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CYCLIC CODES OF LENGTH ps OVER
Fpm [u]

⟨ue⟩

Roghayeh Mohammadi Hesari, Masoumeh Mohebbei, Rashid Rezaei,
and Karim Samei

Abstract. Let Re =
Fpm [u]

⟨ue⟩ , where p is a prime number, e is a positive

integer and ue = 0. In this paper, we first characterize the structure of

cyclic codes of length ps over Re. These codes will be classified into 2e

distinct types. Among other results, in the case that e = 4, the torsion
codes of cyclic codes of length ps over R4 are obtained. Also, we present

some examples of cyclic codes of length ps over Re.

1. Introduction

Cyclic codes have some additional structural constraints on the codes. They
are based on Galois fields and, because of their structural properties, they are
very useful for error control. Their structure is strongly related to the Galois
field, because of which the encoding and decoding algorithms for cyclic codes
are computationally efficient.

In [1], Abualrub and Siap studied cyclic codes over the rings Z2 + uZ2 and
Z2 + uZ2 + u2Z2. In [8], cyclic codes over Zq + uZq, where u

2 = 0 and q is
the power of a prime, were investigated. The structure of negacyclic codes of
length 2s over Z2α was obtained in [7].

In recent years, cyclic codes of different lengths over the finite field Fpm have
been intensively studied by many authors. Dinh et al. have done this job of
classifying classes of constacyclic codes of certain lengths over certain finite
fields or finite chain rings. In 2004, Dinh obtained the structure of negacyclic
codes of length 2s over the Galois ring [3]. Then in 2010, he classified and gave
the detailed structure of all constacyclic codes of length ps over Fpm +uFpm [5].
On the basis of the works of Dinh, other researchers have tried the subject, for
example, we can refer to the survey of [9]. In [10], some constacyclic codes over
Fpm + uFpm + u2Fpm have been studied by X. Liu and X. Xu. The structure
and Hamming distances of cyclic codes of length 2s over the Galois field F4 can
be established as a special case of [4], where cyclic codes of length ps over the
Galois field Fpα were investigated. In [2], Cao et al. determined the structures
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of repeated-root (δ + αu2)-constacyclic codes over
Fpm [u]
⟨ue⟩ for any δ, α ∈ F∗

pm .

This class is a significant subclass of constacyclic codes over finite chain rings
of Type 2. In [6], Dinh et al. first classified and then investigated the structure
and duals of several classes of repeated-root constacyclic codes over the ring
Fpm [u]
⟨uα⟩ .

In this paper, we present the structure of cyclic codes of length ps over
Fpm [u]
⟨ue⟩ , where p is a prime number and ue = 0. In Section 2, we review some

basic definitions and properties of a polynomial ring over a finite chain ring and
present some main theorems that have been discussed in [4,5,10]. In Section 3,

we specify the structure of cyclic codes of length ps over
Fpm [u]
⟨ue⟩ , where ue = 0.

In Section 4, we study the cyclic codes of length ps over R4 =
Fpm [u]
⟨u4⟩ . Also,

we characterize the generator of the torsion code of these codes. Finally, we
present some examples of cyclic codes of length ps over R4.

2. Preliminaries

A principal ideal is an ideal I of a ring R that is generated by a single
element a ∈ R, that is ⟨a⟩ = {ra : r ∈ R}. A ring R is a principal ideal ring if
it has unity and if every ideal is principally generated. R is called a local ring
if R has a unique maximal ideal. Furthermore, a ring R is called a chain ring
if the set of all ideals of R is linearly ordered under set-theoretic inclusion.

A code C of length n over R is a non-empty subset of Rn, and the ring R is
referred to as the alphabet of the code. If this subset is also an R-submodule
of Rn, then C is called linear.

For a unit λ of R, the λ-constacyclic (λ-twisted) shift τλ on Rn is the shift
τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2), and a code C is said to be
λ-constacyclic if τλ(C) = C, i.e., if C is closed under the λ-constacyclic shift
τλ. In case λ = 1, those λ-constacyclic codes are called cyclic codes.

Proposition 2.1 ([7, Proposition 2.1]). Let R be a finite commutative ring.
Then the following conditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal, i.e., M = ⟨Γ⟩
for some Γ ∈ R.

(ii) R is a local principal ideal ring.
(iii) R is a chain ring.

Proposition 2.2 ([5, Proposition 2.2]). Let R be a finite commutative ring. A

linear code C of length n over R is cyclic if and only if C is an ideal of R[x]
⟨xn−1⟩ .

Throughout this paper, we use the following symbols for simplicity:

• Re =
Fpm [u]
⟨ue⟩ = Fpm + uFpm + · · ·+ ue−1Fpm , where ue = 0.

• Re =
Re[x]

⟨xps−1⟩ .

Lemma 2.3 ([5]). Let h(x) = a0 +
∑ps−1

i=1 ai(x − 1)i be a polynomial in R1,
where a0 ̸= 0 and ai ∈ Fpm . Then h(x) is a unit in R1.



CYCLIC CODES OF LENGTH ps OVER
Fpm [u]

⟨ue⟩ 33

Proposition 2.4 ([4]). The ring R1 is a chain ring with exactly the following
ideals:

R1 = ⟨(x− 1)0⟩ ⊋ ⟨(x− 1)1⟩ ⊋ · · · ⊋ ⟨(x− 1)p
s−1⟩ ⊋ ⟨(x− 1)p

s

⟩ = 0.

Theorem 2.5 ([10]). Cyclic codes of length ps over R3, i.e., ideals in R3, are
• Type 1 : 0, R3.
• Type 2 : ⟨u2(x− 1)i⟩, where 0 ⩽ i ⩽ ps − 1.
• Type 3 : ⟨u(x− 1)i + u2h(x)(x− 1)t⟩, where 0 ⩽ i ⩽ ps − 1, 0 ≤ t < i, and

either h(x) is 0 or is a unit, which it can be represented as h(x) =
∑

j hj(x−1)j.

• Type 4 : ⟨u(x − 1)i + u2h(x)(x − 1)t, u2(x − 1)ω⟩, where 0 ≤ i ≤ ps − 1,
0 ≤ t < w < i, and h(x) as in Type 3.

• Type 5 : ⟨(x−1)i+uh1(x)(x−1)t+u2h2(x)(x−1)z⟩, where 1 ⩽ i ⩽ ps−1,
0 ≤ t, z < i, and h1(x), h2(x) as in Type 3.

• Type 6 : ⟨(x− 1)i + uh1(x)(x− 1)t + u2h2(x)(x− 1)z, u2(x− 1)σ⟩, where
1 ⩽ i ⩽ ps − 1, 0 ≤ t < σ, 0 ≤ z < σ, σ < i, with h1(x) and h2(x) as in Type
3.

• Type 7 : ⟨(x−1)i+uh1(x)(x−1)t+u2h2(x)(x−1)z, u(x−1)q1+u2h3(x)(x−
1)q2⟩, where 1 ⩽ i ⩽ ps−1, 0 ≤ t < i, 0 ≤ z < i, q2 < q1 < i, and h1(x), h2(x),
h3(x) as in Type 3.

• Type 8 : ⟨(x−1)i+uh1(x)(x−1)t+u2h2(x)(x−1)z, u(x−1)q1+u2h3(x)(x−
1)q2 , u2(x − 1)ω⟩, where 1 ⩽ i ⩽ ps − 1, 0 ≤ t < ω, 0 ≤ z < ω, q2 < q1 < i,
ω < i, and h1(x), h2(x) and h3(x) as in Type 3.

3. Cyclic codes of length ps over Re

In this section, we determine the algebraic structure of all cyclic codes of
length ps over Re, where u

e = 0. The ring Re is a finite chain ring of nilpotency
index e and characteristic p. Its only maximal ideal is ⟨u⟩.

The mapping πe, which is defined as follows, is a surjective ring endomor-
phism:

πe : Re −→Re−1,

e−1∑
j=0

ujaj(x) 7−→
e−2∑
j=0

ujaj(x).

and we can extend it as follows:

πe : Re −→ Re−1,

e−1∑
j=0

ujgj(x) 7−→
e−2∑
j=0

ujgj(x)

and the mapping µe, which is defined as follows, is a surjective ring endomor-
phism:

µe : Re −→ R1,
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e−1∑
j=0

ujgj(x) 7−→ g0(x).

Remark 3.1. Every element f(x) ∈ Re can be uniquely expressed as

f(x) =

ps−1∑
j=0

a0,j(x− 1)j + u

ps−1∑
j=0

a1,j(x− 1)j + · · ·+ ue−1

ps−1∑
j=0

ae−1,j(x− 1)j ,

where a0,j , a1,j , . . . , ae−1,j ∈ Fpm .

Theorem 3.2. Let I be an ideal in Re. Then

I = ⟨(x−1)i+uh1(x)(x−1)t1+· · ·+ue−1he−1(x)(x−1)te−1⟩+uπe−1(πe(I :Re
u)),

where 0 ≤ tj < i and either hj(x)’s are 0 or are units for 1 ≤ j ≤ e − 1 and
πe(I :Re u) is an ideal of Re−1.

Proof. We may assume that I = I
⟨(x−1)ps ⟩ , where I is an ideal in Re[x] contain-

ing ⟨(x−1)p
s⟩. Since µe : Re[x] −→ Fpm [x] is an epimorphism, µe(I) is an ideal

of Fpm [x] and there exists a polynomial g ∈ Re[x] such that µe(I) = ⟨µe(g)⟩.
Inasmuch as µe|I : I −→ µe(I) is surjective, there is a polynomial f ∈ I
such that µe(f) = µe(g). Let f1 be an arbitrary polynomial in I. Then
µe(f1) ∈ µe(I) = ⟨µe(f)⟩, and so there exists a polynomial h ∈ Re[x] such that
µe(f1) = µe(h)µe(f) = µe(hf). Then f1 = hf + r for some r ∈ ⟨u⟩. Since
r = f1 − hf ∈ I ∩ ⟨u⟩, then f1 = hf + r ∈ ⟨f⟩+ (I ∩ ⟨u⟩) and this implies that
I = ⟨f⟩+ (I ∩ ⟨u⟩). Therefore

I =
I

⟨(x− 1)ps⟩
=

⟨f⟩+ ⟨(x− 1)p
s⟩

⟨(x− 1)ps⟩
+
( I

⟨(x− 1)ps⟩
∩ ⟨u⟩+ ⟨(x− 1)p

s⟩
⟨(x− 1)ps⟩

)
= ⟨f⟩+ (I ∩ ⟨u⟩).

First we show that

⟨f⟩ = ⟨(x− 1)i + uh1(x)(x− 1)t1 + · · ·+ ue−1he−1(x)(x− 1)te−1⟩.

To see this, inasmuch as R1 is a chain ring, then µe(I) = ⟨µe(f)⟩ = ⟨(x− 1)i⟩,
where 0 ≤ i ≤ ps. Hence, there exists k(x) ∈ R1 such that (x−1)i = k(x)µe(f).
Therefore µe(f) is a factor of (x − 1)i. Without loss of generality we may
assume that f(x) = (x− 1)i + ug1(x) + · · ·+ ue−1ge−1(x), where gk(x) ∈ R1,

deg(gk(x)) ≤ ps − 1 and gk(x) =
∑ps−1

j=0 gkj(x− 1)j for 1 ≤ k ≤ e− 1. Thus we
can write

f(x) = (x− 1)i + u

ps−1∑
j=0

g1j(x− 1)j + · · ·+ ue−1

ps−1∑
j=0

ge−1j(x− 1)j

= (x− 1)i + uh1(x)(x− 1)t1 + · · ·+ ue−1he−1(x)(x− 1)te−1
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such that hk(x) = hk0+
∑ps−1

j=1 hkj(x− 1)j and hk0 ̸= 0. By Lemma 2.3, hk(x)
is a unit. Therefore

⟨f⟩ = ⟨(x− 1)i + uh1(x)(x− 1)t1 + · · ·+ ue−1he−1(x)(x− 1)te−1⟩.

Furthermore, we have

I ∩ ⟨u⟩ = u(I :Re
u) = uπe

−1(πe(I :Re
u)),

where πe(I :Re
u) is an ideal of Re−1. Consequently,

I = ⟨(x− 1)i + uh1(x)(x− 1)t1 + · · ·+ ue−1he−1(x)(x− 1)te−1⟩+ uπe
−1(πe(I :Re u)).

□

It is obvious to see that ⟨0⟩ and ⟨1⟩ are cyclic codes of length ps over Re,
which are the trivial ideals of Re. In the following theorem, we classify all
non-trivial cyclic codes of length ps over Re.

Theorem 3.3. Non-trivial cyclic codes of length ps over Re, i.e., non-trivial
ideals in Re, are

⟨α1u
e−1(x− 1)t1 , α2(u

e−2(x− 1)t2 + ue−1h11(x)(x− 1)t11 ), . . . ,

αe−1(u(x− 1)te−1 +

e−2∑
j=1

uj+1h
e−2,j

(x)(x− 1)te−2,j ),

αe((x− 1)te +

e−1∑
j=1

ujh
e−1,j

(x)(x− 1)te−1,j )⟩,

where 0 ≤ t
k,ν

< t
k+1

, 1 ≤ te ≤ ps − 1, h
k,ν

(x) ∈ R1 and either h
k,ν

(x)’s are
0 or are units for 1 ≤ k ≤ e − 1, 1 ≤ ν ≤ k and t

k+1
< te for k ̸= e − 1 and

αk = 0 or 1 for 1 ≤ k ≤ e and (α1, α2, . . . , αe) ̸= (0, 0, . . . , 0).

Proof. Let I be an arbitrary non-trivial ideal of Re. By using Theorem 3.2 and
using induction on e, we establish all possible forms that the non-trivial ideal
I can have. Thanks to [5, Theorem 5.4] and Theorem 2.5, we have the results
for e = 2 and 3, respectively. In the first case, assume that I ⊆ ⟨u⟩. Then
I = uπe

−1(πe(I :Re
u)), where πe(I :Re

u) is an ideal of Re−1. By induction
hypothesis we have

πe(I :Re
u) = ⟨α1u

e−2(x− 1)t1 , α2(u
e−3(x− 1)t2 + ue−2h

11
(x)(x− 1)t11 ),

. . . , αe−2(u(x− 1)te−2 +

e−3∑
j=1

uj+1he−3,j (x)(x− 1)te−3,j ),

αe−1((x− 1)te−1 +

e−2∑
j=1

ujh
e−2,j

(x)(x− 1)te−2,j )⟩



36 R. M. HESARI, M. MOHEBBEI, R. REZAEI, AND K. SAMEI

such that αk = 0 or 1 for 1 ≤ k ≤ e − 1 and (α1, α2, . . . , αe−1) ̸= (0, 0, . . . , 0).
Therefore,

I = ⟨α1u
e−1(x− 1)t1 , α2(u

e−2(x− 1)t2 + ue−1h
11
(x)(x− 1)t11 ), . . . ,

αe−2(u
2(x− 1)te−2 +

e−3∑
j=1

uj+2h
e−3,j

(x)(x− 1)te−3,j ),

αe−1(u(x− 1)te−1 +

e−2∑
j=1

uj+1he−2,j (x)(x− 1)te−2,j )⟩.

Now, we consider the case where I ⊈ ⟨u⟩. Then

I = ⟨(x− 1)te +

e−1∑
j=1

ujh
e−1,j

(x)(x− 1)te−1,j ⟩+ uπe
−1(πe(I :Re

u)),

where πe(I :Re
u) is an ideal of Re−1. By induction hypothesis we have

I = ⟨α1u
e−1(x− 1)t1 , α2(u

e−2(x− 1)t2 + ue−1h
11
(x)(x− 1)t11 ), . . . ,

αe−1(u(x− 1)te−1 +

e−2∑
j=1

uj+1h
e−2,j

(x)(x− 1)te−2,j ),

(x− 1)te +

e−1∑
j=1

ujhe−1,j (x)(x− 1)te−1,j ⟩,

where αk = 0 or 1 for 1 ≤ k ≤ e− 1 and the proof is complete. □

Here, we provide an optimal cyclic codes of length ps over R5. Let us start
with the following definition.

Definition. Define the Gray map ρ : R5 −→ F16
pm by

ρ(a0 + ua1 + u2a2 + u3a3 + u4a4) = (a4, a4 + a0, a4 + a1, a4 + a2, a4 + a3,

a4 + a0 + a1, a4 + a0 + a2, a4 + a0 + a3,

a4 + a1 + a2, a4 + a1 + a3, a4 + a2 + a3,

a4 + a0 + a1 + a2, a4 + a0 + a1 + a3,

a4 + a0 + a2 + a3, a4 + a1 + a2 + a3,

a4 + a0 + a1 + a2 + a3).

We can generalize this Gray map for all x = (x0, x1, . . . , xps−1) ∈ Rps

5 as
follows:

ϱ : Rps

5 −→ F16ps

pm ,

ϱ(x0, x1, . . . , xps−1) = (ρ(x0), ρ(x1), . . . , ρ(xps−1)).

Therefore, C = ϱ(C) is a cyclic code of length 16ps over Fpm .
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Example 3.4. Let R5 =
(F55+uF55+u2F55+u3F55+u4F55 )[x]

⟨x5−1⟩ and δ be a primitive

(55 − 1)th root of unity in F55 . Consider the following code:

C = ⟨u2(x− 1)4 + u3δ
(
(δ3 + δ2 + 1) + (1 + 2δ3)(x− 1) + δ3(x− 1)2

)
+ u4δ3

(
(1 + δ + δ2 + δ4) + (1 + 2δ2 − 3δ4)(x− 1)

+ (δ2 − 3δ4)(x− 1)2 + δ4(x− 1)3
)
⟩

= ⟨(u2 + u3δ3 + u4δ4) + (u2 + u3δ + u4δ3)x+ (u2 + u3δ4 + u4δ5)x2

+ (u2 + u4δ7)x3 + u2x4⟩.
Then, C has a generator matrix of the form[

u2 + u3δ3 + u4δ4 u2 + u3δ + u4δ3 u2 + u3δ4 + u4δ5 u2 + u4δ7 u2
]
,

and so ϱ(C) is an optimal code with parameters [80, 3, 64].

4. Cyclic codes of length ps over R4 = Fpm +uFpm +u2Fpm +u3Fpm

In this section, we determine the algebraic structure of all cyclic codes of
length ps over Re, in the case that e = 4. Recall that R4 is a finite chain ring
of nilpotency index 4 and characteristic p. Its only maximal ideal is uFpm .

Proposition 4.1. Every element f(x) ∈ R4 can be uniquely expressed as

f(x) =

ps−1∑
j=0

a0j(x− 1)j + u

ps−1∑
j=0

a1j(x− 1)j + u2
ps−1∑
j=0

a2j(x− 1)j

+ u3
ps−1∑
j=0

a3j(x− 1)j ,

where akj ∈ Fpm for 0 ≤ k ≤ 4.

Definition. The mapping π4, which is defined as follows, is a surjective ring
endomorphism:

π4 : R4 −→ R3,

3∑
j=0

ujaj 7−→
2∑

j=0

ujaj ,

and we can extend it as follows:

π4 : R4 −→ R3,

3∑
j=0

ujgj(x) 7−→
2∑

j=0

ujgj(x).

Remark 4.2. We extend the natural ring morphism µ4 : R4 −→ Fpm , where
µ4(a0 + ua1 + u2a2 + u3a3) = a0, as follows:

µ4 : R4[x] −→ Fpm [x],
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3∑
j=0

ujgj(x) 7−→ g0(x).

Note that it can be even extended to µ4 : R4 −→ R1. For each ideal I in
R4, the image µ4(I :R4 u

i) = µ4({v ∈ R4 : vui ∈ I}) is an ideal in R1 for
i = 0, 1, 2, 3. Inasmuch as every cyclic code C over the ring R4 is an ideal
of R4, so µ4(C :R4

ui) is in fact a cyclic code over Fpm which is called the
torsion code associated to C and it is denoted by Tori(C). By Proposition 2.4,
Tori(C) = ⟨(x− 1)Ti⟩, where 0 ≤ Ti ≤ ps.

As a consequence of Theorem 3.3, we classify the cyclic codes of length ps

over R4 as following.

Theorem 4.3. Cyclic codes of length ps over R4, i.e., ideals of the ring R4,
can be separated into the following types:

• Type 1 : ⟨0⟩, ⟨1⟩.
• Type 2 : ⟨u3(x− 1)i⟩, where 0 ⩽ i ⩽ ps − 1.
• Type 3 : ⟨u2(x − 1)i + u3h(x)(x − 1)t⟩, where 0 ≤ i ≤ ps − 1, 0 ≤ t < i,

and either h(x) is 0 or h(x) is a unit, which can be represented as h(x) =∑
j hj(x− 1)j with hj ∈ Fpm , and h0 ̸= 0.

• Type 4 : ⟨u2(x − 1)i + u3h(x)(x − 1)t, u3(x − 1)ω⟩, where 0 ≤ i ≤ ps − 1,
0 ≤ t < i, ω < i, h(x) as in Type 3, and deg(h(x)) ≤ ω − t− 1.

• Type 5 : ⟨u(x− 1)i + u2h1(x)(x− 1)t1 + u3h2(x)(x− 1)t2⟩, where 0 ≤ i ≤
ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i, and h1(x), h2(x) are similar to h(x) in Type 3.

• Type 6 : ⟨u(x−1)i+u2h1(x)(x−1)t1 +u3h2(x)(x−1)t2 , u3(x−1)ω⟩, where
0 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i, ω < i, and h1(x), h2(x) are similar to
h(x) in Type 3.

• Type 7 : ⟨u(x − 1)i + u2h1(x)(x − 1)t1 + u3h2(x)(x − 1)t2 , u2(x − 1)q1 +
u3h3(x)(x−1)q2⟩, where 0 ≤ i ≤ ps−1, 0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ q2 < q1 < i,
and h1(x), h2(x), h3(x) are similar to h(x) in Type 3.

• Type 8 : ⟨u(x − 1)i + u2h1(x)(x − 1)t1 + u3h2(x)(x − 1)t2 , u2(x − 1)q1+
u3h3(x)(x − 1)q2 , u3(x − 1)ω⟩, where 0 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i,
0 ≤ q2 < q1 < i, and ω < i, and h1(x), h2(x), h3(x) are similar to h(x) in Type
3.

• Type 9 : ⟨(x− 1)i+uh1(x)(x− 1)t1 +u2h2(x)(x− 1)t2 +u3h3(x)(x− 1)t3⟩,
where 1 ≤ i ≤ ps−1, 0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i, and h1(x), h2(x), h3(x)
are similar to h(x) in Type 3.

• Type 10 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u3(x − 1)ω⟩, where 1 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i, and
h1(x), h2(x), h3(x) are similar to h(x) in Type 3.

• Type 11 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u2(x− 1)q1 + u3h4(x)(x− 1)q2⟩, where 1 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i,
0 ≤ t3 < i, 0 ≤ q1 < i, 0 ≤ q2 < q1 and h1(x), h2(x), h3(x), h4(x) are similar
to h(x) in Type 3.
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• Type 12 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u2(x−1)q1+u3h4(x)(x−1)q2 , u3(x−1)ω⟩, where 1 ≤ i ≤ ps−1, 0 ≤ t1 < i, 0 ≤
t2 < i, 0 ≤ t3 < i, 0 ≤ q2 < q1 < i, and ω < i, and h1(x), h2(x), h3(x), h4(x)
are similar to h(x) in Type 3, deg(h4(x)) < ω − q2.

• Type 13 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u(x − 1)q1 + u2h4(x)(x − 1)q2 + u3h5(x)(x − 1)q3⟩, where 1 ≤ i ≤ ps − 1,
0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i, 0 ≤ q2, q3 < q1 < i, and hj(x) is similar to
h(x) in Type 3 for 1 ≤ j ≤ 5.

• Type 14 : ⟨(x− 1)i +uh1(x)(x− 1)t1 +u2h2(x)(x− 1)t2 +u3h3(x)(x− 1)t3

u(x−1)q1+u2h4(x)(x−1)q2+u3h5(x)(x−1)q3 , u3(x−1)ω⟩, where 1 ≤ i ≤ ps−1,
0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i, 0 ≤ q2 < q1 < i, 0 ≤ q3 < q1, ω < i, and
hj(x) is similar to h(x) in Type 3 for 1 ≤ j ≤ 5. Also deg(h5(x)) < ω − q3.

• Type 15 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u(x−1)q1 +u2h4(x)(x−1)q2 +u3h5(x)(x−1)q3 , u2(x−1)z1 +u3h6(x)(x−1)z2⟩,
where 1 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i, 0 ≤ q2 < q1 < i,
0 ≤ q3 < q1, 0 ≤ z2 < z1 < i, and hj(x) is similar to h(x) in Type 3 for
1 ≤ j ≤ 6.

• Type 16 : ⟨(x−1)i+uh1(x)(x−1)t1 +u2h2(x)(x−1)t2 +u3h3(x)(x−1)t3 ,
u(x − 1)q1 + u2h4(x)(x − 1)q2 + u3h5(x)(x − 1)q3 , u2(x − 1)z1 + u3h6(x)(x −
1)z2 , u3(x − 1)ω⟩, where 1 ≤ i ≤ ps − 1, 0 ≤ t1 < i, 0 ≤ t2 < i, 0 ≤ t3 < i,
0 ≤ q2 < q1 < i, 0 ≤ q3 < q1, 0 ≤ z2 < z1 < i, ω < i and hj(x) is similar to
h(x) in Type 3 for 1 ≤ j ≤ 6. Also deg(h6(x)) < ω − z2.

Let C be a cyclic code of length ps over R4. As we mentioned in Remark
4.2, Tori(C) is of the form ⟨(x − 1)Ti⟩. Now, we determine the integer T1 for
different types presented in Theorem 4.3. It is easy to see that in Type 1, T1
is ps or 0, and in Types 2 − 4, T1 is ps. Furthermore in Types 5 − 8, T1 is i,
and in Types 13 − 16, T1 is q1. In the following, we obtain the integer T1 for
other types.

Proposition 4.4. In Type 9,

T1 =

{
i, if h1(x) = 0,

min{ps − i+ t1, i}, if h1(x) ̸= 0.

Proof. The integer T1 is the smallest non-negative integer satisfying

u(x− 1)T1 + u2ℓ1(x) + u3ℓ2(x)

∈ ⟨(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3⟩

for some ℓ1(x) and ℓ2(x) ∈ R1. Inasmuch as

u(x− 1)i + u2h1(x)(x− 1)t1 + u3h2(x)(x− 1)t2

= u
[
(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3

]
∈ ⟨(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3⟩,
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therefore T1 ≤ i. If h1(x) ̸= 0, then we have

u(x− 1)p
s−i+t1 + u2(h1(x))

−1h2(x)(x− 1)p
s−i+t2

+ u3(h1(x))
−1h3(x)(x− 1)p

s−i+t3

= (h1(x))
−1(x− 1)p

s−i
[
(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2

+ u3h3(x)(x− 1)t3
]

∈ ⟨(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3⟩,

implying that T1 ≤ ps − i+ t1. Hence T1 ≤ min{ps − i+ t1, i}. Since

u(x− 1)T1 + u2ℓ1(x) + u3ℓ2(x)

∈ ⟨(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3⟩,

there exists f(x) ∈ R4 such that

u(x− 1)T1 + u2ℓ1(x) + u3ℓ2(x)

= f(x)
(
(x− 1)i + uh1(x)(x− 1)t1 + u2h2(x)(x− 1)t2 + u3h3(x)(x− 1)t3

)
,

where f(x) is of the form

ps−1∑
j=0

a0j(x− 1)j + u

ps−1∑
j=0

a1j(x− 1)j + u2
ps−1∑
j=0

a2j(x− 1)j + u3
ps−1∑
j=0

a3j(x− 1)j ,

and akj ∈ Fpm for 0 ≤ k ≤ 3. Thus u(x− 1)T1 can be expressed as

u(x− 1)T1

= (x− 1)i
ps−1∑
j=0

a0j(x− 1)j

+ uh1(x)(x− 1)t1
ps−1∑
j=0

a0j(x− 1)j + u(x− 1)i
ps−1∑
j=0

a1j(x− 1)j

= u[h1(x)(x− 1)t1
ps−1∑
j=0

a0j(x− 1)j + (x− 1)i
ps−i−1∑
j=0

a1j(x− 1)j ]

= u[h1(x)(x− 1)t1
ps−1∑

j=ps−i

a0j(x− 1)j + (x− 1)i
ps−i−1∑
j=0

a1j(x− 1)j ]

= u[(x− 1)p
s−i+t1h1(x)

i−1∑
j=0

a0,j+ps−i(x− 1)j + (x− 1)i
ps−i−1∑
j=0

a1j(x− 1)j ].

Hence T1 ≥ min{ps − i+ t1, i}, which means that

T1 = min{ps − i+ t1, i}. □
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By a similar argument as the proof of Proposition 4.4, we have the following
result.

Proposition 4.5. In Types 10, 11 and 12, we have

T1 =

{
i, if h1(x) = 0,

min{ps − i+ t1, i}, if h1(x) ̸= 0.

4.1. Examples

In this subsection, we provide some optimal cyclic codes of length ps over
R4.

Definition. Define the Gray map ψ : R4 −→ F8
pm by

ψ(a0 + ua1 + u2a2 + u3a3) = (a3, a3 + a0, a3 + a1, a3 + a2, a3 + a0 + a1,

a3 + a0 + a2, a3 + a1 + a2, a3 + a0 + a1 + a2).

We can generalize this Gray map for all x = (x0, x1, . . . , xps−1) ∈ Rps

4 as
follows:

ϕ : Rps

4 −→ F8ps

pm ,

ϕ(x0, x1, . . . , xps−1) = (ψ(x0), ψ(x1), . . . , ψ(xps−1)).

Hence, C = ϕ(C) is a cyclic code of length 8ps over Fpm .

Inasmuch as ϕ is a linear map, we get the following lemma.

Lemma 4.6. ϕ : (Rps

4 ,Lee distances) −→ (F8ps

pm ,Hamming distances) is a dis-
tance preserving map.

Example 4.7. Let R4 = (F16+uF16+u2F16+u3F16)[x]
⟨x4−1⟩ and δ be a primitive 15th

root of unity in F16, i.e., F16 = {0, δ, . . . , δ15, δ16 = 1}. Consider the following
code:

C = ⟨(x− 1)3 + ux(x− 1) + u2δ(x− 1)2 + u3δ2(x− 1)⟩
= ⟨(1 + u2δ + u3δ2) + (1 + u+ u3δ2)x+ (1 + u+ u2δ)x2 + x3⟩.

Then, C has a generator matrix of the form[
1 + u2δ + u3δ2 1 + u+ u3δ2 1 + u+ u2δ 1

]
.

ϕ(C) has the following generator matrix


δ2 δ2 + 1 δ2 δ2 + δ δ2 + 1 δ2 + δ + 1 δ2 + δ δ2 + δ + 1 δ2 δ2 + 1 δ2 + 1 δ2 δ2 δ2 + 1 δ2 + 1 δ2 0 1 1 δ 0 δ + 1 δ + 1 δ 0 1 0 0 1 1 0 1

δ δ δ + 1 δ δ + 1 δ δ + 1 δ + 1 0 0 1 1 1 1 0 0 δ δ δ + 1 δ + 1 δ + 1 δ + 1 δ δ 0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

Hence, ϕ(C) is an optimal code with parameters [32, 4, 16].
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Example 4.8. Let R4 = (F27+uF27+u2F27+u3F27)[x]
⟨x3−1⟩ and δ be a primitive 26th

root of unity in F27, i.e., F27 = {0, δ, . . . , δ26, δ27 = 1}. Consider the following
codes:

• C = ⟨(x− 1) + uδ + u2δ2⟩ = ⟨(−1 + uδ + u2δ2) + x⟩.
Thus, C has a generator matrix of the form−1 + uδ + u2δ2 1 0

0 −1 + uδ + u2δ2 1

 .
ϕ(C) has the following generator matrix


0 2 δ δ2 δ + 2 δ2 + 2 δ + δ2 δ + δ2 + 2 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 δ δ2 δ + 2 δ2 + 2 δ + δ2 δ + δ2 + 2 0 1 0 0 1 1 0 1

δ2 δ2 δ2 + 2 δ2 + δ δ2 + 2 δ2 + δ δ2 + δ + 2 δ2 + δ + 2 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 δ2 δ2 δ2 + 2 δ2 + δ δ2 + 2 δ2 + δ δ2 + δ + 2 δ2 + δ + 2 0 0 1 0 1 0 1 1

δ δ δ δ − 1 δ δ − 1 δ − 1 δ − 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 δ δ δ δ − 1 δ δ − 1 δ − 1 δ − 1 0 0 0 1 0 1 1 1

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1



.

Hence, ϕ(C) is an optimal code with parameters [24, 8, 11].
• C = ⟨(x−1)2+u(x−1)+u2δ⟩ = ⟨(1−u+u2δ)+ (1+u)x+x2⟩ is a cyclic

code over R4. Therefore, C has a generator matrix of the form[
1− u+ u2δ 1 + u 1

]
.

ϕ(C) has the following generator matrix

0 1 2 δ 0 δ + 1 δ − 1 δ 0 1 1 0 2 1 1 2 0 1 0 0 1 1 0 1

δ δ δ + 1 δ − 1 δ + 1 δ − 1 δ δ 0 0 1 1 1 1 2 2 0 0 1 0 1 0 1 1

2 2 2 0 2 0 0 0 1 1 1 2 1 2 2 2 0 0 0 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

So, ϕ(C) is an optimal code with parameters [24, 4, 15].

5. Conclusion

In this paper, we first studied the structure of cyclic codes of length ps over
Re. We determined the generator polynomials of this family of codes. Then, we
specified the structures of cyclic codes of length ps over R4. Also, we obtained
the torsion codes of these codes. Finally, we provided several examples of
optimal cyclic codes over R4 and R5.
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