substitutions%2C%20or%20deletions
  92. Van Eenennaam AL and Muir WM (2011) Transgenic salmon: a final leap to the grocery shelf? Nat Biotechnol 29, 706-710 https://doi.org/10.1038/nbt.1938
  93. Epstein LR, Lee SS, Miller MF and Lombardi HA (2021) CRISPR, animals, and FDA oversight: building a path to success. Proc Natl Acad Sci U S A 118, e2004831117
  94. Hansen PJ (2020) Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 154, 190-202 https://doi.org/10.1016/j.theriogenology.2020.05.010
  95. Houser K (2023) CRISPR sausage gets FDA green light for consumption. INTERESTING ENGINEERING MAY 28, 2023, https://interestingengineering.com/science/fda-approved-crispr-sausages