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Abstract  

TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In 

our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets 

the window size to one segment by default, managing the retransmission timer is the primary approach to 

congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it 

performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. 

In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts 

the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. 

Although our previous work showed that the proposed retransmission timer adjustment scheme can improve 

performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively 

too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous 

scheme is effective for improving TCP fairness. 
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1. Introduction 

For the past decade, there have been several studies on TCP for constrained IoT networks. Hurni et al. 

attempted to improve TCP performance by examining the effect of distributed caching and local retransmission 

strategies [1]. Their main idea is that each intermediate node caches TCP segments and retransmits a segment 

whose ACK is considerably delayed, based on RTT estimation. Kim et al. conducted an experimental study 

on performance of TCP over RPL in an IPv6-based testbed using the TinyOS BLIP stack, one LBR and one 

Linux-based server [2]. They find that TCP incurs significant throughput unfairness among nodes in multihop 

LLNs and that RPL may adversely affect TCP performance when RPL is unable to balance traffic load. Park 

et al. attempted to address the TCP fairness problem among LLN endpoints, by proposing TAiM (TCP assistant 

in the middle) [3]. TaiM intervenes in the middle of TCP communication only at LBR, and manipulates RTT 
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of the passing flows so that a flow with low throughput can have shorter delay whereas a flow with high 

throughput may have longer delay. Gomez et al. provide recommendations for lightweight TCP 

implementation and suitable operation in IoT scenarios [4]. Kumar et al. proposed a full-scale TCP, called 

TCPlp that can fit well within CPU and memory constraints of modern wireless sensor network(WSN) 

platforms leveraging the full-featured TCP in FreeBSD OS [5]. The authors deal with the issues related to 

hidden terminals and radio duty cycling (RDC). To reduce hidden-terminal-induced packet loss for TCP, they 

propose adding delay between link-layer retransmissions. Also, to overcome poor interaction of TCP’s self-

clocking with the duty-cycled link, they proposed Adaptive Duty Cycling. 

In our previous work, we tried to improve TCP performance in a constrained network environment where 

an RDC mechanism is used and the hidden terminal problem is severe [7]. We proposed a scheme for managing 

the retransmission timer which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs 

with variable limits, and dithering. Although our previous work showed performance improvement of the uIP 

TCP, we found that the TCP retransmission timer is set too long particularly when retransmission of the same 

packet fails multiple times. In this work, we attempt to improve the TCP retransmission timer adjustment 

mechanism by making a slight change to the dithering mechanism in our previous scheme. Simulation results 

show that this modification can improve TCP fairness without reducing TCP goodput.  

 

2. Background and Issues 

2.1 Background 

In this section, we describe the congestion control mechanism in the original uIP TCP/IP [8, 9], 

ContikiMAC duty cycling mechanism [10] and our previous work [7] briefly.  

The uIP TCP/IP stack is a small implementation of the TCP/IP protocol suite for embedded systems. The 

uIP TCP allows only a single TCP segment per connection to be unacknowledged at any given time. Even 

when each node generates low-rate traffic, congestion can occur at areas where traffic is concentrated. The uIP 

TCP needs congestion control by RTO management. Contiki OS supports TCP using uIP TCP/IP stack. 

RDC is a major tool to save battery power in wireless sensor networks. Contiki OS that we use for this 

study employs ContikiMAC as the default RDC mechanism. To switch off the RDC mechanisms, Contiki OS 

provides the NullRDC that leaves the radio always on. ContikiMAC is a sender-initiated asynchronous RDC 

mechanism that does not use signaling messages and additional packet headers. ContikiMAC uses a power 

efficient wake-up mechanism with a set of timing constraints to allow devices to keep their transceivers off. 

To give an indication of radio activity on the channel, ContikiMAC wake-ups use a Clear Channel Assessment 

(CCA) mechanism that uses Received Signal Strength Indicator (RSSI) of radio transceiver. If a receiver 

detects a packet transmission during a wake-up, the receiver keeps on to be able to receive the packet. However, 

it has been pointed out that asynchronous RDC mechanisms may result in long delays that accumulate over 

multihop path [12, 13].  

The Cooja network simulator is a Java-based application which was designed for simulation in the domain 

of wireless sensor networks [14, 15]. One of the main features of Cooja is the capability to emulate various 

motes constituting the wireless sensor networks. The emulation mechanism allows Cooja to perform fine-

grained, precise and low-level simulations. Cooja supports a GUI interface to design, run, and analyze WSN 

simulations. 

Our previous work showed that the original uIP TCP performs poorly due to its fixed RTO when an RDC 

mechanism is enabled and the hidden terminal problem is severe [7]. The original uIP TCP uses the fixed 
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RTO(3sec) for retransmissions after the first transmission. When RDC and hidden terminals jointly cause large 

RTT variations, the fixed RTO does not work well. To address the problem, we proposed a scheme for 

managing the retransmission timer which adopts the notion of weak RTT estimation of CoCoA, exponential 

backoffs with variable limits, and dithering. Weak RTT estimation means RTT estimation using retransmitted 

messages as well. The previous work showed effectiveness of the scheme through Cooja simulation varying 

the network size, the random loss rate, the link layer queue size [7]. In our another work, we investigated the 

effect of the traffic intensity, the degree of the hidden terminal as well by varying the offered load, the 

transmission range, and the RDC channel check rate [16]. 

2.2 Issues to be Handled 

Although our previous work demonstrated that TCP performance can be improved through weak RTT 

estimation, exponential backoffs with variable limits and dithering, we observe that the previous scheme often 

makes a node wait too long before timeout. When a node repeatedly retransmits and loses the same packet, the 

node sets the retransmission timer for an excessively long period of time, which makes the node suffer severe 

degradation of performance. Figure 1 shows such cases. Figure 1 shows the change of RTT, RTO, the actual 

retransmission timer and the retransmission counter for two nodes. In Figure(a), the node is 4 hops away from 

the LBR, and in Figure 1(b), the node is within the transmission range of the LBR. In Figure 1(a), we can see 

that the node performs 6 retransmissions for the same packet and therefore cannot send a new packet for 200 

seconds. Figure 1(b) shows that even a node which is near the LBR cannot send a new packet while performing 

5 retransmissions at least for 110 seconds. These examples imply that we need some mechanism that can 

prevent setting the TCP retransmission timer for an excessively long period of time.  

 

   
(a)                                         (b)  

Figure 1. Cases setting the retransmission timer for an excessively long time period  

 

3. Proposed Scheme 

We attempt to improve TCP fairness among the nodes without reducing the total goodput by improving the 

TCP retransmission timer adjustment mechanism. We note that a major cause of an excessively long 

retransmission timer is the dithering mechanism of the previous work. The dithering mechanism adds a random 

value to the RTO. Hence the retransmission timer value is always larger than the RTO value. When the RTO 
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backs off several times, the RTO value becomes large due to exponential backoff. Dithering makes the 

retransmission timer larger than the RTO value which is already large. To fix the problem, we made a slight 

modification to the dithering mechanism proposed in [9]. In our proposed scheme, when the number of 

retransmissions exceeds 2 and the RTO is longer than 15seconds, dithering is performed by subtracting a 

random value from the backed-off RTO value with the probability of 0.5. Table 1 shows how we modified the 

previous scheme. The modified part is in the shaded area. 

 

Table 1. Proposed Scheme  

Event Action 

Initiation MDEV = 16 seconds 

An RTT sample is 

taken from the 

latest transmission 

Err = RTT – SRTT 

SRTT = SRTT + 0.125 * Err 

MDEV = MDEV + 0.25 * (|Err| – MDEV) 

RTO = SRTT + 4 * MDEV 

retransmission_timer = RTO 

// dithering 

If (retransmission_timer > 4 seconds) 

retransmission_timer += random integer in [0, retransmission_timer*0.5) 

else 

retransmission_timer += random integer in [0, retransmission_timer) 

Retransmission 

timer expires 

// variable limits on the maximum backoffs 

If RTO ≤ 3 seconds then 

n_backoff = max (#retransmissions, 4)  

else if RTO ≤ 6 seconds then 

n_backoff = max (#retransmissions, 3)  

else if RTO ≤ 12 seconds then 

n_backoff = max (#retransmissions, 2) 

else 

n_backoff = max (#retransmissions, 1) 

retransmission_timer = max(RTO << n_backoff, 48 seconds) 

// dithering  

If (retransmission_timer > 12 seconds) 

d_time = random integer in [0, retransmission_timer*0.25) 

else if (retransmission_timer > 4 seconds) 

d_time = random integer in [0, retransmission_timer*0.5) 

else 

d_time = random integer in [0, retransmission_timer] 

// modified in the proposed scheme 

If (#retransmissions > 2) and (RTO > 15) then  

// with the probability of 0.5 

retransmission_timer -= d_time 

else  

retransmission_timer += d_time 
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4. Simulation Results 

We evaluated performance of the proposed scheme using the Cooja network simulator. We simulated a 4x4 

grid topology consisting of Sky motes. In the topology, the top leftmost node was designated as the LBR, 

which is connected to a TCP server using a slip protocol. Since the transmission range and interference range 

are 50m and 100m, respectively, and the nodes in a same row or column are 40m away from each other, many 

nodes suffer severe packet losses due to the hidden terminal problem. We set the random loss rate to 0% in 

order to focus on congestion, so packets are lost only due to packet collision or buffer overflow. The number 

of packets in the link-layer queue was set to 4. For an RDC mechanism, we used ContikiMAC. Table 2 

summarizes the main simulation parameters. 

 

Table 2. Simulation parameters  

Parameters Values 

Radio model Unit Disk Graph Medium (UDGM) 

Random loss rate 0% 

Transmission/Interference range 50m/100m 

Radio duty cycling mechanism ContikiMAC (RDC channel check rate: 8Hz) 

RPL objective function MRHOF 

Number of packets in the link-layer queue 4 

Length of TCP payload 48 bytes 

Simulation duration 10 minutes 

 

In this simulation, the major performance metrics are TCP goodput and fairness. For TCP goodput, we 

measured the number of received TCP segments. Fairness between TCP flows is quantified using Jain’s index. 

Figure 2 shows the simulation results on the scatter plot in which we can compare performance metrics between 

the previous scheme and the scheme proposed in this work. In the scatter plot, having the dots in the upper 

right part means better goodput and better fairness. We can see that the proposed scheme has more dots in the 

upper right part than the previous scheme.  

 

 
Figure 2. Simulation results 
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It is notable that TCP often suffers from pretty low goodput for the previous scheme and the proposed 

scheme both. We found that when the total TCP goodput was below 500 segments, the major cause of the low 

performance is usually in the RPL tree. In the other words, when an RPL tree is formed so that the root node 

(the LBR node) has two children nodes as shown in Figure 3(a), performance was not degraded badly. A 

typical RPL tree topology degrading TCP performance is illustrated in Figure 3(b). In the topology, node 2, 

which is located within the transmission range of the LBR, is not a child of the root node. While such an 

inefficient RPL topology remains unchanged, TCP usually suffers from performance degradation. We will 

investigate the effect of RPL on TCP performance as our future work. 

 

 

     
(a)                                     (b) 

Figure 3. Illustrations of RPL tree topology affecting TCP performance. In the topology shown in 

(b), TCP performs worse than in the topology shown in (a). 

 

5. Conclusion 

In this work, we show that the variant of uIP TCP which adopts weak RTT estimation, exponential backoffs 

with variable limits, and dithering still needs enhancement in adjusting the TCP retransmission timer. 

Observing that the previous scheme often makes a node wait too long before timeout, we propose modifying 

the dithering mechanism of the previous scheme to prevent setting the retransmission timer for an excessively 

long time period. Unlike the previous dithering mechanism which only adds a random value to the RTO value 

regardless of the RTO length, the newly proposed scheme allows the dithering mechanism to subtract a random 

value from the RTO value with the probability of 0.5 when the number of retransmissions exceeds 2 and the 

RTO is longer than 15 seconds. Simulation results show that the new dithering mechanism results in fairness 

improvement without reducing TCP goodput. Also, we found that depending on the RPL tree topology, TCP 

performance significantly degrades. We will examine the effect of RPL on TCP performance as our future 

work. 
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