DOI QR코드

DOI QR Code

동해 환경에서 차주파수 곱 및 수평선배열을 이용한 음원 위치추정 특성

Characteristics of source localization with horizontal line array using frequency-difference autoproduct in the East Sea environment

  • 투고 : 2023.08.31
  • 심사 : 2023.12.06
  • 발행 : 2024.01.31

초록

정합장처리(Matched Field Processing, MFP)는 음파전달 예측을 기반으로 음원의 거리와 심도를 추정하는 기법이다. 그러나 주파수가 높아지면 음파전달 예측의 부정확성이 증가하여 음원위치 추정이 어렵다. 최근에 제안된 차주파수 정합장처리(Frequency-difference Matched Field Processing, FD-MFP)는 고주파 신호의 자기상관으로부터 추출한 차주파수 곱을 적용함으로써 음속의 오정합 등이 있어도 강인하다고 알려졌다. 본 논문에서는 수평선배열센서에서 차주파수 정합장처리의 성능을 알아보기 위하여, 동해의 환경에서 시뮬레이션을 수행하였다. 장거리 탐지가 가능한 해저면반사(Bottom Bounce, BB)와 수렴구역(Convergence Zone, CZ)이 발생하는 영역에서 위치추정 결과를 분석하였다. 수평선배열센서의 차주파수 정합장처리의 위치추정 정확도는 회절음장과 음속의 오정합에 의해 기존의 정합장처리에 비해 유사하거나 낮아졌다. 시뮬레이션으로부터 차주파수 정합장처리가 기존의 정합장처리보다 오정합에 강인하다는 명확한 결과는 볼 수 없었다.

The Matched Field Processing (MFP) is an estimation method for a source range and depth based on the prediction of sound propagation. However, as the frequency increases, the prediction inaccuracy of sound propagation increases, making it difficult to estimate the source position. Recently proposed, the Frequency-Difference Matched Field Processing (FD-MFP) is known to be robust even if there is a mismatch by applying a frequency-difference autoproduct extracted from the auto-correlation of a high frequency signal. In this paper, in order to evaluate the performance of the FD-MFP using a horizontal line array, simulations were conducted in the environment of the East Sea of Korea. In the area of Bottom Bounce (BB) and Convergence Zone (CZ) where detection of a sound source is possible at a long range, and the results of localization were analyzed. According to the the FD-MFP simulations of horizontal line array, the accuracy of localization is similar or degraded compared to the conventional MFP due to diffracted field and mismatch of sound speed. There was no clear result from the simulations conforming that the FD-MFP was more robust to mismatch than the conventional MFP.

키워드

과제정보

이 논문은 2020년 정부(방위사업청)의 재원으로 수행된 연구임(922015301).

참고문헌

  1. A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field methods in ocean acoustics," IEEE J. Ocean. Eng. 18, 401-424 (1993).
  2. M. B. Porter, "The matched-field processing benchmark problems," J. Comput. Acoust. 2, 161-185 (1994).
  3. W. S. Hodgkiss, "Broadband matched-field processing," J. Acoust. Soc. Am. 94, 2821-2831 (1993).
  4. B. M. Worthmann, H. C. Song, and D. R. Dowling, "High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing," J. Acoust. Soc. Am. 138, 3549-3562 (2015).
  5. D. J. Geroski and B. M. Worthmann, "Frequency-difference autoproduct cross-term analysis and cancellation for improved ambiguity surface robustness," J. Acoust. Soc. Am. 149, 868-884 (2021).
  6. B. M. Worthmann, H. C. Song, and D. R. Dowling, "Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean," J. Acoust. Soc. Am. 141, 543-556 (2017).
  7. B. M. Worthmann and D. R. Dowling, "The effects of refraction and caustics on autoproducts," J. Acoust. Soc. Am. 147, 3953-3968 (2020).
  8. M. Park, Y. Choo, J. Choi, and K. Lee, "Reformulation of frequency-difference matched-field processing for high frequency known-source localization," J. Acoust. Soc. Am. 154, 948-967 (2023).
  9. K. Lee, S.-U. Son, and J.-S. Park, "Characteristics of bandwidth-averaged freequency-difference autoproduct fields," J. Acoust. Soc. Kr. Suppl.1(s) 42, 158 (2023).
  10. M. B. Porter, "The kraken normal mode program," SACLANT Undersea Research Centre, memorandum SM-25, 2001.
  11. M. B. Porter, "The Bellhop manual and user's guide: preliminary draft," Heat, Light, and Sound Research, Inc., 2011.
  12. S. L. Tantum and L. W. Nolte, "On array design for matched-field processing," J. Acoust. Soc. Am. 107, 2101-2111 (2000).