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Abstract
The tail probability of a function of a multivariate random variable is not easy to estimate by the crude Monte

Carlo simulation. When the occurrence of the function value over a threshold is rare, the accurate estimation
of the corresponding probability requires a huge number of samples. When the explicit form of the cumulative
distribution function of each component of the variable is known, the inverse transform likelihood ratio method
is directly applicable scheme to estimate the tail probability efficiently. The method is a type of the importance
sampling and its efficiency depends on the selection of the importance sampling distribution. When the cumula-
tive distribution of the multivariate random variable is represented by a copula and its marginal distributions, we
develop an iterative algorithm to find the optimal importance sampling distribution, and show the convergence
of the algorithm. The performance of the proposed scheme is compared with the crude Monte Carlo simulation
numerically.

Keywords: importance sampling, copula, inverse transform likelihood ratio method, Monte Carlo
simulation, rare event simulation

1. Introduction

The estimation of rare-event probabilities has received great attention due to its relevance in various
fields such as financial and insurance risk management, inventory management, structural systems re-
liability, computer networks, and telecommunications networks. The estimation of such probabilities
often poses challenges when the events of interest are located in the tails of probability distributions,
where the crude Monte Carlo simulation exhibits inefficiency. When the occurrence of the events of
interest is rare, the accurate estimation of the tail probability requires a huge number of samples and
it takes a very long time to achieve satisfactory results through the crude Monte Carlo simulation. To
address this issue, importance sampling methods have emerged as a powerful tool, enabling accurate
estimation of the tail probability (Glynn and Iglehart, 1989; Juneja and Shahabuddin, 2006). By sam-
pling more frequently on the regions of interest, the importance sampling can significantly reduce the
variance in the estimation of the tail probability with a smaller number of samples.

Kroese and Rubinstein (2004) proposed an importance sampling method called the transform like-
lihood ratio method for rare event simulation. In the method, the multivariate random variable (or the
random vector) of interest is transformed into another multivariate random variable in order to find a
more efficient importance sampling distribution. If the random variable of interest is one dimensional
and the transformed random variable is uniformly distributed on (0, 1), then it is called the inverse
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transform likelihood ratio method. When the form of the cumulative distribution function of the ran-
dom variable is known, then the inverse transform likelihood ratio method is a simple and unifying
way of generating the importance samples efficiently in the region of interest. In the tail probabil-
ity estimation of a monotone increasing function of a one dimensional random variable, Kroese and
Rubinstein (2004) showed that the inverse transform likelihood ratio method gives an estimator with
bounded relative error.

The efficiency of an importance sampling method depends on the selection of the importance
sampling distribution. In the case of light-tailed distributions, the exponential twisting is the com-
mon approach to find the efficient importance sampling distribution. It gives the optimal importance
sampling estimator in some cases (Sadowsky and Bucklew, 1990; Sadowsky, 1993). In the case of
subexponential distributions such as the Weibull or the lognormal, the exponential twisting is not ap-
plicable due to the non-existence of the moment generating function. For the tail probability estimation
of the random or deterministic sums of independent and identically distributed (i.i.d.) subexponential
random variables, Asmussen et al. (2000) proposed a number of estimators, which are asymptoti-
cally optimal. For the same problem, Juneja and Shahabuddin (2002) proposed a method called the
hazard rate twisting, and showed the asymptotic optimality of the method. The performance of the
estimators by Asmussen et al. (2000) and Juneja and Shahabuddin (2002) has been improved by the
conditional Monte Carlo estimator proposed by Asmussen and Kroese (2006). For the case of sums
of i.i.d. random variables with regularly varying tails, Dupuis et al. (2007) proposed an algorithm for
creating importance sampling estimator with bounded relative error. When the random variables are
independent but not identically distributed, Rached et al. (2015) and Rached et al. (2018) proposed a
generalized hazard rate twisting for the tail probability estimation.

For the case of the sums of correlated lognormal random variables, Asmussen et al. (2011) pro-
posed two importance sampling estimators, one of which is asymptotically efficient, and the other
of which shows bounded relative error. This method has been extended to apply to more general
cases by Blanchet and Rojas-Nandayapa (2011). They proposed an asymptotically optimal impor-
tance sampling method for the estimation of the tail probability of eX1 + · · · + eXd , where (X1, . . . , Xd)
is a d-variate random variable. In the case that (X1, . . . , Xd) follows the d-dimensional multivariate
normal distribution, eX1 + · · · + eXd is the sum of the correlated lognormal random variables.

By confining the importance sampling distribution to a parametric family of distributions, we can
apply analytical methods to find the optimal importance sampling distribution from the family. The
cross entropy method and the variance minimization method are generally applied to find the optimal
parameter. In the latter method the parameter minimizing the variance of the importance sampling
estimator is found to be the optimal (Rubinstein and Shapiro, 1993). In the former method which was
proposed by Rubinstein (2002) and Homem-de-Mello and Rubinstein (2002), the optimal parameter
to be found is the one minimizing the Kullback-Leibler divergence of the importance sampling dis-
tribution from the zero variance distribution, which is defined in Section 2.3. In both methods, the
optimal parameter is usually found by solving a series of stochastic optimization problems iteratively;
see De Boer et al. (2005) for more details.

In this paper, we propose an inverse transform likelihood ratio method for the tail probability
estimation of an increasing function of a multivariate random variable. This method was proposed
originally for the rare event simulations with one-dimensional random variables (Kroese and Rubin-
stein, 2004). Due to the Sklar’s theorem (Nelsen, 2006), the cdf (cumulative distribution function) of
a multivariate random variable is represented by its marginal distributions and a copula. Note that a
copula is the multivariate uniform distribution with a certain dependence structure. The cdf of the mul-
tivariate random variable of interest in this form is assumed to be known. We transform the distribution
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of the multivariate random variable into a copula, and confine importance sampling distributions to a
family of multivariate distributions in which the marginal distribution of each component follows the
beta distribution and the dependence of a multivariate distribution is modeled by the Gaussian copula.
By decomposing the Kullback-Leibler divergence of an importance sampling pdf from the zero vari-
ance pdf into two parts and minimizing each part in order, we find the pseudo-optimal parameter in
an iterative manner. We also show the convergence of the proposed scheme.

The rest of the paper is organized as follows. The problem statement is given in Section 2. In the
same section, we introduce the inverse transform likelihood method and the cross entropy method
briefly, and describe how to apply these methods to our problem. We propose an algorithm for finding
the optimal parameter of the importance sampling distribution. In Section 3, we show the convergence
of the proposed algorithm. The performance of the proposed scheme is compared numerically with
the crude Monte Carlo simulation in Section 4. Finally, we conclude the paper in Section 5.

2. Method

2.1. Problem statement

We consider a d-dimensional continuous random vector X = (X1, . . . , Xd) with support Ω = (a1, b1)×
· · · × (ad, bd), where −∞ ≤ ai < bi ≤ ∞, i = 1, . . . , d. We denote by F the joint cdf of X, and by Fi the
marginal cdf of Xi, i = 1, . . . d. We also let f be the pdf (probability density function) of X. For a real
valued function L defined on Ω, we want to estimate the tail probability of L(X) over threshold γ, i.e.

l = Pr {L(X) > γ} . (2.1)

We call L(X) the loss, and L(·) the loss function. We assume that L(x) is strictly increasing and
continuous on Ω. For x = (x1, . . . , xd), x′ = (x′1, . . . , x

′
d) ∈ Rd, we define that x < x′ if and only if

xi ≤ x′i ,∀i and x , x′. Then, we have that

L(x) < L
(
x′

)
, x < x′.

We also assume that the support of L(X) is (sL,∞), where −∞ ≤ sL < ∞, and that for a sequence
x(1), x(2), . . . , ∈ Ω such that max{F1(x(i)

1 ), . . . , Fd(x(i)
d )} → 1 as i→ ∞,

lim
i→∞

L
(
x(i)

)
= ∞. (2.2)

We consider the case that the value of γ is so large that the tail loss probability l is near 0.
Sklar’s theorem (Nelsen, 2006) says that there is a copula C0 satisfying

F (x1, . . . , xd) = C0 (F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd. (2.3)

We denote by c0 the pdf of C0, i.e.

c0(u) =
∂nC0(u)
∂u1 · · · ∂ud

, u = (u1, . . . , ud) ∈ (0, 1)d.

We call F the nominal cdf of X, and C0 the nominal copula, respectively. Suppose that U is a d-
dimensional random vector on (0, 1)d, and that the joint cdf of U is C0. Let Ui, i = 1, . . . , d, be the ith

element of U. Then, Ui is uniformly distributed on (0, 1). We denote by X̃ = (F−1
1 (U1), . . . , F−1

d (Ud)).
Then the cdf of X̃ is F, i.e.

X̃ =d X, (2.4)
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where =d means the same in distribution.
We define a function L̃(u) on (0, 1)d as follows:

L̃(u) = L
(
F−1

1 (u1), . . . , F−1
d (ud)

)
, u ∈ (0, 1)d. (2.5)

Since L(x) is continuous on Ω and F−1
i (u), i = 1, . . . , d, is continuous on (0, 1), L̃(u) is also continuous

on (0, 1)d. Note that F−1
i (u), i = 1, . . . , d, is also strictly increasing on (0, 1) due to the continuity of

Xi. Then, Equation (2.5) says that L̃(u) is strictly increasing on (0, 1)d, i.e. for u, u′ ∈ (0, 1)d,

L̃(u) < L̃
(
u′

)
, u < u′. (2.6)

The assumption (2.2) on L(x) and the definition of L̃(u) given in Equation (2.5) imply that L̃(u) also
diverges as max1≤i≤d ui goes to 1, i.e.

lim
max{u1,...,ud}→1

L̃(u) = ∞. (2.7)

When U follows the copula C0, it follows from Equations (2.4) and (2.5) that L̃(U) =d L(X). The tail
probability l in Equation (2.1) is represented by

l = Pr
{
L̃(U) > γ

}
. (2.8)

Let I(A) be the indicator function of an event A and H(u) = I(L̃(u) > γ) for u ∈ (0, 1)d. Then, Equation
(2.8) is rewritten as

l = Ec0 [H(U)] , (2.9)

where Ec[h(U)] is the expected value of h(U) for a real valued function h and a random vector U
following a pdf c.

Usually, the distribution of L̃(U) is not tractable, and it is not easy to compute the value of l ana-
lytically. Instead, we can get an estimate of it by the Monte Carlo simulation. Suppose that sampling
from copula C0 is not hard. Then, we generate N samples of U independently from C0, and denote
them by U(1), . . . ,U(N), respectively. Equation (2.9) gives the CMC (crude Monte Carlo) estimator of
l as follows:

l̂CMC =
1
N

N∑
j=1

H
(
U( j)

)
. (2.10)

2.2. Inverse transform likelihood ratio method

For the efficient estimation of l, a sampling distribution different from C0(u) can be applied to generate
random copies of U. If we choose the sampling density of U appropriately, then the variance of the
importance sampling estimator may be much less than that of the CMC estimator in Equation (2.10).
We propose an importance sampling by applying the inverse transform likelihood method (Kroese and
Rubinstein, 2004). We denote by G(u) the importance sampling cdf of U. We consider the following
form of distribution as a candidate of G(u):

G(u) = C (G1(u1), . . . ,Gd(ud)) , u ∈ (0, 1)d, (2.11)
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where C(u) is a copula defined on (0, 1)d and Gi(u), i = 1, . . . , d, is a cdf with support (0, 1). Note
that Gi(u) is the marginal cdf of the ith component of G(u). We assume that Gi(u) is differentiable and
G′i(x) = gi(x), x ∈ (0, 1). If we denote by g(u) the pdf of G(u), then g(u) is represented as

g(u) = c (G1(u1), . . . ,Gd(ud))
d∏

i=1

gi(ui), u ∈ (0, 1)d, (2.12)

where c is the pdf of C.
Suppose that U is a sample generated from G. Then, the likelihood ratio of U with respect to c0 is

given by

W(U) =
c0(u)
g(u)

, u ∈ (0, 1)d,

and Equation (2.9) is rewritten as follows:

l = Eg [H(U)W(U)] . (2.13)

Suppose that we have N random copies U(1), . . . ,U(N) of U. Then, it follows from Equation (2.13) that
an importance sampling estimator of l is given by

l̂IS =
1
N

N∑
j=1

H
(
U( j)

)
W

(
U( j)

)
. (2.14)

To get a sample of random vector following G in Equation (2.11), we first need to generate a
random vector V = (V1, . . . ,Vd) from copula C(u). Since Gi(u) is strictly increasing on (0, 1), it has
the inverse function G−1

i . If we consider a random vector defined as

U′ =
(
G−1

1 (V1), . . . ,G−1
d (Vd)

)
,

then it follows that for u = (u1, . . . , ud) ∈ (0, 1)d,

Pr
{
U′ ≤ u

}
= Pr

{
G−1

1 (V1) ≤ u1, . . . ,G−1
d (Vd) ≤ ud

}
= Pr {V1 ≤ G1(u1), . . . ,Vd ≤ Gd(ud)} .

Since the random vector V follows the cdf C(u), the cdf of U′ is G(u) in Equation (2.11).
Algorithm 1 shows the procedure to get an estimate of l as described above. For efficient estimation

of l, sampling from C(u) should not be hard. We also should choose G(u) such that G−1
i (u) and gi(u),

i = 1, . . . , d, have the explicit form or the numerical computation of their values for given u is not
difficult.

2.3. The cross entropy method

Kroese and Rubinstein (2004) adopted the cross entropy method to find the optimal importance dis-
tribution. We extend their method to our case. Let g∗(·) be the zero-variance pdf given by

g∗(u) =
H(u)c0(u)

l
, u ∈ (0, 1)d.



70 Jae Yeol Park, Hee Geon Kang, Sunggon Kim

Algorithm 1 : Inverse transform likelihood ratio method for a function of a multivariate random
variable
Require: loss function L̃, threshold γ, nominal copula C0, marginal importance sampling cdfs

G1, . . . ,Gd, marginal importance sampling pdfs g1, . . . , gd, importance sampling copula C
Ensure: P̂(L̃(U) > γ)

1: Set N as the total number of samples.
2: Generate V(1), . . . ,V(N) independently from copula C.
3: Get U(1), . . . ,U(N) using the transform: For j = 1, . . . ,N,

U( j) =
(
G−1

1

(
V ( j)

1

)
, . . . ,G−1

d

(
V ( j)

d

))
.

4: Compute

H
(
U( j)

)
= I

(
L̃
(
U( j)

)
> γ

)
, j = 1, . . . ,N.

5: Compute the likelihood ratio

W
(
U( j)

)
=

c0

(
U( j)

)
g
(
U( j)) , j = 1, . . . ,N.

6: Return

l̂IS =
1
N

N∑
j=1

H
(
U( j)

)
W

(
U( j)

)
.

Then, g∗(·) is the optimal importance pdf in the sense that generation of random copies of U from
g∗(·) gives the minimum variance of l̂IS in Equation (2.14) (Rubinstein and Kroese, 2016). However,
we do not know the value of l so that the sampling from g∗(·) is not easy, or inefficient. Instead, we try
to find the importance sampling pdf with the minimum cross-entropy from g∗(·).

We confine the importance sampling pdf to a parametric family of pdfs G. For a multivariate
distribution belonging to G, the marginal distribution of each component is the beta distribution and
the dependence is modeled by the Gaussian copula. Let U be an importance sample following a
distribution belonging to G. Then, Ui, i = 1, . . . , d, follows the beta distribution with parameters 1 and
βi. We reparametrize βi as ψi = 1/βi. Then, the pdf of Ui is

gi (u;ψi) =
1
ψi

(1 − u)−1+ 1
ψi , u ∈ (0, 1), (2.15)

and the cdf is

Gi (u;ψi) = 1 − (1 − u)
1
ψi , u ∈ (0, 1). (2.16)

When Ui follows the above cdf, we denote that Ui follows Beta(1, ψi) in what follows. The d-
dimensional Gaussian copula has a d-dimensional correlation matrix as its parameter. The Gaussian
copula with correlation matrix R has the following form:

CG (u; R) = Φd

(
Φ−1(u1), . . . ,Φ−1(ud); R

)
, u ∈ (0, 1)d,
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where Φd(·; R) is the cdf of the d-dimensional multivariate normal distribution with mean (0, . . . , 0)
and variance-covariance matrix R, and Φ is the cdf of the standard normal distribution. We define
cG(·; R) as the pdf of CG(·; R), and φ as the pdf of the standard normal distribution, respectively. Then,
the explicit form of cG(·; R) is as follows:

cG (u; R) =
1

√
|det R|

exp
{
−

1
2

zT
(
R−1 − Id

)
z
}
, (2.17)

where det R is the determinant of R, z = (Φ−1(u1), . . . ,Φ−1(ud))T , and Id is the d-dimensional identity
matrix. We define θ = (ψ1, . . . , ψd,R) and Θ = (0,∞)d ×Md, whereMd is the set of d-dimensional
correlation matrices. It follows from Equation (2.12) that for θ ∈ Θ,

g (u; θ) = cG (G1 (u1;ψ1) , . . . ,Gd (ud;ψd) ; R)
d∏

i=1

gi (ui;ψi) , u ∈ (0, 1)d. (2.18)

Then, G is represented as {g(u; θ), θ ∈ Θ}.
The optimal importance sampling distribution with minimum cross entropy from g∗(·) is obtained

by solving the following problem (Rubinstein and Kroese, 2016) :

maximize
θ∈Θ

Ec0

[
H(U) log g(U; θ)

]
. (2.19)

Let θ∗ be the solution of Equation (2.19). Generally, it is not easy to find value of θ∗ analytically.
Instead, we can find the approximate solution of Equation (2.19) by solving the following stochastic
programming:

maximize
θ∈Θ

M∑
j=1

H
(
U( j)

)
log g

(
U( j); θ

)
, (2.20)

where U(1), . . . ,U(M) are independent samples from c0(·).
When the value of γ is large, only a small number of samples in U(1), . . . ,U(M) make H(U( j))

non-zero, and the solution of Equation (2.20) does not approximate θ∗ well. In this case, an iterative
method is appropriate (Rubinstein and Korese, 2016). In the method, the sampling distribution of U
is changed iteratively and the solution of Equation (2.19) with increasing thresholds instead of γ is
found in each iteration. In the tth step of the iterative method, we consider an importance sampling
pdf g(·;ω(t−1)) of U and a threshold st so that L(U) over st is not rare. In this end, for a positive real
number ρ small but not close to 0, st is usually set to be the the (1−ρ) quantile of the distribution with
pdf g(·;ω(t−1)). The solution of the following maximization problem is found approximately in the tth

iteration:

maximize
θ∈Θ

Eω(t−1)

[
I
(
L̃(U) ≥ st

)
log g (U; θ) W

(
U;ω(t−1)

)]
, (2.21)

where Eω[·] means the expectation with respect to the pdf g(·;ω) and

W (u;ω) =
c0(u)

g(u;ω)
. (2.22)
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Since the occurrence of L(U) over st is not rare, st is estimated as ŝt, the (1−ρ) quantile of the gen-
erated samples of U following g(·;ω(t−1)). The solution of Equation (2.21) can be found approximately
by solving the corresponding stochastic programming given by

maximize
θ∈Θ

M∑
j=1

I
(
L̃
(
U( j)

)
≥ ŝt

)
log g

(
U( j); θ

)
W

(
U( j),ω(t−1)

)
. (2.23)

The solution of the above problem will be used as ω(t), the parameter of the importance sampling pdf
in the (t + 1)-st iteration. The iteration continuous until ŝt ≥ γ.

We define θ(s) as follows:

θ(s) = argmax
θ∈Θ

Ec0

[
H (U; s) log g (U; θ)

]
,

where H(u; s) = I(L̃(u) ≥ s). The continuity of L̃(·) implies that θ(s) is continuous with respect to
s (s > 0). Note that θ(s) can be rewritten as for ω ∈ Θ,

θ(s) = argmax
θ∈Θ

Eω
[
H(U; s) log g(U; θ)W(U;ω)

]
. (2.24)

Equation (2.24) shows that θ(s) does not depend on the value of ω, and that θ(st), t = 1, 2, . . . , is the
solution of the problem (2.21). Note that θ∗ = θ(γ). If the sequence {ŝ1, ŝ2, . . .} becomes larger than γ
and the iteration ends at the step t, then we obtain an approximate value of θ∗ by substituting γ for ŝt

in Equation (2.23).

2.4. The proposed scheme

When we apply the procedure described in the previous subsection, we need to solve Equation (2.21).
It follows from Equation (2.18) that Eω[H(U; s) log g(U; θ)W(U;ω)] is rewritten as

maximize
θ∈Θ

( d∑
i=1

Eω
[
H(U; s) log gi(Ui;ψi)W(U;ω)

]
+ Eω

[
H(U; s) log cG (G1(U1;ψ1), . . . ,Gd(Ud;ψd); R) W(U;ω)

] )
.

(2.25)

Due to the complex form of cG(u; R), solving the above problem analytically is nearly impossible,
and it is also not easy to solve the corresponding stochastic programming obtained by generating
samples from g(·;ω). Instead, we decompose the above optimization problem into two sub-problems.
Let ψ(s) = (ψ1(s), . . . , ψd(s)) be the solution of the first term of problem (2.25), i.e.

ψi(s) = argmax
ψi∈(0,∞)

Eω
[
H(U; s) log gi(Ui;ψi)W(U;ω)

]
, i = 1, . . . , d. (2.26)

After substituting ψi(s) for ψi in the second term of problem (2.25), the correlation matrix maximizing
the second term is obtained as

R(s) = argmax
R∈Md

Eω

[
H(U; s) log cG (G1(U1;ψ1(s)), . . . ,Gd(Ud;ψd(s)); R) W(U;ω)

]
. (2.27)

Then (ψ(s),R(s)) is an approximate value of θ(s). We may apply this procedure to solve Equation
(2.21) stochastically. However, it is not guaranteed that the sequence {ŝ1, ŝ2, . . .} becomes larger than
γ.



An importance sampling for a function of a multivariate random variable 73

In our proposed scheme, we choose an increasing sequence {γ1, γ2, . . . , γK} with γK being equal
to γ, and find approximate values of ψ(γk) and R(γk), k = 1, 2, . . . ,K. We denote them by ψ̂(γk)
and R̂(γk), respectively. Given R̂(γk−1), we find ψ̂(γk) by solving iteratively a series of stochastic
programmings corresponding to Equation (2.26) in the same manner as described in the previous
section. In each iteration, the correlation matrix R, which is an element of the importance sampling
parameter ω, is fixed to R̂(γk−1). Theorem 5 in Section 3 shows that the value of ŝt is eventually larger
than γk for a t > 0. In this case, we set ŝt = γ and determine the value of R̂(γk) by solving Equation
(2.27) stochastically. Note that there are sub-iterations in the iteration of finding (ψ̂(γk), R̂(γk)). To
avoid confusion, we call the iteration of finding (ψ(γk),R(γk)) the stage k for k = 1, 2, . . . ,K, and call
the tth sub-iteration in a stage the tth step for t = 1, 2, . . . .

At the start of the stage k, we assume that R̂(γk−1) is available for k = 2, 3, . . . ,K. In stage 1,
we set R̂(γ0) as the d-dimensional identity matrix, where we use the notation R̂(γ0) for the notational
consistency. At the first step of the stage k, we set ψ(0) = (1, . . . , 1) ∈ Rd. We generate M independent
samples following pdf g(·;ψ(0), R̂(γk−1)). At the tth step (t ≥ 2), we generate M independent sam-
ples following pdf g(·; ψ̂(t−1), R̂(γk−1)), where ψ̂(t−1) is determined in the previous step. In order to get
random samples following g(·; ψ̂(t−1), R̂(γk−1)) for t ≥ 1, we first generate independently the multivari-
ate normal vectors Z(1), . . . , Z(M) with mean (0, . . . , 0) and variance-covariance matrix R̂(k − 1), and
transform it into

V ( j)
i = Φ

(
Z( j)

i

)
, i = 1, . . . , d,

where Z( j)
i is the ith element of Z( j). Then, (V ( j)

1 , . . . ,V ( j)
d ) has copula CG(·; R̂(γk−1)) as its cdf. Using

the following transform, we get

U( j) =
(
G−1

1

(
V ( j)

1 ; ψ̂(t−1)
1

)
, . . . ,G−1

d

(
V ( j)

d ; ψ̂(t−1)
d

))
, j = 1, . . . ,M.

As we explained in Section 2.2, U( j) has pdf g(·; ψ̂(t−1), R̂(γk−1)). Moreover, U(1), . . . ,U(M) are mu-
tually independent due to the independence of Z(1), . . . , Z(M). By substituting u = U( j) and ω =

(ψ̂(t−1), R̂(γk−1)) into Equation (2.22), we obtain the likelihood ratio W (t)
j of the sample U( j), i.e.

W (t)
j =

c0

(
U( j)

)
g
(
U( j); ψ̂(t−1), R̂(γk−1)

) , j = 1, . . . ,M.

Suppose that we have generated M samples of U at the tth step. Then, we denote by ŝt the (1 − ρ)
quantile of the generated losses {L̃(U( j)), j = 1, . . . ,M}, and let E(ŝt) = { j : L̃(U( j)) > ŝt, j = 1, . . . ,M}.
The stochastic programming corresponding to Equation (2.26) is as follows:

maximize
ψi∈(0,∞)

∑
j∈E(ŝt)

W (t)
j log gi

(
U( j)

i ;ψi

)
, i = 1, . . . , d. (2.28)

It follow from Equation (2.15) that the solution of Equation (2.28) is denoted by

ψ̂(t)
i = argmax

ψi∈(0,1)

∑
j∈E(ŝt)

W (t)
j

(
− logψi +

(
1
ψi
− 1

)
log

(
1 − U( j)

i

))
.

The explicit form of ψ̂(t)
i is obtained as

ψ̂(t)
i = −

∑
j∈E(ŝt) W (t)

j log
(
1 − U( j)

i

)
∑

j∈E(ŝt) W (t)
j

. (2.29)
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Algorithm 2 : The proposed scheme

Require: nominal pdf c0(u), loss function L̃(u), threshold γ, the number of iterations K, thresholds
in each iteration, γ1, γ2, . . . , γK−1, the importance sampling pdf g(u; θ) given in Equation (2.18),
the value of ρ, the likelihood ratio function W(u; θ).

Ensure: P̂(L̃(U) > γ)
1: γK ← γ
2: R̂(γ0)← the d-dimensional identity matrix
3: for k = 1 to K do
4: ŝ← 0
5: ψ̂← (1, . . . , 1)
6: while ŝ < γk do
7: Generate M random samples U(1), . . . ,U(M) from g(u; ψ̂, R̂(γk−1))
8: ŝ← min{γk, the (1 − ρ) quantile of L̃(U(1)), . . . , L̃(U(M))}
9: E(ŝ)← { j : L̃(U( j)) > ŝ, j = 1, . . . ,M}

10: for j ∈ E(ŝ) do
11: W j ← W(U( j); ψ̂, R̂(γk−1))
12: end for
13: for i = 1 to d do

ψ̂i ← −

∑
j∈E(ŝ) W j log

(
1 − U( j)

i

)∑
j∈E(ŝ) W j

14: end for
15: ψ̂← (ψ̂1, . . . , ψ̂d)
16: end while
17: ψ̂(γk)← ψ̂
18: for j ∈ E(γ(k)) do
19: Z( j) ← (Φ−1(G1(U( j)

1 ; ψ̂1(γk))), . . . ,Φ−1(Gd(U( j)
d , ψ̂d(γk))))

20: end for
21:

R̂(γk)←

∑
j∈E(γ(k)) W j

(
Z( j)

)T
Z( j)∑

j∈E(γ(k)) W j

22: end for
23: θ̂ ← (ψ̂(γK), R̂(γK))
24: Generate N random samples U(1), . . . ,U(N) from g(u; θ̂)
25: Return

l̂IS =
1
N

N∑
j=1

H
(
U( j)

)
W

(
U( j); θ̂

)
.

We iterate the above procedure for t = 1, 2, . . . until ŝt > γk. Theorem 5 in Section 3 shows that
the iteration terminates with probability 1. Suppose that ŝt is larger than γk at step t = τ, and that
{U( j), j = 1, . . . ,M} are the generated samples at this step. Then, each element of ψ̂(γk) is obtained by
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substituting γk for ŝt in Equation (2.29), i.e.

ψ̂i(γk) = −

∑
j∈E(γk) W (τ)

j log
(
1 − U( j)

i

)
∑

j∈E(γk) W (τ)
j

, i = 1, . . . , d.

We derive the stochastic programming corresponding to Equation (2.27) with s = γk is as follows:

maximize
R∈Md

∑
j∈E(γk)

W (τ)
j log cG

(
G1

(
U( j)

1 ; ψ̂1(γk)
)
, . . . ,Gd

(
U( j)

d ; ψ̂d(γk)
)

; R
)
. (2.30)

Let Z( j)
i = Φ−1(Gi(U

( j)
i ; ψ̂i(γk))), i = 1, . . . , d, and let Z( j) = (Z( j)

1 , . . . ,Z( j)
d ), j = 1, . . . ,M. By applying

the form of cG in Equation (2.17) to Equation (2.30), we can see that R(γk) is estimated as

R̂(γk) = argmin
R∈Md

∑
j∈E(γ(k))

W (τ)
j

((
Z( j)

)T
R−1Z( j) + log |det R|

)
. (2.31)

It can be easily shown that the solution of Equation (2.31) is given by

R̂(γk) =

∑
j∈E(γ(k)) W (τ)

j

(
Z( j)

)T
Z( j)∑

j∈E(γ(k)) W (τ)
j

. (2.32)

Some diagonals of R̂(γk) in Equation (2.32) may not be 1. We normalize it so that it is a correlation
matrix.

If we let θ̂(γk) = (ψ̂(γk), R̂(γk)), then θ̂(γk) is an approximate value of θ(γk) for k = 1, 2, . . . ,K.
Since γK is equal to γ, θ̂(γK) is the estimate of θ∗. Algorithm 2 shows the procedure to get the pseudo-
optimal parameter θ̂(γK).

3. Convergence of the iterative scheme

In this section, we will show that if the number of importance samples generated in each step is
sufficiently large, then the algorithm terminates in a finite number of steps with a probability close
to 1 We define ψ = (ψ1, . . . , ψd). Suppose that a random multivariate variable U follows the joint pdf
g(·;ψ,R). Since L̃(u) is continuous and strictly increasing on (0, 1)d and the support of g(u;ψ,R) is
(0, 1)d, L̃(U) is a continuous random variable and the support of L̃(U) is the same as that of L(X),
where X is a multivariate random variable with cdf F. Thus, the support of L̃(U) is (sL,∞).

The cdf of L̃(U) is as follows:

FL̃ (s;ψ,R) =

∫
(0,1)d

1
(
L̃(u) ≤ s

)
g (u;ψ,R) du, s > 0. (3.1)

The representation of g(·;ψ,R) in Equation (2.18) says that g(·;ψ,R) is continuous with respect to ψ
on (0,∞)d, which means that FL̃(s;ψ,R) is also continuous with respect to ψ on (0,∞)d. We denote
by s(ψ; R) the (1− ρ) quantile of L̃(U). Then, s(ψ; R) is the unique solution of the following equation:

FL̃ (s;ψ,R) = 1 − ρ, 0 < ρ < 1. (3.2)

Theorem 1. s(ψ; R) is continuous with respect to ψ on (0,∞)d.
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Proof: Since FL̃(s;ψ,R) is continuous with respect to ψ on (0,∞)d, we have that

lim
ψ→ψ0

FL̃ (s(ψ0; R);ψ,R) = FL̃ (s(ψ0; R);ψ0,R) .

It follows from Equations (3.1) and (3.2) that

lim
ψ→ψ0

∫
(0,1)d

1
(
L̃(u) ≤ s(ψ0; R)

)
g(u;ψ,R) du − (1 − ρ) = 0. (3.3)

Since s(ψ; R) is the (1 − ρ) quantile of L̃(U), we have that for ψ ∈ (0,∞)d,∫
(0,1)d

1
(
L̃(u) ≤ s(ψ; R)

)
g(u;ψ,R) du = 1 − ρ.

By applying the above equation to Equation (3.3), we have that

lim
ψ→ψ0

∫
(0,1)d

{
1
(
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)}
g(u;ψ,R) du = 0. (3.4)

If s(ψ0; R) < s(ψ; R), then

1
(
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)
=

 −1, s(ψ0; R) < L̃(u) ≤ s(ψ; R),

0, otherwise.

If s(ψ; R) ≤ s(ψ0; R), then

1
(
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)
=

 1, s(ψ; R) < L̃(u) ≤ s(ψ0; R),

0, otherwise.

The above two equations give that

1
(
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)
= (−1)1(s(ψ0,R)≤s(ψ,R))

∣∣∣∣1 (
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)∣∣∣∣ .
Then, Equation (3.4) implies that

lim
ψ→ψ0

∫
(0,1)d

∣∣∣∣1 (
L̃(u) ≤ s(ψ0; R)

)
− 1

(
L̃(u) ≤ s(ψ; R)

)∣∣∣∣ g (u;ψ,R) du = 0.

The integrand of the above equation is nonnegative for each ψ on (0,∞)d. Thus, it converges to 0
almost everywhere. Since g(u;ψ,R) > 0 for u ∈ (0, 1)d, the above equation implies that the set
{u : s(ψ0; R) < L̃(u) ≤ s(ψ; R)} ∪ {u : s(ψ; R) < L̃(u) ≤ s(ψ0; R)} converges to a set whose measure is
0. The continuity of L̃(u) on (0, 1)d implies that s(ψ; R)→ s(ψ0; R) as ψ→ ψ0. �

When U follows the pdf g(·;ψ,R), E[Ui] is an increasing function of ψi, i = 1, . . . , d. Thus, we
can guess that Pr{L̃(U) > γ} may be increasing with respect to each of ψi, or equivalently, the (1 − ρ)
quantile of L̃(U) may be increasing with respect to each of ψi. The following theorem shows that this
is true.

Theorem 2. s(ψ; R) is a strictly increasing function of ψ.
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Proof: For ψ = (ψ1, . . . , ψd) ∈ (0,∞)d and ψ′ = (ψ′1, . . . , ψ
′
d) ∈ (0,∞)d, we assume that ψ < ψ′. Then,

it follows that for given v = (v1, . . . , vd) ∈ (0, 1)d,(
1 − (1 − v1)ψ1 , . . . , 1 − (1 − vd)ψd

)
<

(
1 − (1 − v1)ψ

′
1 , . . . , 1 − (1 − vd)ψ

′
d

)
.

Since L̃(u) is a strictly increasing function of u, we have that for given (v1, . . . , vd) ∈ (0, 1)d,

L̃
(
1 − (1 − v1)ψ1 , . . . , 1 − (1 − vd)ψd

)
< L̃

(
1 − (1 − v1)ψ

′
1 , . . . , 1 − (1 − vd)ψ

′
d

)
. (3.5)

Suppose that V = (V1, . . . ,Vd) is a random vector following the Gaussian copula with correlation
matrix R. We define two random vectors

U =
(
1 − (1 − V1)ψ1 , . . . , 1 − (1 − Vd)ψd

)
,

U′ =
(
1 − (1 − V1)ψ

′
1 , . . . , 1 − (1 − Vd)ψ

′
d

)
.

Then, U and U′ follow the pdfs g(·;ψ,R) and g(·;ψ′,R), respectively. Since s(ψ; R) is the (1 − ρ)
quantile of L̃(U), we have that

Pr
{
L̃(U) ≤ s(ψ; R)

}
= 1 − ρ.

Equation (3.5) says that Pr{L̃(U′) ≤ s(ψ; R)} < Pr{L̃(U) ≤ s(ψ; R)}. It implies that

Pr
{
L̃(U′) ≤ s(ψ; R)

}
< 1 − ρ.

Note that s(ψ′; R) is the (1 − ρ) quantile of L̃(U′). Then, we have that s(ψ; R) < s(ψ′; R). �

In this subsection, we assume that the converse of Equation (2.6) is also valid in a stochastic
sense. Specifically, we assume that for U with pdf c0, the conditional random variable Ui|(L̃(U) = s),
i = 1, . . . , d, is stochastically increasing with respect to s in the strict sense, i.e. for s < s′,

Pr
{
Ui > u | L̃(U) = s

}
< Pr

{
Ui > u | L̃(U) = s′

}
, u ∈ (0, 1). (3.6)

The solution of Equation (2.26) is rewritten as

ψi(s) = argmax
ψi∈(0,∞)

Ec0

[
I
(
L̃(U) > s

)
log gi(Ui;ψi)

]
.

It follows from Equation (2.15) that ψi(s) is represented as

ψi(s) = Ec0

[
− log(1 − Ui) | L̃(U) > s

]
, s > 0. (3.7)

Theorem 3. Suppose that for U with pdf c0, the conditional random variable Ui|(L̃(U) = s), i =

1, . . . , d, is stochastically increasing with respect to s. Then, ψi(s), i = 1, . . . , d, is a strictly increasing
and continuous function of s, s > 0.

Proof: Let fL̃(·) is the pdf of L̃(U) when U follows pdf c0, and let fi(u, s) be the joint pdf of Ui and
L̃(U). We also denote by fUi |L̃(u|s) the conditional pdf of Ui given that L̃(U) = s, i.e.

fUi |L̃(u | s) =
fi(u, s)
fL̃(s)

.
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Since d Pr{Ui > u|L̃(U) = s}/du = − fUi |L̃(u|s), we have that

Ec0

[
− log(1 − Ui) | L̃(U) = s

]
=

∫ 1

0
− log(1 − u) fUi |L̃(u | s) du

=

∫ 1

0

Pr
{
Ui > u | L̃(U) = s

}
1 − u

du.

By applying Equation (3.6) to the above equation, we have that for s < s′,

Ec0

[
− log(1 − Ui) | L̃(U) = s

]
< Ec0

[
− log(1 − Ui) | L̃(U) = s′

]
.

Then, Equation (3.7) implies that ψi(s) is strictly increasing with respect to s for i = 1, . . . , d.
It follows from Equation (3.7) that

ψi(s) =

∫ ∞
s

∫ 1
0 − log(1 − u) fi(u, y) dudy

Pr
{
L̃(U) > s

} . (3.8)

Both of the numerator and the denominator of ψi(s) in Equation (3.8) are continuous with respect
to s ∈ (0,∞). Thus, ψi(s) is a continuous function of s on (0,∞). �

Suppose that a correlation matrix R ∈ Md are given. Let ψ(0) = (1, . . . , 1). We define ψ(t) and st,
t = 1, 2, . . . , iteratively, as follows:

st = s
(
ψ(t−1); R

)
,

ψ(t)
i = ψi(st), i = 1, . . . , d,

(3.9)

where ψ(t) = (ψ(t)
1 , . . . , ψ

(t)
d ). It can be easily shown that

Ec0

[
− log(1 − Ui)

]
= 1, i = 1, . . . , d,

which means that

ψ(0)
i = Ec0

[
− log(1 − Ui) | L̃(U) > 0

]
.

Since s1 > 0, we have from Theorem 3 that

ψ(1) > ψ(0).

and from Theorem 2 that s(ψ(1); R) > s(ψ(0); R), equivalently,

s2 > s1.

Then, Equation (3.9) gives that for t = 1, 2, . . . ,

st+1 > st,

ψ(t+1) > ψ(t).
(3.10)



An importance sampling for a function of a multivariate random variable 79

Moreover, Equation (3.9) says that the mapping from ψ(t) to ψ(t+1) is represented as

h(ψ) = (ψ1(s(ψ; R)), . . . , ψd(s(ψ; R))) . (3.11)

In stage k of the proposed scheme described in Section 2.4, ŝt and ψ̂(t), t = 1, 2, . . . , are the
approximate values of st and ψ(t) with R being equal to R̂(γk−1). Note that ŝt is the (1 − ρ) quantile of
the samples following g(·; ψ̂(t−1), R̂(γk−1)), and that ψ̂(t), t = 1, 2, . . . , is the cross entropy estimator of
ψ(t). The following theorem due to Lieber (1998) describes the conditions under which the sequence
{ŝ1, ŝ2, . . .} becomes larger than γk in a stochastic sense (Rrubinstein, 1999).

Theorem 4. (Lieber, 1998) If the following conditions hold:

(i) The sequence {st, t = 1, 2, . . .} is strictly monotonic increasing.

(ii) s(ψ; R) is continuous with respect to ψ.

(iii) s(ψ; R) is a proper function of ψ, i.e. for a closed interval A, {ψ : s(ψ; R) ∈ A} is compact.

(iv) ∆(ψ) = s(h(ψ); R) − s(ψ; R) is lower semi-continuous,

then there exists an integer t such that for x > 0,

lim
M→∞

Pr {ŝt < γk} = 0,

where M is the number of samples in each step.

By exploiting the above theorem, we can show that if the number of samples is sufficiently large,
the sequence {ŝt, t = 1, 2, . . .} becomes eventually larger than γk.

Theorem 5. In stage k for k = 1, 2, . . . ,K, there exists an integer t such that

lim
M→∞

Pr {ŝt < γk} = 0.

Proof: It is sufficient to show that the four conditions of Theorem 4 are satisfied. We can see from
Equation (3.10) that the condition (i) is satisfied, and have shown that the condition (ii) is satisfied
in Theorem 1. Since s(ψ; R) is continuous with respect to ψ ∈ (0,∞)d and ψi(s) is continuous with
respect to s ∈ (0,∞), ψi(s(ψ; R)) is continuous with respect to ψ ∈ (0,∞)d for i = 1, . . . , d. In other
words, each component of h(ψ) in (3.11) is continuous with respect to ψ. Thus, ∆(ψ) is a continuous
function of ψ, which proves the condition (iv).

It remains to prove the condition (iii). For a closed interval A = [a1, a2], we let s−1(A; R) = {ψ :
s(ψ; R) ∈ A}. Since s(ψ; R) is continuous with respect to ψ, s−1(A; R) is closed. Suppose that s−1(A; R)
is not bounded. In this case, s−1(A; R) contains a sequence {ψ(1),ψ(2), . . .} such that for constant K0 > 0,∣∣∣ψ(n)

∣∣∣ > √dK0n, n = 1, 2, . . . .

Then, there is an i ∈ {1, . . . , d} such that ψ(n)
i > K0n, where ψ(n)

i is the ith element of ψ(n). Let U(n) be
the random vector following the pdf g(·;ψ(n),R). Then,

Pr
{
L̃
(
U(n)

)
≤ a2

}
≥ 1 − ρ, n = 1, 2, . . . , (3.12)



80 Jae Yeol Park, Hee Geon Kang, Sunggon Kim

and it follows from Equation (2.16) that for 0 < u0 < 1,

Pr
{
U(n)

i > u0

}
= (1 − u0)

1

ψ
(n)
i ,

where U(n)
i is the ith element of U(n). The above equation gives that

Pr
{
U(n)

i > u0

}
> (1 − u0)

1
(K0n) .

Since Pr{max1≤i≤d U(n)
i > u0} ≥ Pr{U(n)

i > u0}, we have that

Pr
{
max
1≤i≤d

U(n)
i > u0

}
> (1 − u0)

1
(K0n) ,

which implies that

lim
n→∞

max
1≤i≤d

U(n)
i = 1, in probability.

Then, Equation (2.7) says that

lim
n→∞

L̃
(
U(n)

)
= ∞, in probability,

which implies that limn→∞ Pr{L̃(U(n)) ≤ a2} = 0. It contradicts to Equation (3.12). Thus, s−1(A; R) is
bounded. Then it is a compact set. �

Suppose that the current stage is the kth stage with temporal threshold γk. If ŝt < γk for t =

1, . . . , τ− 1, and ŝτ ≥ γk, then stage k ends at step τ. Let ε be a sufficiently small positive real number.
According to Theorem 5, there are positive integers τk and Mk such that if the number of importance
samples at each step is larger than Mk, then

Pr
{
ŝτk ≥ γk

}
> 1 −

ε

K
. (3.13)

In the case that ŝτk ≥ γk, the stage k ends at step τk or before. Suppose that M in Algorithm 2 is greater
than max1≤k≤K Mk. Then the number of steps required to terminate the stage k is less than or equal to
τk with a probability larger than 1− ε/K. To get an estimate of θ∗, K stages must be completed. Let T
be the total number of steps required to complete all stages. Then it follows that

Pr

T ≤
K∑

k=1

τk

 ≥ Pr
{
ŝτ1 ≥ γ1, . . . , ŝτK ≥ γK

}
= 1 − Pr

{
∪K

k=1
{
ŝτk < γk

}}
≥ 1 −

K∑
k=1

Pr
{
ŝτk < γk

}
.

By applying Equation (3.13) to the above inequality, we have that

Pr

T ≤
K∑

k=1

τk

 ≥ 1 − ε,

i.e. we can get an estimate of θ∗ within
∑K

k=1 τk steps with a probability larger than 1− ε. In a practical
scenario, we do not know the value of τk and Mk. However, if we set the value M to be sufficiently
large, then the algorithm terminates in a finite number of steps with a probability close to 1.
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(a) Samples of L(X) with η = 0.25.
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(b) Samples of L(X) with η = 0.5.
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(c) Samples of L(X) with η = 0.75.

Figure 1: Histrogram of the 107 random samples of L(X) with varying values of η.

4. Numerical results

In this section, we compare the performance of the proposed scheme with that of the CMC estimator
given in Equation (2.10). We estimate numerically the tail probabilities given in Equation (2.1) over
various thresholds. The CMC estimator and the proposed scheme given in Algorithm 2 are applied to
estimate the tail loss probabilities. We call the methods CMC and ITLR, respectively. We consider the
loss function defined as follows:

L(x) =

5∑
i=1

xi + 2
10∑
i=6

xi, x ∈ (0,∞)10. (4.1)

The joint cdf of X = (X1, . . . , X10) has the form in Equation (2.3). In this section, we assume that C0
is the Gaussian copula with exchangeable correlation matrix R0, and that Xi, i = 1, . . . , 10, follows the
Weibull distribution. The shape parameter of Xi, i = 1, . . . , 10, is set to be

a1 = a2 = a3 = a6 = a7 = a8 = 1.5,
a4 = a5 = a9 = a10 = 2.5,
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Table 1: Summary statistics of the generated losses

Case Min. 1st Qu. Median Mean 3rd Qu. Max.
η = 0.25 1.51 21.70 28.39 29.61 36.21 116.83
η = 0.5 0.31 19.69 27.86 29.62 37.67 136.18
η = 0.75 0.08 17.90 27.30 29.62 38.85 161.86

and the scale parameter of Xi, i = 1, . . . , 10, is set to be

σ1 = σ2 = σ9 = σ10 = 1,
σ3 = σ4 = σ7 = σ8 = 2,
σ5 = σ6 = 5.

Let η be the off-diagonal element of R0. We consider three cases of η = 0.25, 0.5, and 0.75. In
order to infer the distributional properties of the loss L(X), we have generated 107 random samples of
the loss for each case of η. Figure 1 shows the histograms of the generated losses with varying values
of η. We can see from the figure that the distributions of the losses don’t look very different from each
other except it seems to be more centered around the mean as the value of η becomes small.

Table 1 shows summary statistics of the generated losses. It follows from the table that the sample
means of the generated losses have very similar values with varying values of η. This is the same for
the case of sample medians, while the dispersion of the samples becomes large with increasing value
of η. Note that the maximum loss may fluctuate greatly for each set of generated samples due to the
large variability of the Weibull distribution.

When X follows the joint distribution described above and the loss function L is as defined in
Equation (4.1), we have estimated the tail loss probabilities over various values of threshold by CMC
and ITLR methods, respectively. We have chosen the values of threshold so that the tail loss probabil-
ities are in the range (10−6, 10−3). Then, the occurrence of L(X) larger than the threshold is rare. The
adopted values of threshold γ are shown in Table 2. In the CMC estimation, we generated 107 samples
of X independently from cdf C0(F1(x1), . . . , F10(x10)) for each combination of γ and η. The scheme
described in Section 2.1 was applied for the generation of samples of X. In the ITLR estimation, we
also generated 107 importance samples of X for each combination of γ and η. To find the optimal
sampling distribution of X and compute the likelihood ratio of a sample, we applied the scheme in
Algorithm 2 with γi = (i/3)γ, i = 1, 2, 3. Through some pilot simulations, we found that such setting
of γi’s is appropriate.

The estimated tail loss probability l̂ for each combination of η and γ is given in Table 2. Since
ITLR estimates the tail loss probabilities with lower standard error than CMC in all cases, we have
chosen the estimated value by ITLR as l̂. We can see the tendency that the standard errors of CMC
and ITLR estimates become less as γ increases. The tendency is obviously due to the fact that the tail
loss probability decreases as γ increases.

When we estimate the tail loss probability using a Monte Carlo simulation scheme, the efficiency
of the scheme can be measured by the product of the sample variance of the estimate to the tail loss
probability and the simulation time to get the estimate (Glynn and Whitt, 1992; Sak and Hörmann,
2012). We denote the product by time*variance. The smaller value of time*variance implies the better
performance. For each combination of η and γ, the time*variance of each estimate by CMC and ITLR,
respectively, is shown in Table 2. The time*variance of ITLR estimate to the tail loss probability is
larger than that of CMC estimate in the case of η = 0.5 and γ = 75. However, in the other cases, ITLR
shows the time*variance lower than CMC.
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Table 2: The estimated tail loss probabilities and some performance measures for various values of thresholds

η = 0.25

γ l̂
simulation time s.e. time*variance

CMC ITLR CMC ITLR CMC ITLR
70 1.66·10−3 63.5 250.0 1.29·10−5 3.49·10−6 1.06·10−8 3.04·10−9

80 2.23·10−4 61.6 240.5 4.82·10−6 6.65·10−7 1.43·10−9 1.06·10−10

90 2.66·10−5 63.1 238.8 1.54·10−6 9.55·10−8 1.49·10−10 2.18·10−12

100 2.62·10−6 63.2 233.5 5.20·10−7 1.16·10−8 1.71·10−11 3.16·10−14

η = 0.5

γ l̂
simulation time s.e. time*variance

CMC ITLR CMC ITLR CMC ITLR
75 3.73·10−3 63.1 249.6 1.93·10−5 1.41·10−5 2.38·10−8 4.99·10−8

90 3.97·10−4 60.1 240.4 6.29·10−6 2.53·10−6 2.37·10−9 1.54·10−9

105 3.26·10−5 63.4 228.3 1.83·10−6 2.78·10−7 2.12·10−10 1.76·10−11

120 2.08·10−6 62.3 229.2 3.87·10−7 1.83·10−8 9.35·10−12 7.68·10−14

η = 0.75

γ l̂
simulation time s.e. time*variance

CMC ITLR CMC ITLR CMC ITLR
90 1.69·10−3 63.5 245.0 1.30·10−5 6.13·10−6 1.08·10−8 9.21·10−9

110 1.21·10−4 64.6 235.3 3.46·10−6 1.18·10−6 7.74·10−10 3.25·10−10

125 1.39·10−5 64.3 242.5 1.11·10−6 1.70·10−7 7.97·10−11 7.03·10−12

135 2.97·10−6 60.8 234.9 4.58·10−7 4.52·10−8 1.27·10−11 4.81·10−13

Table 3: Time*variance ratio of CMC to ITLR

η = 0.25 η = 0.5 η = 0.75
γ time*variance ratio γ time*variance ratio γ time*variance ratio
70 3.5 75 0.48 90 1.2
80 13.5 90 1.5 110 2.4
90 68.3 105 12.0 125 11.3

100 541.1 120 121.7 135 26.4

Table 3 shows the ratio of the time*variance of CMC estimate to that of ITLR estimate. We can
see that the time*variances of ITLR are 3.5 to 541.1 times less than those of CMC with varying
thresholds for the case of η = 0.25. In other words, ITLR is 3.5 to 541.1 times faster than CMC in
terms of simulation time to obtain the same estimation error. In the same table, we observe that the
estimate for the case of η = 0.75 shows the similar behavior of the time*variance to that of η = 0.25.
In this case, ITLR is 1.2 to 26.4 times faster than CMC. ITLR shows better performance than CMC
for the cases of η = 0.25 and η = 0.75. However, in the case of η = 0.5, the ratio has values from 0.48
to 121.7 according to the values of γ. It depends on the value of threshold which method shows the
better performance. We can see from Table 3 that ITLR shows the better performance than the CMC
for the case of high threshold, and for the case of weak dependence of Xi’s.

5. Conclusion

We consider a static problem to estimate the probability that a strictly increasing function of a mul-
tivariate random variable has values over a given threshold, and assume that the exact form of the
marginal distributions of the multivariate random variable and that of its copula are known. In order
to solve the problem, we applied the inverse transform likelihood ratio method, which was originally
proposed for the case of one dimensional random variables. Confining importance sampling distribu-
tions to a family of multivariate distributions in which the marginal distribution of each component
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follows the beta distribution and the dependence of a multivariate distribution is modeled by the Gaus-
sian copula, we proposed an algorithm to find the pseudo-optimal parameter in an iterative manner,
and showed the convergence of the proposed algorithm. Numerical study showed that the proposed
scheme is more efficient than the crude Monte Carlo simulation in the case that the threshold is high
or in the case that the dependence of each pair of components is weak. However, the performance of
the proposed scheme deteriorates in the other case.

If the copula of the nominal distribution is not Gaussian and it shows strong tail dependence,
then the losses over a high threshold typically occur when some variables have large values at the
same time. Regardless of the correlation matrix, the Gaussian copula is asymptotically independent
in both the upper and the lower tails, and the samples generated by the proposed method are unlikely
to have any of their components having large values at the same time. This makes it hard to generate
large losses frequently, and the proposed method will lose its efficiency. Therefore, when the tail
dependence is strong, copulas such as Gumbel or generalized Clayton can be suitable for importance
sampling distributions.

As for further research, we suggest to extend the proposed scheme to the case of strong tail de-
pendence, the case of monotonically non-decreasing loss functions, and also the case that the each
marginal distribution of an importance sampling distribution is the beta distribution with two free
parameters.
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Sak H and Hörmann W (2012). Fast simulations in credit risk, Quantitative Finance, 12, 1557–1569.

Received September 11, 2023; Revised October 23, 2023; Accepted October 24, 2023


