DOI QR코드

DOI QR Code

인공지능 생성 콘텐츠(Artificial Intelligence Generated Content)와 인공지능 사용 공개(Artificial Intelligence Disclaimer)에 대한 소비자 인식 연구: 콘텐츠 가치와 형식을 중심으로

A Study on Consumer Perceptions of Artificial Intelligence Generated Content (AIGC) and Artificial Intelligence Disclaimer (AID) Based on Content Value and Format

  • 한승민 (고려대학교 미디어학부) ;
  • 홍세인 (고려대학교 미디어학부) ;
  • 최재서 (고려대학교 미디어학부) ;
  • 정윤혁 (고려대학교 미디어학부 )
  • Seoungmin Han (School of Media & Communication, Korea University ) ;
  • Sein Hong (School of Media & Communication, Korea University ) ;
  • Jaeseo Choi (School of Media & Communication, Korea University ) ;
  • Yoonhyuk Jung (School of Media & Communication, Korea University)
  • 투고 : 2024.08.28
  • 심사 : 2024.11.09
  • 발행 : 2024.11.30

초록

최근 생성형 인공지능(Artificial Intelligence)은 다양한 형식의 미디어를 포함하여 자율적으로 콘텐츠를 생성할 수 있는 능력으로 주목받고 있다. 그 잠재력에도 불구하고 AI가 생성한 콘텐츠(AI-Generated Content, AIGC)의 진정성(Authenticity) 이슈가 제기됨에 따라 각국에서 AI 사용과 투명성에 대한 규제가 수립되고 있다. 하지만, AIGC와 AI 사용 공개(AI Disclaimer)에 대한 소비자의 이해라는 근본적인 주제는 여전히 탐색되지 않고 있다. 본 연구는 생성형 AI가 제작한 콘텐츠를 실용적, 쾌락적 가치유형으로 구분하고 각각 글, 사진, 영상의 미디어 형식을 적용한 6가지의 경우에 대한 소비자의 인식을 카노 모형을 통해 분석하였다. 나아가, 도출된 결과를 인지된 진정성과 기만으로 그룹을 구분해 인식의 차이가 이에 따라 드러나는지 추가적으로 살펴보았다. 연구 결과, AI가 생성한 콘텐츠에 대한 소비자 인식은 만족도에 큰 영향을 미치지 않았으나, 뉴스로 대표되는 실용적 콘텐츠에서는 AI 사용에 대한 부정적 인식이 확인되었으며, 특히 뉴스 영상 제작에 있어 부정적 인식이 강하게 드러났다. 반면, 영화와 드라마로 대표되는 쾌락적 콘텐츠에서는 생성형 AI 사용에 대한 인식이 무관심하거나 오히려 긍정적이었다. AI 사용 여부의 공개에 대해서는 콘텐츠 가치유형에 관계없이 지켜야 할 원칙으로 인식되었으나, 실용적 콘텐츠에 대해 그러한 인식이 더 강하게 드러났다. 본 연구는 AI 활용의 투명성과 진정성을 제고하는 방안이 필요함을 시사하며, 향후 AI의 발전과 활용이 소비자 인식에 미치는 영향을 지속적으로 연구할 필요가 있음을 강조한다.

Recently, generative Artificial Intelligence (Gen AI) has attracted attention for its ability to autonomously create content across various media formats. Despite its potential, issues of authenticity in AI-generated content (AIGC) have raised concerns, leading to the establishment of regulations on AI use and transparency in several countries. However, the fundamental topic of consumer understanding of AIGC and AI Disclaimer (AID) remains unexplored. This study categorizes AIGC by content value (utilitarian and hedonic) and format (text, image, video), and analyzes consumer perceptions using the Kano model. Additionally, it examines how consumer perceptions change based on perceived authenticity and deception. The results indicate that consumer perceptions of AIGC did not significantly impact satisfaction or dissatisfaction. However, there was a negative perception of AI use in utilitarian content, such as news, particularly in video production. In contrast, perceptions of AI use in hedonic content ranged from indifferent to positive. Regarding the disclosure of AI use, it was considered a basic requirement regardless of content value, but the perception was stronger for utilitarian content. This study suggests that measures to enhance transparency and authenticity in AI use are necessary and emphasizes the need for ongoing research into the impact of AI development and utilization on consumer perceptions.

키워드

과제정보

본 연구는 대한민국 교육부와 한국연구재단(NRF-2023S1A5C2A03095169) 및 과학기술정보통신부(MSIT) 산하 정보통신기획평가원(IITP)에서 주관하는 정보통신기술연구센터(ITRC) 지원 프로그램(IITP-2024-2020-0-01749)의 지원을 받아 수행된 연구임.

참고문헌

  1. 김현수, 이성욱, 오상훈, "KaNo: 모형과 QFD를 활용한 국세청 홈택스 서비스 시스템 품질 제고 방안에 관한 연구", 글로벌경영학회지, 제12권, 제4호, 2015, pp. 395-430.
  2. 배현정, "AI가 만든 콘텐츠 SNS에 올리면 '꼬리표' 붙는다", 한겨레, 2024, Available at https://www.hani.co.kr/arti/economy/economy_general/1135506.html.
  3. 유한주, "중소 외국어 교육기관의 서비스품질 제고를 위한 이원적 품질개념의 적용", 품질경영학회지, 제29권, 제4호, 2001, pp. 170-178.
  4. 이영찬, 서동혁, 송시훈, "카노 모형을 활용한 O2O 배달 앱 서비스 품질 요인 분석", 산업융합연구, 제15권, 제2호, 2017, pp. 27-36. https://doi.org/10.22678/JIC.2017.15.2.027
  5. 이준웅, 김경모, "바람직한 뉴스의 구성조건: 공정성, 타당성, 진정성", 방송통신연구, 제67호, 2008, pp. 9-44. https://doi.org/10.22876/KJBTR.2008.67.001
  6. 임영우, 곽기영, "정보원의 공신력이 오정보의 진위여부 판단에 미치는 영향: 수용자 속성의 조절효과를 중심으로", 경영학연구, 제52권, 제2호, 2023, pp. 463-486. https://doi.org/10.17287/kmr.2023.52.2.463
  7. 정상훈, 김지은, 유한주, "웹툰 서비스에 대한 카노 모델 적용 연구", 서비스경영학회지, 제19권, 3호, 2018, pp. 107-131. https://doi.org/10.15706/jksms.2018.19.3.005
  8. 한국정보통신정책연구원, "한국미디어패널조사", 2023.
  9. 한영주, "카노모델(KaNo.Model)을 활용한 유튜브 개인 뉴스 채널의 인지된 서비스 품질과 이용자 만족에 관한 연구", 방송통신연구, 제116호, 2021, pp. 135-168. https://doi.org/10.22876/KJBTR.2021.116.005
  10. Abdulla, R. A., B. Garrison, M. Salwen, P. Driscoll, and D. Casey, "The credibility of newspapers, television news, and online news", Education in Journalism Annual Convention, Florida USA, August 2002.
  11. Alamleh, H., A. A. S. AlQahtani, and A. ElSaid, "Distinguishing human-written and ChatGPT-generated text using machine learning" In 2023 Systems and Information Engineering Design Symposium (SIEDS), 2023, pp. 154-158
  12. Amos, C. and L. Zhang, "Consumer reactions to perceived undisclosed generative AI usage in an online review context", Telematics and Informatics, 2024, pp. 102163.
  13. Amrit, P. and A. K. Singh, "Survey on watermarking methods in the artificial intelligence domain and beyond", Computer Communications, Vol.188, 2022, pp. 52-65. https://doi.org/10.1016/j.comcom.2022.02.023
  14. Anderson, K. C., D. K. Knight, S. Pookulangara, and B. Josiam, "Influence of hedonic and utilitarian motivations on retailer loyalty and purchase intention: A Facebook perspective", Journal of Retailing and Consumer Services, Vol.21, No.5, 2014, pp. 773-779. https://doi.org/10.1016/j.jretconser.2014.05.007
  15. Anderson, S. P. and R. Renault, "Comparative advertising: disclosing horizontal match information", The RAND Journal of Economics, Vol.40, No.3, 2009, pp. 558-581. https://doi.org/10.1111/j.1756-2171.2009.00077.x
  16. Athaluri, S. A., S. V. Manthena, V. K. M. Kesapragada, V. Yarlagadda, T. Dave, and R. T. S. Duddumpudi, "Exploring the boundaries of reality: Investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references", Cureus, Vol.15, No.4, 2023.
  17. Audrezet, A., G. De Kerviler, and J. G. Moulard, "Authenticity under threat: When social media influencers need to go beyond self-presentation", Journal of Business Research, Vol.117, 2020, pp. 557-569. https://doi.org/10.1016/j.jbusres.2018.07.008
  18. Augenstein, I., T. Baldwin, M. Cha, T. Chakraborty, G. L. Ciampaglia, D. Corney, R. DiResta, E. Ferrara, S. Hale, A. Halevy, E. Hovy, H. Ji, F. Menczer, R. Miguez, P. Nakov, D. Scheufele, S. Sharma and G. Zagni, "Factuality challenges in the era of large language models and opportunities for fact-checking", Nature Machine Intelligence, Vol.6, 2024, pp. 852-863
  19. Babin, B. J. and K. W. James, "A brief retrospective and introspective on value", European Business Review, Vol.22, No.5, 2010, pp. 471-478. https://doi.org/10.1108/09555341011068895
  20. Başev, S. E., "The role of artificial intelligence (AI) in the future of the advertising industry: Applications and examples of AI in advertising", International Journal of Education Technology and Scientific Researches, Vol.9, No.26, 2024, pp. 167-183.
  21. Batra, R. and O. T. Ahtola, "Measuring the hedonic and utilitarian sources of consumer attitudes", Marketing Letters, Vol.2, No.2, 1991, pp. 159-170. https://doi.org/10.1007/BF00436035
  22. Becker, G. S. and K. M. Murphy, "A simple theory of advertising as a good or bad", The Quarterly Journal of Economics, Vol.108, No.4, 1993, pp. 941-964. https://doi.org/10.2307/2118455
  23. Beverland, M. B. and F. J. Farrelly, "The quest for authenticity in consumption: Consumers' purposive choice of authentic cues to shape experienced outcomes", Journal of Consumer Research, Vol.36, No.5, 2010, pp. 838-856. https://doi.org/10.1086/615047
  24. Bringsjord, S. and D. Ferrucci, Artificial Intelligence and Literary Creativity: Inside the Mind of Brutus, a Storytelling Machine, Psychology Press, 1999.
  25. Brüns, J. D. and M. Meißner, "Do you create your content yourself? Using generative artificial intelligence for social media content creation diminishes perceived brand authenticity", Journal of Retailing and Consumer Services, Vol.79, 2024, p. 103790.
  26. Burke, R. R., W. S. DeSarbo, R. L. Oliver, and T. S. Robertson, "Deception by implication: An experimental investigation", Journal of Consumer Research, Vol.14, No.4, 1988, pp. 483-494. https://doi.org/10.1086/209130
  27. Burrus, O., A. Curtis, and L. Herman, "Unmasking AI: Informing authenticity decisions by labeling AI-generated content", Interactions, Vol.31, No.4, 2024, pp. 38-42.
  28. Campagna, C. L., N. Donthu, and B. Yoo, "Brand authenticity: Literature review, comprehensive definition, and an amalgamated scale", Journal of Marketing Theory and Practice, Vol.31, No.2, 2023, pp. 129-145. https://doi.org/10.1080/10696679.2021.2018937
  29. Carsana, L. and A. Jolibert, "Influence of iconic, indexical cues, and brand schematicity on perceived authenticity dimensions of private-label brands", Journal of Retailing and Consumer Services, Vol.40, 2018, pp. 213-220. https://doi.org/10.1016/j.jretconser.2017.10.006
  30. Chaiken, S., "Heuristic versus systematic information processing and the use of source versus message cues in persuasion", Journal of Personality and Social Psychology, Vol.39, No.5, 1980, pp. 752.
  31. Chan-Olmsted, S. M., "A review of artificial intelligence adoptions in the media industry", International Journal on Media Management, Vol.21, No.3-4, 2019, pp. 193-215. https://doi.org/10.1080/14241277.2019.1695619
  32. Chen, J. V., B.-C. Su, and A. E. Widjaja, "Facebook C2C social commerce: A study of online impulse buying", Decision Support Systems, Vol.83, 2016, pp. 57-69. https://doi.org/10.1016/j.dss.2015.12.008
  33. Chintalapati, S. and S. K. Pandey, "Artificial intelligence in marketing: A systematic literature review", International Journal of Market Research, Vol.64, No.1, 2022, pp. 38-68. https://doi.org/10.1177/14707853211018428
  34. Chui, M., H. Eric, R. Roger, S. Alex, S. Kate, S. Alex, Y. Lareina, and Z. Rodney, The Economic Potential of Generative AI: The Next Productivity Frontier, McKinsey & Company, San Francisco, 2023.
  35. Daft, R. L. and R. H. Lengel, "Organizational information requirements, media richness and structural design", Management Science, Vol.32, No.5, 1986, pp. 554-571. https://doi.org/10.1287/mnsc.32.5.554
  36. Danaher, J., "Robot betrayal: A guide to the ethics of robotic deception", Ethics and Information Technology, Vol.22, No.2, 2020, pp. 117-128. https://doi.org/10.1007/s10676-019-09520-3
  37. Edwards, E., "Shedding light on the complex relationship between AI, art and copyright law", Journal of Intellectual Property Law & Practice, Vol.19, No.7, 2024, pp. 618-619. https://doi.org/10.1093/jiplp/jpae036
  38. Fine, G. A., "Crafting authenticity: The validation of identity in self-taught art", Theory and Society, Vol.32, 2003, pp. 153-180. https://doi.org/10.1023/A:1023943503531
  39. Flanagin, A. J. and M. J. Metzger, "Perceptions of Internet information credibility", Journalism & Mass Communication Quarterly, Vol.77, No.3, 2000, pp. 515-540. https://doi.org/10.1177/107769900007700304
  40. Flanagin, A. J. and M. J. Metzger, "The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information", New Media & Society, Vol.9, No.2, 2007, pp. 319-342. https://doi.org/10.1177/1461444807075015
  41. Fui-Hoon Nah, F., R. Zheng, J. Cai, K. Siau, and L. Chen, "Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration", Journal of Information Technology Case and Application Research, Vol.25, No.3, 2023, pp. 277-304. https://doi.org/10.1080/15228053.2023.2233814
  42. Gołąb-Andrzejak, E., "The impact of generative AI and ChatGPT on creating digital advertising campaigns", Cybernetics and Systems, 2023, pp. 1-15.
  43. Graefe, A. and N. Bohlken, "Automated journalism: A meta-analysis of readers' perceptions of human-written in comparison to automated news", Media and Communication, Vol.8, No.3, 2020, pp. 50-59. https://doi.org/10.17645/mac.v8i3.3019
  44. Heitmann, M., "Generative AI for marketing content creation: New rules for an old game", NIM Marketing Intelligence Review, Vol.16, No.1, 2024, pp. 10-17. https://doi.org/10.2478/nimmir-2024-0002
  45. Holbrook, M. B. and E. C. Hirschman, "The experiential aspects of consumption: Consumer fantasies, feelings, and fun", Journal of Consumer Research, Vol.9, No.2, 1982, pp. 132-140. https://doi.org/10.1086/208906
  46. Hong, S. J. and K. Y. Tam, "Understanding the adoption of multipurpose information appliances: The case of mobile data services", Information Systems Research, Vol.17, No.2, 2006, pp. 162-179. https://doi.org/10.1287/isre.1060.0088
  47. Huang, Q., X. Dong, P. Zhang, B. Wang, C. He, J. Wang, D. Lin, W. Zhang and N. Yu, "Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation", In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 13418-13427.
  48. Ilbahar, E. and S. Çebi, "Classification of design parameters for E-commerce websites: A novel fuzzy KaNo.approach", Telematics and Informatics, Vol.34, No.8, 2017, pp. 1814-1825. https://doi.org/10.1016/j.tele.2017.09.004
  49. Kang, H. G., A. Moon, and S. Jeon, "Examining the generative artificial intelligence landscape: Current status and policy strategies", Asia Pacific Journal of Information Systems, Vol.34, No.1, 2024, pp. 150-190.
  50. Kano, N., N. Seraku, F. Takahashi, and S. Tsuji, "Attractive quality and must-be quality", The Journal of the Japanese Society for Quality Control, Vol.14, 1984, pp. 39-48.
  51. Kardes, F. R., Consumer Behavior and Managerial Decision Making, Prentice Hall, Upper Saddle River, NJ, 2002.
  52. Kennick, W. E., "Art and inauthenticity", The Journal of Aesthetics and Art Criticism, Vol.44, No.1, 1985, pp. 3-12. https://doi.org/10.1111/1540_6245.jaac44.1.0003
  53. Kim, D. and S. Kim, "A model for user acceptance of robot journalism: Influence of positive disconfirmation and uncertainty avoidance", Technological Forecasting and Social Change, Vol.163, 2021, pp. 120448.
  54. Kim, D. and S. Y. Kim, "Big data analysis of AI news and robot journalism trends", International Journal of Advanced Research in Engineering and Technology, Vol.11, No.10, 2020, pp. 1395-1402.
  55. Kim, D. H., L. Spiller, and M. Hettche, "Analyzing media types and content orientations in Facebook for global brands", Journal of Research in Interactive Marketing, Vol.9, No.1, 2015, pp. 4-30. https://doi.org/10.1108/JRIM-05-2014-0023
  56. Lee, G. and H. Y. Kim, "Human vs AI: The battle for authenticity in fashion design and consumer response", Journal of Retailing and Consumer Services, Vol.77, 2024, pp. 103690.
  57. Leea, K. J., T. Hongb, H. Ahnc, T. Kimd, and C. Kooe, "Special Topic: The Impact of ChatGPT in Society, Business, and Academia", Asia Pacific Journal of Information Systems, Vol.33, No.1, 2023, pp. 957-976.
  58. Leventhal, G. S., "What should be done with equity theory? New approaches to the study of fairness in social relationships", In Social Exchange: Advances in Theory and Research, 1980, pp. 27-55.
  59. Littrell, M. A., L. F. Anderson, and P. J. Brown, "What makes a craft souvenir authentic?", Annals of Tourism Research, Vol.20, No.1, 1993, pp. 197-215. https://doi.org/10.1016/0160-7383(93)90118-M
  60. Longoni, C. and L. Cian, "Artificial intelligence in utilitarian vs hedonic contexts: The 'word-ofmachine' effect", Journal of Marketing, Vol.86, No.1, 2022, pp. 91-108. https://doi.org/10.1177/0022242920957347
  61. Makridakis, S., "The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms", Futures, Vol.90, 2017, pp. 46-60. https://doi.org/10.1016/j.futures.2017.03.006
  62. Mayer, R. E., "Multimedia learning", In Psychology of Learning and Motivation, Academic Press, Vol.41, 2002, pp. 85-139.
  63. McLuhan, M., Understanding Media: The Extensions of Man, MIT Press, 1994.
  64. Moulard, J. G., D. H. Rice, C. P. Garrity, and S. M. Mangus, "Artist authenticity: How artists' passion and commitment shape consumers' perceptions and behavioral intentions across genders", Psychology & Marketing, Vol.31, No.8, 2014, pp. 576-590. https://doi.org/10.1002/mar.20719
  65. Napoli, J., S. J. Dickinson, M. B. Beverland, and F. Farrelly, "Measuring consumer-based brand authenticity", Journal of Business Research, Vol.67, No.6, 2014, pp. 1090-1098. https://doi.org/10.1016/j.jbusres.2013.06.001
  66. Newman, G. E. and R. Dhar, "Authenticity is contagious: Brand essence and the original source of production", Journal of Marketing Research, Vol.51, No.3, 2014, pp. 371-386. https://doi.org/10.1509/jmr.11.0022
  67. Ng, J., "Bandersnatch is just the start – the next big thing in interactive media is AI storytelling", The Conversation, 2019, Available at https://theconversation.com/bandersnatch-is-just-the-start-the-next-big-thing-in-interactive-media-is-ai-storytelling-109830.
  68. Nunnally, J. C. Psychometric Theory, New York: McGraw-Hill, 1978.
  69. Parthiban, E. S. and M. Adil, "Examining the adoption of AI-based banking chatbots: A task technology fit and network externalities perspective", Asia Pacific Journal of Information Systems, Vol.33, No.3, 2023, pp. 652-676. https://doi.org/10.14329/apjis.2023.33.3.652
  70. Pellas, N., "The influence of sociodemographic factors on students' attitudes toward AI-generated video content creation", Smart Learning Environments, Vol.10, No.1, 2023, pp. 50-70. https://doi.org/10.1186/s40561-023-00276-4
  71. Rejeb, A., K. Rejeb, A. Abdollahi, and H. Treiblmaier, "The big picture on Instagram research: Insights from a bibliometric analysis", Telematics and Informatics, Vol.73, 2022, pp. 101876.
  72. Riquelme, I. P. and S. Román, "The influence of consumers' cognitive and psychographic traits on perceived deception: A comparison between online and offline retailing contexts", Journal of Business Ethics, Vol.119, No.4, 2014, pp. 405-422. https://doi.org/10.1007/s10551-013-1628-z
  73. Román, S., "Relational consequences of perceived deception in online shopping: The moderating roles of type of product, consumer's attitude toward the Internet and consumer's demographics", Journal of Business Ethics, Vol.95, No.3, 2010, pp. 373-391. https://doi.org/10.1007/s10551-010-0365-9
  74. Salah, M., H. Al Halbusi, and F. Abdelfattah, "May the force of text data analysis be with you: Unleashing the power of generative AI for social psychology research", Computers in Human Behavior: Artificial Humans, Vol.1, 2023, pp. 100006.
  75. Salmon, K., "AI in media & entertainment market to reach USD $51.37 billion", CMOtech, 2024, Available at https://cmotech.uk/story/ai-in-mediaentertainment-market-to-reach-usd-51-37-billion.
  76. Shahbaznezhad, H., R. Dolan, and M. Rashidirad, "The role of social media content format and platform in users' engagement behavior", Journal of Interactive Marketing, Vol.53, No.1, 2021, pp. 47-65. https://doi.org/10.1016/j.intmar.2020.05.001
  77. Shanklin, W., "Google's Bard Chatbot Confidently Spouts Misinformation in Twitter Debut", Engadget, 8 Feb. 2023, Available at www.engadget.com/google-bard-chatbot-false-information-twitter-ad165533095.html.
  78. Sivathanu, B., R. Pillai, and B. Metri, "Customers' online shopping intention by watching AI-based deepfake advertisements", International Journal of Retail & Distribution Management, Vol.51, No.1, 2023, pp. 124-145. https://doi.org/10.1108/IJRDM-12-2021-0583
  79. Skovsgaard, M., E. Albæk, P. Bro, and C. De Vreese, "A reality check: How journalists' role perceptions impact their implementation of the objectivity norm", Journalism, Vol.14, No.1, 2013, pp. 22-42. https://doi.org/10.1177/1464884912442286
  80. Sohn, K., C. E. Sung, G. Koo, and O. Kwon, "Artificial intelligence in the fashion industry: Consumer responses to generative adversarial network (GAN) technology", International Journal of Retail & Distribution Management, Vol.49, No.1, 2020, pp. 61-80. https://doi.org/10.1108/IJRDM-03-2020-0091
  81. Soni, V., "Adopting Generative AI in Digital Marketing Campaigns: An Empirical Study of Drivers and Barriers", Sage Science Review of Applied Machine Learning, Vol.6, No.8, 2023, pp. 1-15.
  82. Sun, M., W. Hu, and Y. Wu, "Public perceptions and attitudes towards the application of artificial intelligence in journalism: From a China-based survey", Journalism Practice, Vol.18, No.3, 2024, pp. 548-570. https://doi.org/10.1080/17512786.2022.2055621
  83. Timko, M., "An experiment in continuous analysis", Center for Quality of Management Journal, Vol.2, No.4, 1993, pp. 17-20.
  84. Tubadji, A., H. Huang, and D. J. Webber, "Cultural proximity bias in AI-acceptability: The importance of being human", Technological Forecasting and Social Change, Vol.173, 2021, pp. 121100.
  85. Wahid, R., J. Mero, and P. Ritala, "Written by ChatGPT, illustrated by Midjourney: Generative AI for content marketing", Asia Pacific Journal of Marketing and Logistics, Vol.35, No.8, 2023, pp. 1813-1822.
  86. Wertenbroch, K. and R. Dhar, "Consumer choice between hedonic and utilitarian goods", Journal of Marketing Research, Vol.37, No.1, 2000, pp. 60-71. https://doi.org/10.1509/jmkr.37.1.60.18718
  87. Wester, J., "Judge Imposes $5K Fine on Lawyers Who Submitted ChatGPT-Generated Fake Case Citations", Law.com, 22 June 2023, Available at www.law.com/texaslawyer/2023/06/22/judge-im poses-5k-fine-on-lawyers-who-submitted-chatgpt -generated-fake-case-citations/?slreturn=2024102543408.
  88. Westerståhl, J., "Objective news reporting: General premises", Communication Research, Vol.10, No.3, 1983, pp. 403-424. https://doi.org/10.1177/009365083010003007
  89. Wiseman, S., S. M. Shieber, and A. M. Rush, "Challenges in data-to-document generation", arXiv preprint, arXiv:1707.08052, 2017.
  90. Wittenberg, C., Z. Epstein, A. J. Berinsky, and D. G. Rand, "Labeling AI-Generated Content: Promises, Perils, and Future Directions", An MIT Exploration of Generative AI, 2024.
  91. Yang, B., F. Liu, Y. Zou, X. Wu, Y. Wang, and D. A. Clifton, "Zeronlg: Aligning and autoencoding domains for zero-shot multimodal and multilingual natural language generation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.46, No.8, 2024, pp. 5712-5724.
  92. Yao, M. L., M. C. Chuang, and C. C. Hsu, "The KaNo.model analysis of features for mobile security applications", Computers & Security, Vol.78, 2018, pp. 336-346. https://doi.org/10.1016/j.cose.2018.07.008
  93. Young, A., "Appeals to valuelessness: Objectivity, authenticity and the news discourse", Textual Practice, Vol.4, No.1, 1990, pp. 38-53. https://doi.org/10.1080/09502369008582075
  94. Yu, X., Y. Wang, Y. Chen, Z. Tao, D. Xi, S. Song, and S. Niu, "Fake Artificial Intelligence Generated Contents (FAIGC): A Survey of Theories, Detection Methods, and Opportunities", arXiv preprint arXiv:2405.00711, 2024.
  95. Zhang, S., O. Jafari, and P. Nagarkar, "A survey on machine learning techniques for auto labeling of video, audio, and text data", arXiv preprint arXiv:2109.03784, 2021.
  96. Zheng, Y., B. Zhong, and F. Yang, "When algorithms meet journalism: The user perception to automated news in a cross-cultural context", Computers in Human Behavior, Vol.86, 2018, pp. 266-275. https://doi.org/10.1016/j.chb.2018.04.046
  97. Zhou, Y., C. Cui, J. Yoon, L. Zhang, Z. Deng, C. Finn, M. Bansal, and H. Yao, "Analyzing and mitigating object hallucination in large vision-language models" In International Conference on Learning Representations (ICLR), 2023.