DOI QR코드

DOI QR Code

공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법

Covariance-based source localization performance improvement for underwater ultra-short baseline systems

  • 투고 : 2023.11.07
  • 심사 : 2023.12.12
  • 발행 : 2024.01.31

초록

Ultra-Short BaseLine(USBL) 은 센서 간격이 좁은 배열을 사용하기 때문에 위치 추정 성능 향상을 위해서는 정밀한 동기화가 필요하다. 그러나 수중 환경은 비교적 강한 잡음과 다중 경로 및 도플러 등의 수중 음향 채널로 인해 동기화 오류가 발생하여 위치 추정 성능이 저하된다. 본 논문에서는 수중 USBL 시스템의 위치 추정 성능을 향상시키기 위한 공분산 기반 동기 보상 기법을 제안한다. 제안 방법은 상호상관을 통해 신호를 정렬한 후, 정렬된 신호의 공분산을 계산한다. 공분산에서 동기 오차는 위상차와 선형적으로 관련되어 있으므로 위상차를 공분산으로부터 추정하여 동기 오차를 보상한다. 전산 모의실험을 통해 제안 방법이 기존 상호상관 방법보다 우수한 위치 추정 성능을 가지는 것을 보였다.

Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

키워드

과제정보

본 연구는 소방청 재난현장 긴급대응 기술개발사업(20019290)의 연구비 지원으로 수행되었습니다. 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2022-2018-0-01417).

참고문헌

  1. H. Lee, Y. Kim, S. Seol, and J. Chung, "Deep learningbased near-field source localization without a priori knowledge of the number of sources," IEEE Access, 10, 55360-55368 (2022).
  2. E. Grosicki, K. Abed-Meraim, and Y. Hua, "A weighted linear prediction method for near-field source localization," IEEE Trans. Signal Process. 53, 3651-3660 (2005).
  3. H. Lee, Y. Kim, S. Seol, and J. Chung, "Deep learningbased Direction-of-arrival estimation for far-field sources under correlated near-field interferences," ICT Express, 9, 741-747 (2023).
  4. H. Krim and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Process. Mag. 13, 67-94 (1996).
  5. E. Fisher and B. Rafaely, "Near-field spherical microphone array processing with radial filtering," IEEE Trans. Audio Speech Lang. Process. 19, 256-265 (2011).
  6. H. Lee, J. Ahn, Y. Kim, and J. Chung, "Directionof-arrival estimation of far-field sources under nearfield interferences in passive sonar array," IEEE Access, 9, 28413-28420 (2021).
  7. L. Kumar and R. M. Hegde, "Near-field acoustic source localization and beamforming in spherical harmonics domain," IEEE Trans. Signal Process. 64, 3351-3361 (2016).
  8. H. Lee, K. Kim, T. Chung, and H. Ko, "Deep learningbased ultra short baseline underwater positioning," Proc. ICAIIC, 856-859 (2023).
  9. Q. Luo, X. Yan, C. Ju, Y. Chen, and Z. Luo, "An ultra-short baseline underwater positioning system with kalman filtering," Sensors, 21, 143 (2020).
  10. Y. Yao, X. Xu, D. Yang, and X. Xu, "An IMM-UKF aided SINS/USBL calibration solution for underwater vehicles," IEEE Trans. Veh. Technol. 69, 3740-3747 (2020).
  11. J. Tong, X. Xiaosu, T. Zhang, Z. Liang, and L. Yao, "Study on installation error analysis and calibration of acoustic transceiver array based on SINS/USBL integrated system," IEEE Access, 6, 66923-66939 (2018).
  12. J. Wang, T. Zhang, B. Jin, Y. Zhu, and J. Tong, "Student's t-based robust kalman filter for a SINS/USBL integration navigation strategy," IEEE Sens. J. 20, 5540- 5553 (2020).
  13. H. Lee, J. Ahn, Y. Kim, S. Lee, and J. Chung, "A biomimetic communication method based on time shift using dolphin whistle" (in Korean), J. Acoust. Soc. Kr. 38, 580-586 (2019).
  14. Y.-J. Kim, M.-J. Oh, and I.-S. Lee, "Generalized cross correlation with phase transform sound source localization combined with steered response power method" (in Korean), J. Acoust. Soc. Kr. 36, 345-352
  15. Y. Kim, H. Lee, J. Ahn, and J. Chung, "Selection of CDMA and OFDM using machine learning in underwater wireless networks," ICT Express, 5, 215-218 (2019).
  16. M. Stojanovic and J. Preisig, "Underwtaer acoustic communication channels: propagation models and statistical characterization," IEEE Commun. Mag. 47, 84-89 (2009).
  17. H. Lee and J. Chung, "Performance analysis of CDMA and OFDM on underwater acoustic environments," J. Korea Inst. Intell. Transp. Syst. 17, 135-142 (2018).
  18. T.-I. Kwon, K.-M. Kim, S. Kim, and J.-K. Ahn, "Near field acoustic source localization using beam space focused minimum variance beamforming" (in Korean), J. Acoust. Soc. Kr. 36, 100-107 (2017).