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THE HOMOLOGICAL PROPERTIES OF REGULAR

INJECTIVE MODULES

Wei Qi and Xiaolei Zhang

Abstract. Let R be a commutative ring. An R-module E is said to be

regular injective provided that Ext1R(R/I,E) = 0 for any regular ideal I
of R. We first show that the class of regular injective modules have the

hereditary property, and then introduce and study the regular injective
dimension of modules and regular global dimension of rings. Finally, we

give some homological characterizations of total rings of quotients and

Dedekind rings.

1. Introduction

Throughout this paper, all rings are commutative rings with identity and all
modules are unital. Let R be a ring. An element r ∈ R is said to be regular
if ra = 0 with a ∈ R implies a = 0. Otherwise, r is said to be a zero-divisor.
Let I be an ideal of R. If I contains a regular element, then I is said to be
a regular ideal. Denote by Z(R) the set of all zero-divisors of R. Denote by
T(R) the total ring of R, i.e., T(R) = RR−Z(R). If every regular element in R
is a unit, then R is said to be a total ring of quotients.

The class of injective modules, as one of the most classical classes of mod-
ules in homological algebra, plays a crucial role in the development of rings and
categories of modules. For examples, injective modules can be used to charac-
terize semi-simple rings, hereditary rings and Noetherian rings and so on. For
generalizing injective modules, Maddox [7] introduced the notion of absolutely
pure modules in 1967. Subsequently, Megibben [8] characterized Noetherian
rings and semi-hereditary rings in terms of absolutely pure modules. It is well-
known that the Baer’s criterion states that an R-module E is injective if and
only if Ext1R(R/I,E) = 0 for any ideal I of R. If we replace “any ideal I of R”
with some special classes of ideals, then it will produce some meaningful classes
of generalized injective modules. In recent decades these generalized injective
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modules have attracted many algebraists. For example, Damiano [3] intro-
duced the class of coflat modules by using finitely generated ideals; Wang [12]
introduced the class of maximally injective modules by using maximal ideals;
Yang [13] introduced ϕ-injective modules by using nonnil ideals; and Wang [11]
introduced the notion of regular injective modules by using regular ideals.

It is well-known that the class of injective modules is a coresolving class. The
coresolving properties of a given class of R-modules are very crucial to study the
homological dimensions. Previous research has shown that the classes of coflat
modules, maximally injective modules and ϕ-injective modules are generally
not coresolving classes. So it is natural and worth asking that:

Is the class of regular injective modules coresolving?

We will study this question in this paper. Actually, we show that the class of
regular injective modules is coresolving (see Theorem 2.5). We will also intro-
duce the regular injective dimension of modules and global regular dimension
of rings. In particular, we give a homological characterization of total rings of
quotients and Dedekind rings.

2. The coresolving property of regular injective modules

We begin with the definition of regular injective modules introduced by
Wang et al. [11] in 2011.

Definition 2.1. Let R be a ring and E an R-module. If Ext1R(R/I,E) = 0 for
every regular ideal I, then E is said to be a reg-injective module (abbreviates
regular injective module).

Let R be a ring and M an R-module. If, for any m ∈ M , there exists a
regular element r ∈ R such that rm = 0, then M is said to be a torsion module;
if rm = 0 with r ∈ R regular and m ∈ M implies that m = 0, then M is said
to be a torsion-free module.

Theorem 2.2. Let R be a ring and E an R-module. Then the following state-
ments are equivalent.

(1) E is a reg-injective module.
(2) Ext1R(T,E) = 0 for any torsion R-module T .
(3) Any short exact sequence 0 → E → B → T → 0, where T is a torsion

R-module, splits.

(4) For any short exact sequence 0 → A
g−→ B → T → 0, where T is a

torsion R-module and any R-homomorphism f : A → E, there exists
an R-homomorphism h : B → E such that f = h ◦ g.

Proof. (1) ⇒ (4): The proof is similar to that of Baer’s criterion for injective
modules (see [10, Theorem 2.4.4]), and we show it for completeness. Let E be
an R-module satisfying (1). Let B be an R-module and A a submodule of B
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such that B/A is torsion. Let f : A → E be an R-homomorphism. Let

Γ = {(C, d) |C is a submodule of B that contains A,

d : C → E an R-homomorphism such that d|A = f}.

Since (A, f) ∈ Γ, we have Γ is non-empty. Define (C1, d1) ≤ (C2, d2) if and
only if C1 ⊆ C2 and d2|C1

= d1. Consequently, Γ is a partial order. For any
chain {(Cj , dj)}, let C0 =

⋃
j Cj , and if c ∈ Cj , then d0(c) = dj(c). It is easy to

verify that (C0, d0) is an upper bound of {(Cj , dj)}. By Zorn’s lemma, there is
a maximal element in Γ which is assumed to be (C, d). We claim that C = B.
On the contrary, let x ∈ B − C. Denote by I = {r ∈ R | rx ∈ C}. Since B/A
is torsion, so is its quotient B/C. Hence the submodule (Rx + C)/C ∼= R/I
is also a torsion module. It follows that I is a regular ideal. Let h : I → E
be the R-homomorphism satisfying h(r) = d(rx). By (1), there exists an R-
homomorphism g : R → E satisfying g(r) = h(r) = d(rx) (r ∈ I). Set
C1 = C + Rx and d1(c + rx) = d(c) + g(r), where c ∈ C and r ∈ R. If
c+rx = 0, then r ∈ I. Consequently, d(c)+g(r) = d(c)+h(r) = d(c)+d(rx) =
d(c + rx) = 0. Hence, d1 is well-defined and d1|A = f . So (C1, d1) ∈ Γ.
However, (C1, d1) > (C, d), which is a contradiction to the maximality of (C, d).

(2) ⇔ (3) and (2) ⇒ (1): Obvious.
(4) ⇒ (3): It follows by setting A = E and f = IdE . □

Corollary 2.3. Let R be a ring and E an R-module. Then E is a reg-injective
torsion-free R-module if and only if E is a T(R)-module.

Proof. Suppose E is a T(R)-module. Suppose rm = 0 with r ∈ R regular
and m ∈ M . Then r

1m = 0 and so m = 1
r (

r
1m) = 0, and hence M is a

torsion-free R-module. Let I be a regular ideal containing a regular element
r, and f : I → E be an R-homomorphism. Write g : R → E to be an R-
homomorphism satisfying g(a) = a

r f(r) for any a ∈ R. Then for any b ∈ I, we

have f(b) = r
rf(b) =

1
rf(rb) =

b
rf(r) = g(b). So g is a lift of f , and hence E is

a reg-injective R-module.
On the other hand, we need to show: for any r ∈ R, the multiplication mr :

E
×r−−→ E is an isomorphism. In fact, suppose r ∈ R is a regular element. Since

E is torsion-free, so re = 0 ∈ E implies e = 0. Hence mr is a monomorphism.
Since E is reg-injective, we have E/rE ∼= Ext1R(R/Rr,E) = 0. Hence, mr is
an epimorphism. Consequently, E is a T(R)-module. □

Trivially, if D is an integral domain, then every reg-injective D-module is
injective. Furthermore, we have the following result.

Proposition 2.4. Let R = D1 ×D2 × · · · ×Dn be a finite product of integral
domains. Then every reg-injective R-module is injective.

Proof. Let E be a reg-injective R-module. Then E ∼= E1 × E2 × · · · × En,
where Ei is a Di-module (i = 1, 2, . . . , n). Claim that each Ei is a reg-injective
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Di-module. In fact, if Ii is a regular ideal of Di, then

I = D1 × · · · ×Di−1 × Ii ×Di+1 × · · · ×Dn

is a regular ideal of R. Hence

Ext1Di
(Di/Ii, Ei) ∼= Ext1R(R/I,E) = 0.

It follows that each Ei is a reg-injective Di-module. So each Ei is an injective
Di-module. Consequently, E is an injective R-module. □

Recall that a class C of R-modules is said to be coresolving if it contains
all injective modules, and is closed under direct summands, extensions and
cokernels of monomorphisms. It is trivial that the class of injective modules is
coresolving. The following result shows that the class of reg-injective modules
is also coresolving.

Theorem 2.5. Let R be a ring and E an R-module. Then the following state-
ments are equivalent.

(1) E is a reg-injective module.
(2) ExtnR(R/I,E) = 0 for any regular ideal I of R and any n ≥ 1.
(3) The (n − 1)-cosyzygy Ωn−1(E) of E is a reg-injective module for any

n ≥ 1.
(4) ExtnR(T,E) = 0 for any torsion module T and any n ≥ 1.

Consequently, the class of reg-injective modules is coresolving.

Proof. (1) ⇒ (2): Let E be a reg-injective R-module, I a regular ideal of R
and n ≥ 1. Let a ∈ I be a regular element. Then pdRR/Ra ≤ 1. Hence,
ExtnR(R/Ra,E) = 0 for any n ≥ 1. According to [2, Proposition 4.1.4] we have

Ext1R/Ra(R/I,HomR(R/Ra,E)) ∼= Ext1R(R/I,E) = 0.

So HomR(R/Ra,E) is an injective R/Ra-module by Baer’s criterion. It follows
by [2, Proposition 4.1.4] again that, for any n ≥ 1, we have

ExtnR(R/I,E) ∼= ExtnR/Ra(R/I,HomR(R/Ra,E)) = 0.

(2) ⇒ (1): Obvious.
(2) ⇔ (3): It follows by Ext1R(R/I,Ωn−1(E)) ∼= ExtnR(R/I,E).
(3) ⇔ (4): It follows by Ext1R(R/I,Ωn−1(E)) ∼= ExtnR(R/I,E) and Theorem

2.2.
Next, we will show the class of reg-injective modules is coresolving. Ob-

viously, the class of reg-injective modules contains all injective modules, and
is closed under direct summands, extensions. It remains to show that it is
closed under cokernels of monomorphisms. Let I be a regular ideal of R and
0 → A → B → C → 0 be a short exact sequence of R-modules, where A
and B are reg-injective. Then there exists an exact sequence Ext1R(R/I,B) →
Ext1R(R/I,C) → Ext2R(R/I,A). Since A and B are reg-injective, we have
Ext1R(R/I,B) = Ext2R(R/I,A) = 0. So Ext1R(R/I,C) = 0. Consequently, C is
also reg-injective. □
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3. The reg-injective dimension of modules

Let R be a ring and M an R-module. The injective dimension idR(M) of
an R-module M is defined as the length of the shortest injective resolutions of
M . Next, we will introduce the reg-injective dimension of modules.

Definition 3.1. Let R be a ring and M an R-module. The reg-injective
dimension of M , denote by r-idR(M) = n, is the length of the shortest long
exact sequences

(♢) 0 → M → E0 → E1 → · · · → En → 0

of R-modules, where each Ei is a reg-injective R-module (i = 0, . . . , n). We
call (♢) a reg-injective resolution of M of length n. If there is no such finite
reg-injective resolution of M , then we set r-idR(M) = ∞.

Let R be a ring and M an R-module. Then trivially r-idR(M) ≤ idR(M).
Moreover, if R is an integral domain, then r-idR(M) = idR(M).

Theorem 3.2. Let R be a ring and M an R-module. Then the following
statements are equivalent.

(1) r-idR(M) ≤ n.

(2) Extn+k
R (T,M) = 0 for any torsion R-module T and any integer k ≥ 1.

(3) Extn+k
R (R/I,M) = 0 for any regular ideal I of R and any integer k ≥ 1.

(4) Extn+1
R (T,M) = 0 for any torsion R-module T .

(5) Extn+1
R (R/I,M) = 0 for any regular ideal I of R.

(6) If 0 → M → E0 → E1 → · · · → En → 0 is an exact sequence,
where E0, E1, . . . , En−1 are reg-injective R-modules, then En is also
reg-injective.

(7) If 0 → M → E0 → E1 → · · · → En → 0 is an exact sequence, where
E0, E1, . . . , En−1 are injective R-modules, then En is a reg-injective
R-module.

(8) There exists an exact sequence 0 → M → E0 → E1 → · · · → En →
0, where E0, E1, . . . , En−1 are injective R-modules, and En is a reg-
injective R-module.

Proof. (1) ⇒ (2): We prove (2) by induction on n. First, we consider n = 0,
(2) follows by Theorem 2.5. If n > 0, then there exists an exact sequence

0 → M → E0 → E1 → · · · → En → 0,

where each Ei is a reg-injective R-module (i = 0, . . . , n). Write

K0 = Coker(M → E0).

Then we have exact sequences 0 → M → E0 → K0 → 0 and 0 → K0 →
E1 → · · · → En → 0. So r-idR(K0) ≤ n − 1. By induction, we have

Extn−1+k
R (T,K0) = 0 for any torsion R-module T and any integer k ≥ 1.
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It follows by the exact sequence

0 = Extn+k−1
R (T,E0) → Extn+k−1

R (T,K0)

→ Extn+k
R (T,M) → Extn+k

R (T,E0) = 0

that Extn+k
R (M,T ) ∼= Extn−1+k

R (T,K0) = 0.
(2) ⇒ (3) ⇒ (5), (4) ⇒ (5) and (6) ⇒ (7): Trivial.
(5) ⇒ (6): Set K0 = Coker(M → E0) and Ki = Coker(Ei−1 → Ei), where

i = 1, . . . , n − 1. Then Kn−1
∼= En. Since E0, E1, . . . , En−1 are reg-injective

R-modules, we have

Ext1R(R/I,En) ∼= Ext2R(R/I,Kn−2) ∼= · · · ∼= Extn+1
R (R/I,M) = 0

for any regular ideal I of R. Hence En is a reg-injective R-module.
(7) ⇒ (8): Consider the injective resolution of M :

0 → M → E0 → E1 → · · · → En−2
dn−2−−−→ En−1 → · · · ,

where E0, E1, . . . , En−1 are injective R-modules. Then En := Coker(dn−2) is
a reg-injective R-module by (7).

(8) ⇒ (4): Consider the exact sequence:

0 → M → E0 → E1 → · · · → En → 0,

where E0, E1, . . . , En−1 are injective R-modules, and En is a reg-injective R-
module. Then by Theorem 2.2, we have Extn+1

R (T,M) = 0 ∼= Ext1R(T,En) = 0.
(8) ⇒ (1): Obvious. □

Corollary 3.3. Let R be a ring and N an R-module. If r-idR(N) = n > 0,
then there exists a reg-injective R-module E such that ExtnR(E,N) ̸= 0.

Proof. Since r-idR(N) = n > 0, then there is a torsion R-module T satisfying
ExtnR(T,N) ̸= 0. It follows by [11, Proposition 5.6] that there exists a reg-
injective envelope E of T such that T ⊆ E and E is a torsion module. So E/T
is also a torsion module. Consequently, there exists an exact sequence

ExtnR(E,N) → ExtnR(T,N) → Extn+1
R (E/T,N).

Since Extn+1
R (E/T,N) = 0 and ExtnR(T,N) ̸= 0, we have ExtnR(E,N) ̸= 0. □

The following three propositions are standard homological algebra, and so
we omit their proofs.

Proposition 3.4. Let R be a ring and {Mi | i ∈ Γ} a family of R-modules.
Then

r-idR(
∏
i∈Γ

Mi) = sup{r-idR(Mi)}.

Proposition 3.5. Let R be a ring and 0 → N → E → C → 0 be an exact
sequence of R-modules, where E is a reg-injective R-module. Then the following
results hold:

(1) If r-idR(N) = 0, then r-idR(C) = 0;
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(2) If r-idR(N) = n > 0, then r-idR(C) = n− 1.

Proposition 3.6. Let R be a ring and 0 → A → B → C → 0 be a short exact
sequence of R-modules. Then the following results hold:

(1) r-idR(A) ≤ 1 + max{r-idR(B), r-idR(C)};
(2) If r-idR(B) < r-idR(A), then r-idR(C) = r-idR(A)− 1 ≥ r-idR(B).

4. The regular global dimensions of rings

The global dimension gl.dim(R) of a ring R is defined as the supremum of
injective dimensions of all R-modules. In this section, we introduce and study
the regular global dimensions of rings:

Definition 4.1. Let R be a ring. The regular global dimension of R is defined
as

r-gl.dim(R) = sup{r-idR(M) | M is an R-module}.

Trivially, we have r-gl.dim(R) ≤ gl.dim(R) by their definitions. If R is an
integral domain, then r-gl.dim(R) = gl.dim(R). Let M be an R-module. We
denote by pdR(M) the projective dimension of R-module M .

Theorem 4.2. Let R be a ring. Then the following statements are equivalent.

(1) r-gl.dim(R) ≤ n.
(2) r-idR(M) ≤ n for any R-module M .

(3) Extn+k
R (T,M) = 0 for any R-module M , any torsion R-module T , and

any integer k ≥ 1.
(4) Extn+1

R (T,M) = 0 for any R-module M and any torsion R-module T .

(5) Extn+k
R (R/I,M) = 0 for any R-module M , any regular ideal I of R,

and any integer k ≥ 1.
(6) Extn+1

R (R/I,M) = 0 for any R-module M and any regular ideal I of
R.

(7) pdRT ≤ n for any torsion R-module T .
(8) pdRR/I ≤ n for any regular ideal I of R.

Consequently,

r-gl.dim(R) = sup{pdRR/I | I is a regular ideal of R}.

Proof. The equivalence of (1)-(6) follows by Theorem 3.2.
(4) ⇔ (7) and (6) ⇔ (8): Trivially hold. □

Proposition 4.3. Let R ∼= R1 × R2 × · · · × Rn be a direct product of rings.
Then r-gl.dim(R) = max

1≤i≤n
{r-gl.dim(Ri)}.

Proof. Let I be a regular ideal of R. Then I ∼= I1× I2×· · ·× In, where each Ii
is a regular ideal of Ri. And the converse is also true. Consequently, the result
follows by pdRR/I = max

1≤i≤n
{pdRi

Ri/Ii} and Theorem 4.2. □

The following result easily follows by Proposition 4.3 and Proposition 2.4.
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Corollary 4.4. Let R ∼= D1 × D2 × · · · × Dn be a direct product of integral
domains. Then r-gl.dim(R) = gl.dim(R).

Let R be a ring and M an R-module. Some examples of non-integral do-
mains can be constructed by the idealization R(+)M (see [1]). Let R(+)M be
isomorphic to R⊕M as R-modules. Define

(1) (r,m) + (s, n) = (r + s,m+ n),
(2) (r,m)(s, n) = (rs, sm+ rn).

Then R(+)M becomes a commutative ring with identity (1, 0) under this def-
inition.

Proposition 4.5. Let D be an integral domain, Q its quotient field and V a
Q-vector space. Then r-gl.dim(D(+)V ) = gl.dim(D).

Proof. Let R = D(+)V . Suppose gl.dim(D) ≤ n. Let M be an R-module.
Then M is naturally a D-module. Suppose J is a regular ideal of R. Then it
follows by [1, Corollary 3.4] that J = I(+)V , where I is a nonzero ideal of D.
Since R is a flat D-module, it follows by [2, Proposition 4.1.3] that

Extn+1
R (R/J,M) ∼= Extn+1

R (D/I ⊗D R,M) ∼= Extn+1
D (D/I,M) = 0.

Hence, r-gl.dim(D(+)V ) ≤ gl.dim(D).
On the other hand, suppose r-gl.dim(R) ≤ m. Let N be a D-module. Then

for any (a, b) ∈ R and t ∈ N , define (a, b)t = at. Then N is naturally an
R-module. Let I be a nonzero ideal of D. Then J = I(+)V is a regular ideal
of R. So, by [2, Proposition 4.1.3] again, we have

Extm+1
D (D/I,N) ∼= Extm+1

R (D/I ⊗D R,N) ∼= Extm+1
R (R/J,N) = 0.

Consequently, r-gl.dim(D(+)V ) ≥ gl.dim(D). Thus

r-gl.dim(D(+)V ) = gl.dim(D). □

It is well-known that a ring R is a semi-simple ring if and only if its global
dimension gl.dim(R) = 0. Next we characterize the rings R with r-gl.dim(R) =
0.

Theorem 4.6. Let R be a ring. Then the following statements are equivalent.

(1) r-gl.dim(R) = 0.
(2) Every R-module is reg-injective.
(3) R/I is a projective R-module for any regular ideal I of R.
(4) If T is a torsion module, then T = 0.
(5) R is a total ring of quotients (equivalent, T(R) = R).
(6) T(R) is a projective R-module.

Proof. The equivalence (1)-(3) follows by Theorem 4.2.
(3) ⇒ (5): Let I be a regular ideal of R and a ∈ I a regular element.

Considering the short exact sequence 0 → Ra → R → R/Ra → 0, we have
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R/Ra is projective. It follows by [5, Chapter I, Proposition 1.10] that Ra is an
idempotent ideal. Since a is regular, we have a is a unit. Hence I = R.

(5) ⇒ (4): Let T be a torsion module. Then for any element t ∈ T , there
exists a regular element r satisfying rt = 0. So t = 0 by (5).

(4) ⇒ (5): Let I be a regular ideal of R. Then R/I is a torsion module. So
I = R by (4).

(5) ⇒ (3): Let I be a regular ideal of R. Then I = R. So R/I = 0 is a
projective module.

(5) ⇒ (6): Trivial.
(6) ⇒ (5): Suppose T(R) is a projective R-module. It follows by the pro-

jective basis lemma (see [10, Theorem 2.3.6]) that there exist { ri
si
} ⊆ T(R) and

{fi} ⊆ HomR(T(R), R) such that for any r
s ∈ T(R) we have

r

s
=
∑
i

fi(
r

s
)
ri
si

=
∑
i

fi(
rsi
ssi

)
ri
si

=
∑
i

sifi(
r

ssi
)
ri
si

=
∑
i

fi(
r

ssi
)ri ∈ R.

So T(R) = R and hence R is a total ring of quotients. □

Remark 4.7. Let D be an integral domain and Q the quotient field of D. Set
R = D(+)Q/D. Then the set of all zero-divisors of R

Z(R) = {(r,m) | r ∈ Z(D) ∪ Z(K/D)} = R−U(D)(+)K/D = R−U(R),

where U(−) represents its set of all units. So R is a total ring of quotients.
Hence r-gl.dim(R) = 0 by Theorem 4.6.

Let R be a ring and I a regular ideal of R. Set I−1 = {q ∈ T(R) | Iq ⊆ R}.
If II−1 = R, then I is said to be an invertible ideal. Trivially, invertible ideals
are finitely generated. Recall from [6], a ring R is said to be a Dedekind ring
if every regular ideal of R is invertible. The following result is well-known and
we give a proof for completeness.

Proposition 4.8. Let I be a regular ideal of R. Then I is invertible if and
only if I is projective. Consequently, any regular projective ideal is finitely
generated.

Proof. Let I be a regular ideal of R. Suppose I is invertible. Then there exist
ai ∈ I and bi ∈ T(R) with i = 1, . . . , n such that

∑n
i=1 aibi = 1. We also

denote by bi ∈ HomR(I,R) the multiplication by bi. Then
∑n

i=1 aibi(r) =
r
∑n

i=1 aibi = r for any r ∈ R. It follows by the projective basis lemma that
I is a finitely generated projective ideal. On the other hand, suppose I is a
projective regular ideal of R. Then, by the projective basis lemma, there exist
elements {ai ∈ I} and {fi} ⊆ HomR(I,R) such that

(1) if x ∈ I, then almost all fi(x) = 0;
(2) if x ∈ I, then x =

∑
fi(x).

Since I is regular, then there is a regular element a in I. Let I0 = Ra. Set
gi = fi◦δ, where δ : I0 ↪→ I is the natural embedding map. Set gi(a) = yi. Then
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there are finite elements i = 1, . . . ,m such that yi ̸= 0. Thus gi =
yi

a ∈ T(R)
for each i = 1, . . . ,m. So

a =

m∑
i=1

aigi(a) =

m∑
i=1

aiyi =

m∑
i=1

aigia.

It follows that a(1−
∑m

i=1 aigi) = 0. Since a is regular, we have
∑m

i=1 aigi = 1.
Consequently, I is invertible. □

Remark 4.9. It follows from Proposition 4.8 that regular projective ideals are
always finitely generated. Recall that an ideal I of a ring R is said to be dense
if Ir = 0 with r ∈ R implies r = 0. Note that dense projective ideals are not
always finitely generated in general. Indeed, let R =

∏∞
i=1 F2 be the countably

infinite direct product of copies of the finite field F2, and ei = (1, . . . , 1, 0, . . . ),
where the sequence of 1’s has length i. Let I be the ideal generated by all ei’s.
It follows by [4, 05WH] that I is a dense projective ideal, which is obviously
not finitely generated.

Next we give a homological characterization of Dedekind rings in terms of
regular global dimensions.

Theorem 4.10. Let R be a ring. Then the following statements are equivalent.

(1) r-gl.dim(R) ≤ 1.
(2) every quotient of reg-injective R-module is reg-injective.
(3) every quotient of injective R-module is reg-injective.
(4) every regular ideal of R is projective.
(5) R is a Dedekind ring.

Proof. The equivalence of (1)-(4) follows by Theorem 4.2.
(4) ⇔ (5): This follows by Proposition 4.8. □

Remark 4.11. Let R be a ring. Then trivially we have r-gl.dim(R) ≤ gl.dim(R).
In fact, r-gl.dim(R) and gl.dim(R) can vary arbitrarily large. Let R = Zp2 be
the residue class ring, where p is a prime. Then R is a total ring of quotients.
So r-gl.dim(R) = 0. However, gl.dim(R) = ∞. On the other hand, suppose
S = kℵn is a direct product of ℵn copies of a field k. Then S is a von Neumann
regular ring, so is a total ring of quotients. Hence r-gl.dim(S) = 0. However, it
follows by [9, Theorem 2.51] that if the cardinal axiom 2ℵn = ℵm holds, then
gl.dim(S) = m+ 1.
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