
Commun. Korean Math. Soc. 39 (2024), No. 1, pp. 79–91

https://doi.org/10.4134/CKMS.c230128

pISSN: 1225-1763 / eISSN: 2234-3024

RESULTS OF 3-DERIVATIONS AND COMMUTATIVITY

FOR PRIME RINGS WITH INVOLUTION INVOLVING

SYMMETRIC AND SKEW SYMMETRIC COMPONENTS

Hanane Aharssi, Kamal Charrabi, and Abdellah Mamouni

Abstract. This article examines the connection between 3-derivations
and the commutativity of a prime ring R with an involution ∗ that ful-

fills particular algebraic identities for symmetric and skew symmetric el-

ements. In practice, certain well-known problems, such as the Herstein
problem, have been studied in the setting of three derivations in involuted

rings.

1. Introduction

R will be used to refer to an associative ring with the center Z(R) throughout
this piece. The commutator xy− yx is denoted as [x, y] for any x, y ∈ R, while
the anti-commutator xy + yx is written as x ◦ y. If aRb = 0 indicates either
a = 0 or b = 0, then R is prime. As is common knowledge, a derivation is an
additive mapping d: R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R.
On the other hand, if d is a derivation, a generalized derivation of R with
an attached derivation d is referred to as an additive mapping F : R → R
such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. Numerous articles have
been written about the connection between certain unique types of maps and
the commutativity of a ring R in the literature (see [2–4]). Posner’s theorem,
which states that a prime ring becomes commutative if it admits a nonzero
centralizing derivation, is one of the most significant findings in this area.

A map’s commutativity is preserved if all instances of [ψ(x), ψ(y)] = 0 for
all instances of [x, y] = 0 for all x, y ∈ R. Matrix theory, operator theory, and
ring theory have all explored the idea of commutativity preserving mapping
(for references, see [5, 13]). If [ψ(x), ψ(y)] = [x, y] for all x, y ∈ S, then a
map ψ : R → R is said to be strong commutativity preserving (SCP) on a
subgroup of R. In this regard, Bell and Daif [3] looked into the commutativity
of rings that allow derivations that are SCP on nonzero right ideals. In fact,
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they demonstrated that I ⊆ Z(R) in the case where a semiprime ring R allows
a derivation d satisfying [d(x), d(y)] = [x, y] for all x, y in a right ideal I of
R. Additionally, Ali and Huang demonstrated that if R is a 2-torsion free
semiprime ring and d is a derivation of R satisfying [d(x), d(y)] + [x, y] = 0 for
all x, y in nonzero ideal I of R, then R contains a nonzero central ideal. They
specifically demonstrated that R is commutative if the ideal is I = R.

These findings have been expanded upon and investigated in the context
of bands with involution as time goes on. An involution is an additive map
∗ : R → R satisfying (x∗)∗ = x for all x ∈ R. In a ring with the involution
(R, ∗), a member x is said to be hermitian if x∗ = x and skew-hermitian if
x∗ = −x. H(R) will stand for the collections of all hermitian elements in R,
while S(R) will stand for the set of skew-hermitian elements. If Z(R) ⊆ H(R),
the involution is said to be of the first kind, otherwise, it is said to be of the
second kind.

Many writers have recently examined the commutativity of prime rings ac-
cepting pair of derivations meeting specific algebraic identities (see, for exam-
ple, [1,7,9,10]). In [9] Lanski has demonstrated that if R is a noncommutative
prime ring and d, g are two derivations of R into itself with g is a nonzero
derivation, then [d(x), g(x)] = 0 holds for every x ∈ R. Then d = λg, where
λ is a component of C(R). Abbassi et al. in [10], recently showed that if R
is a prime ring with involution ∗ of the second kind such that char(R) ̸= 2
and d1, d2 are nonzero derivations of R such that [d1(x); d2(x

∗)] = 0 for all
x ∈ R. Then R is commutative. Afterwards, El Mir et al. claimed in [7] that
as long as R is a ring, P is a prime ideal, and R has d1, d2 derivations, then
d1(x)d2(y) − [x, y] ∈ P for every x, y ∈ R reveals that R/P is a commutative
integral domain.

In order to progress this field of study, we look into the commutativity
conditions for rings with involution enabling three derivations that meet specific
algebraic identities as well as a few additional identities.

2. Preliminary results

Lemma 2.1 ([14]). Let R be a semiprime ring. Suppose that the relation
axb+bxc = 0 holds for all x ∈ R and some a, b, c ∈ R. In this case (a+c)xb = 0
is satisfied for all x ∈ R.

We begin by establishing the following facts, which will be used frequently.

Fact 1. Let (R, ∗) be a 2-torsion free prime ring with involution of the second
kind. If H(R) ⊂ Z(R) or S(R) ⊂ Z(R), then R is commutative.

Fact 2. Let (R, ∗) be a 2-torsion free prime ring with involution of the second
kind. If d is a nonzero derivation of R such that d(h) ∈ Z(R) for all h ∈ H(R)
or d(k) ∈ Z(R) for all k ∈ S(R), then R is commutative.
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3. Main theorems

Proposition 3.1. Let R be a prime ring. If d1, d2 and d3 are derivations of R
satisfying [d1(x), d2(y)]+[d3(x), y] = 0 for all x, y ∈ R, then R is commutative.

Remark 3.2. In the above proposition, we must suppose that (d1 ̸= 0 and
d2 ̸= 0) or d3 ̸= 0.

Proof. Suppose that R is noncommutative, by the given assumption, we have

(3.1) [d1(x), d2(y)] + [d3(x), y] = 0 for all x, y ∈ R.

Substituting yr for y in (3.1), we obtain

(3.2)
d2(y)[d1(x), r] + [d1(x), y]d2(r) + ([d1(x), d2(y)] + [d3(x), y])r

+ y([d1(x), d2(r)] + [d3(x), r]) = 0 for all r, x, y ∈ R.

By invoking equation (3.1), the last equation yields

(3.3) d2(y)[d1(x), r] + [d1(x), y]d2(r) = 0 for all r, x, y ∈ R.

We replace r by rt in (3.3), we get

(3.4)
d2(y)r[d1(x), y] + [d1(x), y]rd2(t) + (d2(y)[d1(x), r]

+ [d1(x), y]d2(r))t = 0 for all r, t, x, y ∈ R.

By equation (3.3) together with the last equation, it follows that

(3.5) d2(y)r[d1(x), t] + [d1(x), y]rd2(t) = 0 for all r, t, x, y ∈ R.

Taking y = t, we obtain

(3.6) d2(y)r[d1(x), y] + [d1(x), y]rd2(y) = 0 for all r, x, y ∈ R.

Applying Lemma 2.1, we obtain from the above relation

(3.7) d2(y)r[d1(x), y] = 0 for all r, x, y ∈ R.

Since R is prime, the last equation implies that d2 = 0 or [d1(x), y] = 0 for
all x, y ∈ R. Our supposition forces d2(R) = {0}, then (3.1) is reduced to
[d3(x), y] = 0 for all x, y ∈ R. In accordance with Posner’s Theorem ([12,
Lemma 3]), R is commutative, this is in conflict with our presumption. There-
fore, we have d3 = 0, which is a contradiction. Thus R is commutative. □

Theorem 3.3. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(h), d2(h

′)] +
[d3(h), h

′] = 0 for all h, h′ ∈ H(R), then R is commutative.

Remark 3.4. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof. Take into account R is noncommutative, with the stated assumption,
we have

(3.8) [d1(h), d2(h
′)] + [d3(h), h

′] = 0 for all h, h′ ∈ H(R).
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Replacing h′ by hh0, h0 ∈ H(R) ∩ Z(R) in (3.8), we find [d1(h), h]d2(h0) = 0
for all h ∈ H(R) and h0 ∈ H(R) ∩ Z(R). The result of R being prime is that
[d1(h), h] = 0 for all h ∈ H(R) or d2(h0) = 0 for all h0 ∈ H(R) ∩ Z(R). The
first case R is commutative in light of [6, Theorem 2.5], which goes against our
selection of R. Thus we must have d2(h0) = 0 for all h0 ∈ H(R)∩Z(R), hence
d2(Z(R)) = {0}. Substituting hh0 for h in (3.8), where h0 ∈ Z(R)∩H(R), we
obtain

(3.9) [h, d2(h
′)]d1(h0) + [h, h′]d3(h0) = 0 for all h, h′ ∈ H(R).

Taking h = h′ in (3.9), we arrive at [d2(h), h]d1(h0) = 0. Primeness of R leads
to [d2(h), h] = 0 for all h ∈ H(R) or d1(h0) = 0 for all h0 ∈ H(R)∩Z(R). When
viewed in the context of [6, Theorem 2.5], the first instance R is commutative,
which is at odds with the R we chose. Thus we must have d1(h0) = 0 for all h0 ∈
H(R) ∩ Z(R), then d1(Z(R)) = {0}. So equation (3.9) gives [h, h′]d3(h0) = 0,
again using primeness of R and reasoning as above, we find d3(Z(R)) = {0}.
Replacing h by kk0 in (3.8), where k ∈ S(R) and k0 ∈ Z(R) ∩ S(R), we get
([d1(k), d2(h

′)] + [d3(k), h
′])k0 = 0. Since R is prime and Z(R) ∩ S(R) ̸= {0},

we find

(3.10) [d1(k), d2(h
′)] + [d3(k), h

′] = 0 for all h′ ∈ H(R) and k′ ∈ S(R).

Given that R is 2-torsion free, every x ∈ R can be expressed as 2x = h + k
with h ∈ H(R) and k ∈ S(R). We have

2([d1(x), d2(h
′)] + [d3(x), h

′])

= [d1(2x), d2(h
′)] + [d3(2x), h

′]

= [d1(h+ k), d2(h
′)] + [d3(h+ k), h′]

= [d1(h), d2(h
′)] + [d3(h), h

′] + [d1(k), d2(h
′)] + [d3(k), h

′].

(3.11)

Using (3.8) and (3.10) gives that [d1(x), d2(h
′)] + [d3(x), h

′] = 0 for all x ∈ R
and h′ ∈ H(R). Taking kk0 for h′ in the last expression, where k ∈ S(R) and
k0 ∈ Z(R) ∩ S(R), we get [d1(x), d2(k)] + [d3(x), k] = 0. Combining the last
two expressions, we finally get [d1(x), d2(y)] + [d3(x), y] = 0 for all x, y ∈ R,
then R is commutative in light of Proposition 3.1, a contradiction. Thus R is
commutative. □

Theorem 3.5. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(k), d2(k

′)] +
[d3(k), k

′] = 0 for all k, k′ ∈ S(R), then R is commutative.

Remark 3.6. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof. According to the presumption that R is noncommutative, we have

(3.12) [d1(k), d2(k
′)] + [d3(k), k

′] = 0 for all k, k′ ∈ S(R).
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Replacing k′ by kh0, h0 ∈ H(R) ∩ Z(R) in (3.12), we find [d1(k), k]d2(h0) = 0
for all k ∈ S(R) and k0 ∈ H(R)∩Z(R). Primeness of R leads to [d1(k), k] = 0
for all k ∈ S(R) or d2(h0) = 0 for all h0 ∈ H(R) ∩ Z(R). The first case R is
commutative in light of [6, Theorem 2.6]. This runs counter to what we assume.
Due to this, we must only have d2(h0) = 0 for all h0 ∈ H(R) ∩ Z(R), hence
d2(Z(R)) = {0}. Substituting kh0 for k in (3.12), where h0 ∈ Z(R) ∩ H(R),
we obtain

(3.13) [k, d2(k
′)]d1(h0) + [k, k′]d3(h0) = 0 for all k, k′ ∈ S(R).

Taking k = k′ in (3.13), we arrive at [d2(k), k]d1(h0) = 0. Primacy of R results
in [d2(k), k] = 0 for all k ∈ S(R) or d1(h0) = 0 for all h0 ∈ H(R)∩Z(R). With
reference to [6, Theorem 2.6], the first case R is commutative, a contradiction.
Thus we must have d1(h0) = 0 for all h0 ∈ H(R)∩Z(R), then d1(Z(R)) = {0}.
So equation (3.13) gives [k, k′]d3(h0) = 0, using the primeness of R and the
same logic as before, we discover d3(Z(R)) = {0}. Replacing k by hk0 in (3.12),
where h ∈ H(R) and k0 ∈ Z(R)∩S(R), we get ([d1(h), d2(k′)]+[d3(h), k

′])k0 =
0. Since R is prime and Z(R) ∩ S(R) ̸= {0}, we find

(3.14) [d1(h), d2(k
′)] + [d3(h), k

′] = 0 for all h ∈ H(R) and k′ ∈ S(R).

With regard to the fact that R is 2-torsion free, each x ∈ R can be stated as
2x = h+k with h ∈ H(R) and k′ ∈ S(R). Following the same procedures as in
Theorem 3.3 and using (3.12) and (3.14), we find [d1(x), d2(k

′)]+[d3(x), k
′] = 0

for all x ∈ R and k′ ∈ S(R). Taking hk0 for k′ in the last expression, where h ∈
H(R) and k0 ∈ Z(R)∩ S(R), we get [d1(x), d2(h)] + [d3(x), h] = 0. Combining
the last two expressions, we finally get [d1(x), d2(y)] + [d3(x), y] = 0 for all
x, y ∈ R. Then applying Proposition 3.1, we achieve the desired outcome. □

Following the same arguments and under the same conditions as in Theorem
3.3 and Theorem 3.5, we can readily obtain the following result.

Theorem 3.7. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(h), d2(k)] +
[d3(h), k] = 0 for all h ∈ H(R) and k ∈ S(R), then R is commutative.

The following conclusions are drawn as uses of the aforementioned findings.

Corollary 3.8. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(x), d2(y)] +
[d3(x), y] = 0 for all x, y ∈ R, then R is commutative.

Remark 3.9. In Corollary 3.8, we must have (d1 ̸= 0 and d2 ̸= 0) or d3 ̸= 0.

Corollary 3.10. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind and d is a nonzero derivation of R. If [d(x), d(y)] + [d(x), y] = 0
for all x, y ∈ R, then R is commutative.

Additionally, for rings with involution, if we take d1 = d2 and d3 = 0, we
obtain a variation of Herstein’s finding.
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Corollary 3.11 ([8]). Let R be a 2-torsion free prime ring with involution ∗
of the second kind and d is a nonzero derivation of R. If [d(x), d(y)] = 0 for
all x, y ∈ R, then R is commutative.

Theorem 3.12. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying d1(h) ◦ d2(h) +
d3(h) ◦ h ∈ Z(R) for all h ∈ H(R), then R is commutative.

Remark 3.13. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof of Theorem 3.12. Consider that

(3.15) d1(h) ◦ d2(h) + d3(h) ◦ h ∈ Z(R) for all h ∈ H(R).

Following linearization, we arrive at

(3.16)
d1(h) ◦ d2(h′) + d1(h

′) ◦ d2(h) + d3(h) ◦ h′

+ d3(h
′) ◦ h ∈ Z(R) for all h, h′ ∈ H(R).

Replacing h′ by h0, where h0 ∈ Z(R)∩H(R)\{0}, and using the last equation,
we obtain

(3.17)
d1(h)d2(h0) + d2(h)d1(h0) + d3(h)h0

+ d3(h0)h ∈ Z(R) for all h ∈ H(R).

Substituting h20 for h′ in (3.16), where h0 ∈ Z(R) ∩H(R)\{0}, and using the
fact that R is 2-torsion free, we have

(3.18)
2h0d1(h)d2(h0) + 2h0d2(h)d1(h0) + d3(h)h

2
0

+ 2h0d3(h0)h ∈ Z(R) for all h ∈ H(R).

Hence

(3.19)

h0(d1(h)d2(h0) + d2(h)d1(h0) + d3(h)h0 + d3(h0)h)

+ h0(d1(h)d2(h0) + d2(h)d1(h0) + d3(h0)h) ∈ Z(R)

for all h ∈ H(R).

Invoking (3.17), (3.19) yields

(3.20) h0 (d1(h)d2(h0) + d2(h)d1(h0) + d3(h0)h) ∈ Z(R) for all h ∈ H(R).

Since h0 ̸= 0 and R is prime, we arrive at

(3.21) [d1(h)d2(h0) + d2(h)d1(h0) + d3(h0)h, y] = 0 for all y ∈ R.

From (3.17), we get [d1(h)d2(h0) + d2(h)d1(h0) + d3(h0)h, y] = −[d3(h)h0, y]
for all y ∈ R. Therefore the last expression becomes [d3(h), y]h0 = 0 for all
y ∈ R. R is prime and h0 ̸= 0 implies d3(h) ∈ Z(R) for all h ∈ H(R), and by
Fact 2 R is commutative. □

Theorem 3.14. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying d1(k) ◦ d2(k) +
d3(k) ◦ k ∈ Z(R) for all k ∈ S(R), then R is commutative.
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Remark 3.15. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof. Assume that R is not commutative. By hypothesis we have

(3.22) d1(k) ◦ d2(k) + d3(k) ◦ k ∈ Z(R) for all k ∈ S(R).

Linearizing the above equation, we get

(3.23)
d1(k) ◦ d2(k′) + d1(k

′) ◦ d2(k) + d3(k) ◦ k′

+ d3(k
′) ◦ k ∈ Z(R) for all k, k′ ∈ S(R).

Replacing k′ by k′h0 in (3.23), where h0 ∈ Z(R) ∩H(R)\{0} and making use
equation (3.23), we arrive at

(3.24)
(d1(k) ◦ k′)d2(h0) + (k′ ◦ d2(k))d1(h0)

+ (k ◦ k′)d3(h0) ∈ Z(R) for all k, k′ ∈ S(R).

Taking k′ ∈ Z(R)∩S(R)\{0} and using the fact that R is 2-torsion free prime,
we obtain

(3.25) d1(k)d2(h0) + d2(k)d1(h0) + kd3(h0) ∈ Z(R) for all k ∈ S(R).

Replacing k by kh0, where h0 ∈ Z(R) ∩H(R)\{0}, we find

(3.26)
(d1(k)d2(h0) + d2(k)d1(h0) + kd3(h0))h0

+ 2kd1(h0)d2(h0) ∈ Z(R) for all k ∈ S(R).

Making use equation (3.25) together with 2-torsion freeness of R, we get

kd1(h0)d2(h0) ∈ Z(R)

for all k ∈ S(R). Primeness of R leads to k ∈ Z(R) for all k ∈ S(R) or
d1(h0)d2(h0) = 0 for h0 ∈ Z(R) ∩H(R). Contrary to what we had assumed,
in the first instance, R is commutative by Fact 1. So in view of primeness of
R, we can see d1(h0) = 0 or d2(h0) = 0 for h0 ∈ Z(R) ∩H(R). If d1(h0) = 0
for h0 ∈ Z(R) ∩H(R), then d1(Z(R)) = {0}. Taking k ∈ Z(R) ∩ S(R)\{0} in
(3.24), we find that kk′d3(h0) ∈ Z(R) for all k′ ∈ S(R). Again using primeness
of R and our supposition, we must have d3(h0) = 0 for h0 ∈ Z(R)∩H(R), thus
d3(Z(R)) = {0}. Therefore, equation (3.25) becomes d1(k)d2(h0) ∈ Z(R) for
all k ∈ S(R) and h0 ∈ Z(R)∩H(R). SinceR is prime, we arrive at d1(k) ∈ Z(R)
for all k ∈ S(R) or d2(h0) = 0 for h0 ∈ Z(R) ∩H(R). The first case together
with Fact 2 forces R to be commutative which contradicts our supposition.
Thus d2(h0) = 0 for h0 ∈ Z(R) ∩ H(R), hence d2(Z(R)) = {0}. Taking
k′ ∈ Z(R)\{0} in (3.23), we find d3(k)k

′ ∈ Z(R) for all k ∈ S(R). Primeness
of R and the fact that k′ ̸= 0 leads to d3(k) ∈ Z(R) for all k ∈ S(R), therefore,
in view of Fact 2, which runs counter to our assumption, R is commutative.
Hence R is commutative. □

Using the same conditions, the following result can be reached by using the
same justifications as in Theorem 3.14.
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Theorem 3.16. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying d1(h) ◦ d2(k) +
d3(h) ◦ k ∈ Z(R) for all h ∈ H(R) and k ∈ S(R), then R is commutative.

As a result of applying the aforementioned results, we derive the following
corollaries.

Corollary 3.17. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying d1(x) ◦ d2(x∗) +
d3(x) ◦ x∗ ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 3.18. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying d1(x) ◦ d2(y) +
d3(x) ◦ y ∈ Z(R) for all x, y ∈ R, then R is commutative.

Remark 3.19. In Corollaries 3.17 and 3.18, we must have (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Corollary 3.20. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d is a nonzero derivation of R satisfying d(x)◦d(x∗)+d(x)◦x∗ ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 3.21. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d is a nonzero derivation of R satisfying d(x)◦d(y)+d(x)◦y ∈
Z(R) for all x, y ∈ R, then R is commutative.

The subsequent corollaries become clear if we select d3 = 0. The next
corollary is a generalization of [11, Theorem 3.5].

Corollary 3.22. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1 and d2 are a nonzero derivations of R satisfying d1(x) ◦
d2(x

∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 3.23. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1 and d2 are a nonzero derivations of R satisfying d1(x) ◦
d2(y) ∈ Z(R) for all x, y ∈ R, then R is commutative.

Corollary 3.24 ([11], Theorem 3.5). Let R be a 2-torsion free prime ring with
involution ∗ of the second kind. If d is a nonzero derivation of R such that
d(x) ◦ d(x∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 3.25 ([11], Corollary 3.6). Let R be a 2-torsion free prime ring
with involution ∗ of the second kind. If d is a nonzero derivation of R such
that d(x) ◦ d(y) ∈ Z(R) for all x, y ∈ R, then R is commutative.

We can come to the following result if either d1 = 0 or d2 = 0.

Corollary 3.26 ([11], Theorem 3.7). Let R be a 2-torsion free prime ring with
involution ∗ of the second kind. If d is a nonzero derivation of R such that
d(x) ◦ x∗ ∈ Z(R) for all x ∈ R, then R is commutative.



RESULTS OF DERIVATIONS AND COMMUTATIVITY FOR PRIME RINGS 87

Theorem 3.27. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(h), d2(h)] +
d3(h) ◦ h ∈ Z(R) for all h ∈ H(R), then R is commutative.

Remark 3.28. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof. Suppose that

(3.27) [d1(h), d2(h)] + d3(h) ◦ h ∈ Z(R) for all h ∈ H(R).

Linearizing, we obtain

(3.28)
[d1(h), d2(h

′)] + [d1(h
′), d2(h)] + d3(h) ◦ h′

+ d3(h
′) ◦ h ∈ Z(R) for all h, h′ ∈ H(R).

Replacing h′ by h0, where h0 ∈ Z(R)∩H(R)\{0}, and using the last equation,
we obtain

(3.29) d3(h)h0 + d3(h0)h ∈ Z(R) for all h ∈ H(R).

Substituting h20 for h′ in (3.28), where h0 ∈ Z(R) ∩H(R)\{0}, and using the
fact that R is 2-torsion free, we have

(3.30) d3(h)h
2
0 + 2h0d3(h0)h ∈ Z(R) for all h ∈ H(R).

Hence

(3.31) h0(d3(h)h0 + d3(h0)h) + h0d3(h0)h ∈ Z(R) for all h ∈ H(R).

Invoking (3.29), (3.31) yields

(3.32) h0d3(h0)h ∈ Z(R) for all h ∈ H(R).

Since h0 ̸= 0 and R is prime, we arrive at

(3.33) [d3(h0)h, y] = 0 for all y ∈ R.

From (3.29), we get [d3(h0)h, y] = −[d3(h)h0, y] for all y ∈ R. Therefore, by
using (3.33), the last expression becomes [d3(h), y]h0 = 0 for all y ∈ R. R is
prime and h0 ̸= 0 implies d3(h) ∈ Z(R) for all h ∈ H(R), and by Fact 2 R is
commutative. □

Theorem 3.29. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(k), d2(k)] +
d3(k) ◦ k ∈ Z(R) for all k ∈ S(R), then R is commutative.

Remark 3.30. In the above theorem, we must suppose that (d1 ̸= 0 and d2 ̸= 0)
or d3 ̸= 0.

Proof. By the given assumption, we have

(3.34) [d1(k), d2(k)] + d3(k) ◦ k ∈ Z(R) for all k ∈ S(R).
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Linearizing, we obtain

(3.35)
[d1(k), d2(k

′)] + [d1(k
′), d2(k)] + d3(k) ◦ k′

+ d3(k
′) ◦ k ∈ Z(R) for all k, k′ ∈ S(R).

Replacing k′ by k0, where k0 ∈ Z(R) ∩ S(R)\{0}, and using the last equation,
we obtain

(3.36) d3(k)k0 + kd3(k0) ∈ Z(R) for all k ∈ S(R).

Replacing k by kh0, where h0 ∈ Z(R) ∩H(R)\{0}, the last equation yields

(3.37) d3(k)k0h0 + kd3(h0)k0 + kd3(k0)h0 ∈ Z(R) for all k ∈ S(R).

Invoking (3.36) and (3.37), we get

(3.38) kd3(h0)k0 ∈ Z(R) for all k ∈ S(R).

Hence

(3.39) [k, r]Rd3(h0)k0 = 0 for all k ∈ S(R) and r ∈ R.

Primeness of R and the fact that k0 ̸= 0 leads to k ∈ Z(R) for all k ∈ S(R) or
d3(h0) = 0, where h0 ∈ Z(R)∩H(R)\{0}. In light of Fact 1, the first case forces
R to be commutative. Otherwise if d3(h0) = 0 for all h0 ∈ Z(R) ∩H(R)\{0},
we obtain d3(Z(R)) = {0}. Therefore equation (3.36) becomes d3(k)k0 ∈ Z(R)
for all k ∈ Z(R). Since R is prime and k0 ̸= 0, we finally have d3(k) ∈ Z(R).
Thus R is commutative in view of Fact 2. □

With the same justifications and conditions as in Theorem 3.29, we can
quickly arrive at the conclusion shown below.

Theorem 3.31. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(h), d2(k)] +
d3(h) ◦ k ∈ Z(R) for all h ∈ H(R) and k ∈ S(R), then R is commutative.

As a result of the preceding discoveries, the following corollaries are acquired.

Corollary 3.32. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R satisfying [d1(x), d2(x

∗)] +
d3(x) ◦ x∗ ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 3.33. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1, d2 and d3 are derivations of R, then R is commutative if
and only if [d1(x), d2(y)] + d3(x) ◦ y ∈ Z(R) for all x, y ∈ R.

Remark 3.34. In Corollaries 3.32 and 3.33, we must have d1 ̸= 0 and d2 ̸= 0 or
d3 ̸= 0.

Corollary 3.35. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d is a nonzero derivation of R satisfying [d(x), d(x∗)] + d(x) ◦
x∗ ∈ Z(R) for all x ∈ R, then R is commutative.
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Corollary 3.36. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d is a nonzero derivation of R satisfying [d(x), d(y)]+d(x)◦y ∈
Z(R) for all x, y ∈ R, then R is commutative.

The following corollaries are found if we select d3 = 0. The first corollary is
an improved version of [11, Theorem 3.1].

Corollary 3.37. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1 and d2 are a nonzero derivations of R satisfying [d1(x), d2(x∗)]
∈ Z(R) for all x ∈ R, then R is commutative.

The next result is an improved version of [11, Corollary 3.3].

Corollary 3.38. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. If d1 and d2 are a nonzero derivations of R satisfying [d1(x), d2(y)]
∈ Z(R) for all x, y ∈ R, then R is commutative.

Corollary 3.39 ([11], Theorem 3.1). Let R be a 2-torsion free prime ring
with involution ∗ of the second kind and d is a nonzero derivation of R. If
[d(x), d(x∗)] ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 3.40 ([11], Corollary 3.3). Let R be a 2-torsion free prime ring
with involution ∗ of the second kind and d is a nonzero derivation of R. If
[d(x), d(y)] ∈ Z(R) for all x, y ∈ R, then R is commutative.

4. Examples

In this part, we go over a few illustrations that demonstrate how, in some
circumstances, our findings do not hold. We start by demonstrating through
the following instances that the condition “∗” is of the second kind is required.

Example 4.1. Let us consider R =
{(

a b
c d

)
| a, b, c, d ∈ Z

}
, and

(
a b
c d

)∗
=(

d −b
−c a

)
. We have Z(R) = {( a 0

0 a ) | a ∈ Z}, therefore, it is simple to verify
that R is a prime ring and ∗ is an involution of the first kind. Moreover, we
set d1

(
a b
c d

)
=

(
0 −b
c 0

)
, d2 = d1 and d3 = 0. Thus d1, d2 and d3 satisfying

the conditions of Theorem 3.3, Theorem 3.12, and Theorem 3.27, but R is
not commutative. Consequently, the hypothesis of second kind involution is
essential.

In the following illustration, we show that the “primeness hypothesis” of R
in our work is not a purely theoretical construct.

Example 4.2. Let R with involution ∗ and d1, d2, and d3 be as in Example
4.1, and C be the field of complex numbers. If we set R1 = R × C, then
R1 is a semi-prime ring provided with the involution of the second kind τ :
R1 → R1, where τ(r, s) = (r∗, s̄) for all (r, s) ∈ R×C. Consider the derivation
D1 : R1 → R1 defined as D1(x, s) = (d1(x), 0), the derivation D2 : R1 → R1

defined as D2(x, s) = (d2(x), 0) and the derivation D3 : R1 → R1 defined
as D3(x, s) = (0, 0). Furthermore D1, D2 and D3 satisfies the conditions of
Theorem 3.3, but R1 is not commutative.
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Moulay Ismäıl University
Meknes, Morocco

Email address: a.mamouni.fste@gmail.com


