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SOME REMARKS ON S-VALUATION DOMAINS

Ali Benhissi and Abdelamir Dabbabi

Abstract. Let A be a commutative integral domain with identity el-

ement and S a multiplicatively closed subset of A. In this paper, we

introduce the concept of S-valuation domains as follows. The ring A is
said to be an S-valuation domain if for every two ideals I and J of A, there

exists s ∈ S such that either sI ⊆ J or sJ ⊆ I. We investigate some basic
properties of S-valuation domains. Many examples and counterexamples

are provided.

1. Introduction

In this article, all rings are assumed to be commutative with identity element
1 ̸= 0, a multiplicative subset S of a ring A is a nonempty subset of A such
that 1 ∈ S, 0 /∈ S and for every a, b ∈ S, we have ab ∈ S. An integral domain
with quotient field K is called a valuation domain if for every two ideals I and
J of A, we have either I ⊆ J or J ⊆ I, equivalentely for every x ∈ K, we have
either x ∈ A or x−1 ∈ A. Valuation domains have an important role in the ring
theory, specially in the construction of examples and counterexamples (see for
example [3, 4]).

On the other hand, let A be a ring and S ⊆ A a multiplicative set. In
[1], Anderson and Dumitrescu defined an ideal I of A to be S-finite if there
exist s ∈ S and a finitely generated ideal F ⊆ I of A such that sI ⊆ F .
The ring A is called S-Noetherian if each ideal of A is S-finite. Note that if
A is a Noetherian ring, then it is S-Noetherian for each multiplicative subset
S of A, but the converse is false (take any non-Noetherian integral domain
D and take S = D \ {0}). S-Noetherian rings have been studied by several
authors. For more results we invite the reader to visit [1, 2, 5, 6]. Lately, many
authors have made their intention to generalize other properties and notions,
for example S-Noetherian spectrum and S-prime ideals (see [5]), S-Artinain
rings, S-multiplication rings and module (see [2]), etc. Motivated by these
generalizations, we would like to make the light on the S-version of valuation
domain.
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An integral domain A is said to be an S-valuation domain, for a given
multiplicatively closed subset S of A, if for every two ideals I and J of A, there
exists s ∈ S such that either sI ⊆ J or sJ ⊆ I. We start by comparing the
class of valuation domains and the class of S-valuation domains. In fact, we
give examples of S-valuation domains which are not valuation domains. Note
that any valuation domain A is an S-valuation domain for each multiplicative
subset S of A. Let A be an integral domain with quotient field K and S a
multiplicative subset of A. We show that if A is an S-valuation domain, then
for each x ∈ K, there exists s ∈ S such that either sx ∈ A or sx−1 ∈ A. But
the converse is false. It is well known that A is a Noetherian domain if and
only if A is an (A\M)-Noetherian domain for every maximal ideal M of A (see
[2]). It is natural to ask if there is an analogous result for valuation domains.
In fact, in the case of valuation domain we have only one implication which
is the direct implication. For the other implication, we show by an example
that it is not true in general (see Example 2.8). Also, we show that if A is an
S-valuation domain, then AS is a valuation domain, but the converse is not
true in general (see Example 2.14).

2. Main results

We start by the following definition, which is the natural generalization of
valuation domain as we show in Example 2.1.

Definition. Let A be an integral domain and S a multiplicative subset of A.

(1) Let I and J be two ideals of A. We say that I and J are S-comparable
if there exists s ∈ S such that either sI ⊆ J or sJ ⊆ I.

(2) The ring A is said to be an S-valuation domain if all its ideals are
S-comparable.

Example 2.1. (1) A valuation domain A is an S-valuation domain for
every multiplicative subset S of A.

(2) The converse of (1) is false. Let A be an integral domain and S =
A \ {0}. Then A is an S-valuation domain. Indeed, let I and J be two
ideals of A. If I = {0}, then clearly 1.I ⊆ J . If I ̸= {0}, let 0 ̸= s ∈ I.
Thus sJ ⊆ sA ⊆ I, where s ∈ S. Note that A is not necessary a
valuation domain.

(3) Let A = Z and S = Z \ pZ, where p is a prime number. Then A is
an S-valuation domain which is not a valuation domain. Indeed, let I
and J be two ideals of A. If I = {0} or J = {0}, then the inclusion is
clear. Elsewhere, set I = nZ and J = mZ, with n,m ∈ Z \ {0}. Let
k and l be the greatest integers such that pk | n and pl | m in Z. Set
n = pkd and m = plr with d, r ∈ Z. It is clear that d, r ∈ S. Without
loss of generality, we can assume that k ≤ l. Hence dJ = d(mZ) =
dpkpl−krZ = n(pl−krZ) ⊆ nZ = I.
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Proposition 2.2. Let A be an integral domain with quotient field K and S a
multiplicative subset of A. Consider the following statements:

(1) The ring A is an S-valuation domain.
(2) For every a, b ∈ A, the ideals ⟨a⟩ and ⟨b⟩ are S-comparable.
(3) For each x ∈ K, there exists s ∈ S such that sx ∈ A or sx−1 ∈ A.

Then (1) =⇒ (2) ⇐⇒ (3).

Proof. “(1) =⇒ (2)” Clear. “(2) =⇒ (3)” Let x ∈ K. If x = 0, it is clear.
Otherwise, set x = a

b with a, b ∈ A \ {0}. By hypothesis, there exists s ∈ S
such that s⟨a⟩ ⊆ ⟨b⟩ or s⟨b⟩ ⊆ ⟨a⟩. It yields that sa = bα or sb = aα, where
α ∈ A. Thus sx = sa

b = α ∈ A or sx−1 = sb
a = α ∈ A. “(3) =⇒ (2)” Let

a, b ∈ A \ {0}. There exists s ∈ S such that sa
b ∈ A or s b

a ∈ A. Hence sa ∈ bA
or sb ∈ aA. □

Example 2.3. (1) Let A be a UFD (unique factorization domain), a, b ∈
A a non-associated irreducible elements and S a multiplicative subset
contained in A \ (aA ∪ bA). Then A is not an S-valuation domain.
Indeed, if A is an S-valuation domain, by Proposition 2.2, there exists
s ∈ S such that sa ∈ bA or sb ∈ aA. Since A is a UFD and a and b
are two non-associated irreducible elements, we have s ∈ bA or s ∈ aA.
Therefore, s ∈ aA

⋃
bA, which is absurd. Hence A is not an S-valuation

domain.
(2) Let A = Z, n ≥ 2 an integer and S = {nk, k ≥ 0}. There are two

different prime numbers p, q ∈ N such that n is neither divisible by p
nor by q. Thus n /∈ pA ∪ qA. It follows that S ⊆ A \ (pA ∪ qA). By
(1), A is not an S-valuation domain.

(3) Let K be a field of cardinality greater than or equal to 3, A = K[X]
and S = {Xn, n ≥ 0}. Let a, b ∈ K be two nonzero elements such
that a ̸= b. Then X − a and X − b are two non-associated irreducible
elements of A and S ⊆ A \ ((X − a)A∪ (X − b)A). By (1), A is not an
S-valuation domain.

(4) The implication “(3) =⇒ (1)” of Proposition 2.2 is false in general.
Indeed, let A = Z + XQ[[X]], S = Z \ {0}, I = ⟨ X

2n , n ≥ 1⟩ and

J = ⟨ X
3n , n ≥ 1⟩. Assume that A is an S-valuation domain. Then

there exists k ∈ S such that kI ⊆ J or kJ ⊆ I. If kI ⊆ J , thus for

every n ≥ 1, k X
2n ∈ J . Let n ≥ 1. We have k X

2n =
∑l

i=1
X
3i fi(X),

where f1(X), . . . , fl(X) ∈ A. Hence k 1
2n =

∑l
i=1

1
3i fi(X). Therefore,

k 3l

2n =
∑l

i=13
l−ifi(0) ∈ Z, which is absurd. By the same way, we show

that kJ ⊈ I. Consequently, the ring A is not an S-valuation domain.
On the other hand, it is clear that qf(A) = Q((X)). Let 0 ̸= f ∈

qf(A). There exist n ∈ Z and g ∈ Q[[X]] with g(0) ̸= 0 such that f =
Xng. If n ≥ 0, there exists 0 ̸= k ∈ Z such that kg(0) ∈ Z. Therefore,
kf = Xn(kg) ∈ A. If n ≤ 1, then f−1 = X−ng−1 ∈ XQ[[X]] ⊆ A.
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Proposition 2.4. Let A be an integral domain and S a multiplicative subset
of A. If A is an S-valuation domain, then the set of prime ideals of A disjoint
with S has a greatest element.

Proof. Let F be the set of all ideals of A disjoint with S. We have F ̸= ∅
because {0} ∈ F . It is well-known that (F ,⊆) has a maximal element P which
is also a prime ideal of A.

Now, we are going to prove that P is the greatest prime ideal of A disjoint
with S. Let Q be a prime ideal of A disjoint with S. Since A is an S-valuation
domain, there exists s ∈ S such that sP ⊆ Q or sQ ⊆ P . Thus P ⊆ Q or
Q ⊆ P . In the case P ⊆ Q, we have P = Q because P is maximal in F and
Q ∈ F , which ends the proof. □

Proposition 2.5. Let A be a domain and S a multiplicative subset of A. If
A is an S-valuation domain, then for every P ∈ spec(A) such that P ∩ S = ∅,
the ring A/P is an S̄-valuation domain, where S̄ = {s̄ ∈ A/P, s ∈ S}.

Proof. The ideals of A/P are of the form I/P with I is an ideal of A containing
P . Let I and J be two ideals of A containing P . Then there exists s ∈ S such
that sI ⊆ J or sJ ⊆ I. Therefore, s̄(I/P ) ⊆ J/P or s̄(J/P ) ⊆ I/P . □

Definition. Let A be a domain and S a multiplicative subset of A. The
saturation of S is defined as follow:

S′ = {a ∈ A : there exists s ∈ S such that a | s in A}.

Proposition 2.6. Let A be an integral domain and S a multiplicative subset
of A. Then A is an S-valuation domain if and only if A is an S′-valuation
domain.

Proof. “=⇒” Clear since S ⊆ S′. “⇐=” Let I and J be two arbitrary ideals of
A. By hypothesis, there exists a ∈ S′ such that aI ⊆ J or aJ ⊆ I. Let s ∈ S
such that a | s in A. Set s = ab with b ∈ A. Hence sI = abI ⊆ aI ⊆ J or
sJ = abJ ⊆ aJ ⊆ I. □

Let S be a multiplicative subset of a domain A. In Proposition 2.4, it
is shown that if A is an S-valuation domain, then the set of prime ideals
of A disjoint with S has a greatest element. Now, we are going to give a
characterization of this ideal.

Proposition 2.7. Let S be a multiplicative subset of a domain A. If A is an
S-valuation domain, then M = A \ S′ is the greatest prime ideal of A disjoint
with S.

Proof. Since S ⊆ S′, we have M ∩ S = ∅. We are going to show that M is an
ideal of A.

Let a, b ∈ M and x ∈ A. If ax /∈ M , then ax ∈ S′. It yields that there exists
s ∈ S such that ax | s in A. Consequently, a | s in A. Hence a ∈ S′, which is
absurd. Thus ax ∈ M .
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It yields that there exists s ∈ S such that s⟨a⟩ ⊆ ⟨b⟩ or s⟨b⟩ ⊆ ⟨a⟩. Without
loss of generality we can assume that s⟨a⟩ ⊆ ⟨b⟩. Set sa = br with r ∈ A. It
follows that s(a + b) = sa + sb = br + sb = (r + s)b ∈ M . If a + b /∈ M , then
a+ b ∈ S′: a multiplicative set. Thus s(a+ b) ∈ S′∩M , which is absurd. Thus
a+ b ∈ M .

Since S′ is a multiplicative subset of A, M is a prime ideal of A.
Now, we show that M is the greatest prime ideal of A disjoint with S. Let

P be the greatest prime ideal of A disjoint with S. Then M ⊆ P . If P ̸= M ,
then there exists a ∈ P \M . Consequently, a ∈ S′. It implies that there exists
s ∈ S such that a | s in A. Thus s = ab with b ∈ A. Therefore, s ∈ P

⋂
S:

absurd. Consequently, P = M . □

Let S be a multiplicative subset of a domain A. Recall that an ideal I of A
is said to be S-finite if there exist s ∈ S and a finitely generated ideal F of A
such that sI ⊆ F ⊆ I. The ring A is called S-Noetherian if all its ideals are
S-finite. In [1], the authors have shown the following equivalence: The ring A
is Noetherian if and only if it is (A \M)-Noetherian for every M ∈ Max(A).
Now the question is, is the equivalence between “A is a valuation domain” and
“A is (A \M)-valuation” for every M ∈ Max(A) true? In the next example,
we give a negative answer of this question.

Example 2.8. Let A = Z, p be a prime number and S = Z \ pZ. By Example
2.1, A is an S-valuation domain. Since the maximal ideals of Z are of the
form pZ with p a prime number, A is an (A \M)-valuation domain for every
M ∈ Max(A). But A is not a valuation domain.

Example 2.9. Let A be a principal ideal domain. Then for eachM ∈ Max(A),
the ring A is (A \M)-valuation. Indeed, let M be a maximal ideal of A. Set
M = pA with p an irreducible element of A. Let I = xA and J = yA be ideals
of A. Then x = pkx′ and y = ply′ with p does not divide x′ and y′ and k, l ∈ N.
It is clear that x′, y′ ∈ A \M . If k ≤ l, then x′J = x′(yA) = (x′pk)(pl−ky′A) ⊆
xA = I. Again, if l ≤ k, then y′I ⊆ J . Thus A is an (A\M)-valuation domain.
In particular, if A is a PID which is not a valuation (for example Z), it is an
(A \M)-valuation domain for every maximal ideal M of A.

Let A be an integral domain and S a multiplicative subset of A. Recall
from [1] that an ideal I of A is said to be S-principal if there exist s ∈ S and
a ∈ I such that sI ⊆ aA. The ring A is called S-principal if each ideal of A is
S-principal.

Lemma 2.10. Let A be an integral domain and S a multiplicative subset of A.
If A is an S-valuation domain, then each S-finite ideal I of A is S-principal.

Proof. Let I be an S-finite ideal of A. There exist s ∈ S and a1, . . . , an ∈ I such
that sI ⊆ ⟨a1, . . . , an⟩. By induction on n, assume that n = 2. Since A is an S-
valuation domain, there exists t ∈ S such that ta1 ∈ a2A or ta2 ∈ a1A. It yields
that t⟨a1, a2⟩ ⊆ a2A or t⟨a1, a2⟩ ⊆ a1A. Now, let n ≥ 2 and 2 ≤ k ≤ n − 1,
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assume that there exist t ∈ S and 1 ≤ i ≤ k such that t⟨a1, . . . , ak⟩ ⊆ aiA.
As A is an S-valuation domain, there exists r ∈ S such that r⟨ai, ak+1⟩ ⊆
aiA or r⟨ai, ak+1⟩ ⊆ ak+1A. Thus (rt)⟨a1, . . . , ak+1⟩ ⊆ r⟨ai, ak⟩ ⊆ aiA or
(rt)⟨a1, . . . , ak+1⟩ ⊆ r⟨ai, ak⟩ ⊆ ak+1A. Therefore, there exist t ∈ S and
1 ≤ i ≤ n such that t⟨a1, . . . , an⟩ ⊆ aiA. Hence (ts)I ⊆ t⟨a1, . . . , an⟩ ⊆ aiA
with ts ∈ S. □

Theorem 2.11. Let A be an integral domain with quotient field K and S
a multiplicative subset of A. If A is an S-Noetherian ring, then A is an S-
valuation domain if and only if it is S-principal and for each x ∈ K, there
exists s ∈ S such that either sx ∈ A or sx−1 ∈ A.

Proof. “=⇒” By the previous lemma, A is an S-principal domain. By Propo-
sition 2.2, for each x ∈ K there exists s ∈ S such that either sx ∈ A or
sx−1 ∈ A.

“⇐=” Let I and J be two nonzero ideals of A. Since A is an S-principal
domain, there exist s, t ∈ S, a ∈ I and b ∈ J such that sI ⊆ aA and tJ ⊆ bA.
By hypothesis, there exists r ∈ S such that either r a

b ∈ A or r b
a ∈ A (we

have a ̸= 0 and b ̸= 0 because I and J are two nonzero ideals and A is
integral). Therefore, ra ∈ bA or rb ∈ aA. Thus (rs)I ⊆ r(aA) ⊆ bA ⊆ J or
(rt)J ⊆ r(bA) ⊆ aA ⊆ I. Consequently, A is an S-valuation domain. □

Example 2.12. Let A = Z + XQ[[X]], S = {Xn, n ≥ 0} and I an ideal of
A. There exists f ∈ I such that IQ[[X]] = fQ[[X]]. Then XI = XIA ⊆
XIQ[[X]] = XfQ[[X]] = fXQ[[X]] ⊆ fA ⊆ I. Thus A is an S-principal ideal

domain. Let 0 ̸= f ∈ A. Set f =
∑+∞

i=kaiX
i with k ≥ 0 and ak ̸= 0. Then

f = Xkg, where g =
∑+∞

i=kaiX
i−k. As g(0) = ak ̸= 0. Thus 1

g ∈ Q[[X]].

Therefore, X 1
g ∈ A. It shows that Xk+1 1

f = X 1
g ∈ A. Now, let f, g ∈ A \ {0}.

By the previous part, there exists k ≥ 1 such that Xk 1
g ∈ A. Thus Xk f

g ∈ A

with Xk ∈ S. By the previous theorem, A is an S-valuation domain.

Proposition 2.13. Let A be an integral domain and S a multiplicative subset
of A. If A is an S-valuation domain, then AS is a valuation domain.

Proof. Set K = qf(A). As A is an S-valuation domain, by Proposition 2.2,
for every x ∈ K, there exists s ∈ S such that sx ∈ A or sx−1 ∈ A. Since
S ⊆ U(AS), for each x ∈ K, we have x ∈ AS or x−1 ∈ AS . It follows that AS

is a valuation domain. □

Example 2.14. The converse of Proposition 2.13 is false. Indeed, let A =
Z+XQ[[X]] and S = Z\{0}. By (4) of Example 2.3, for every f ∈ qf(A), there
exists s ∈ S such that sf ∈ A or s 1

f ∈ A. Thus for each f ∈ qf(AS) = qf(A),

either f ∈ AS or 1
f ∈ AS . Therefore, AS is a valuation domain. By (4) of

Example 2.3, A is not an S-valuation domain.
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