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ON A UNIQUENESS QUESTION OF MEROMORPHIC

FUNCTIONS AND PARTIAL SHARED VALUES

Imrul Kaish and Rana Mondal

Abstract. In this paper, we prove a uniqueness theorem of non-constant

meromorphic functions of hyper-order less than 1 sharing two values CM
and two partial shared values IM with their shifts. Our result in this

paper improves and extends the corresponding results from Chen-Lin
[2], Charak-Korhonen-Kumar [1], Heittokangas-Korhonen-Laine-Rieppo-

Zhang [9] and Li-Yi [12]. Some examples are provided to show that some

assumptions of the main result of the paper are necessary.

1. Introduction, definitions and results

Throughout this paper, by meromorphic functions we will always mean
meromorphic functions in the complex plane. Throughout the paper, it is ac-
ceded that the reader is well known with the fundamental standard notations
and terminology of Nevanlinna’s value distribution theory of meromorphic func-
tions [7, 10, 13]. It will be convenient to let E denote any set of positive real
numbers of finite logarithmic measure, not necessarily the same at each occur-
rence. For a non-constant meromorphic function h, we denote by T (r, h) the
Nevanlinna characteristic function of h and by S(r, h) any quantity satisfying
S(r, h) = o(T (r, h)), as r runs to infinity outside of a set of finite logarith-
mic measure. In particular, we also denote by S1(r, h) any quantity satisfying
S1(r, h) = o(T (r, h)), as r runs to infinity on a set of logarithmic density 1.

In addition, for a meromorphic function f , the order ρ(f) and the hyper-
order ρ2(f) are introduced as follows:

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

In this note, we denote by S(f) the collection of all meromorphic functions a
satisfied T (r, a) = S(r, f). Furthermore, we include all constant functions in
S(f) and put S∞(f) = S(f)∪{∞}. We say two meromorphic functions f and
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g share a ∈ S∞(f) IM when f and g have same a-points. If f and g have same
a-points with same multiplicities, then we also say that f and g share a CM.
As usual, the summary IM means “ignoring multiplicity”, while CM means
“counting multiplicity”.

On the other hand, we denote by E(a, f) the set of zeros of f − a and by
E(a, f) the reduced set of zeros of f−a, where each zeros of f−a appears only
once in the set. We say that two meromorphic functions f and g share a CM
when the two sets E(a, f) and E(a, g) coincide. Moreover, if the sets E(a, f)
and E(a, g) coincide, then we say that f and g share a IM. Also, we denote by
Ek)(a, f) the set of zeros of f − a with multiplicity less or equal to k and by

Ek)(a, f) the reduced set of zeros of f − a with multiplicity less or equal to k,
where a zero of f − a is counted only once in the set.

In recent ten years, the difference variant of the Nevanlinna theory has been
established in [3, 4] and in particular, in [5], by Halburd-Korhonen and by
Chiang-Feng, independently. Later on, the difference variant of the Nevanlinna
theory was improved by Halburd-Korhonen-Tohge [6]. Using these theories,
some mathematicians began to consider questions of uniqueness of meromor-
phic functions sharing values with their shifts and produced many fine works,
for example, see [8, 9, 12]. In 2011, Heittokangas-Korhonen-Laine-Rieppo [8]
presented an uniqueness theorem for periodicity of a meromorphic function of
finite order as follows:

Theorem 1.1 ([8], Thm 2.1(a)). Let f be a non-constant meromorphic func-
tion of finite order, c ∈ C\{0} and let a1, a2, a3 ∈ S∞(f) be three distinct
periodic functions with period c. If f(z), f(z + c) share a1, a2, a3 CM, then
f(z) = f(z + c) for all z ∈ C.

Later on, Heittokangas-Korhonen-Laine-Rieppo-Zhang [9] proved the follow-
ing result that improved Theorem 1.1 by replacing the assumption “3 CM” in
Theorem 1.1 with the assumption “2 CM+ 1 IM”:

Theorem 1.2 ([9], Thm 2). Let f be a non-constant meromorphic function
of finite order, c ∈ C\{0} and let a1, a2, a3 ∈ S∞(f) be three distinct periodic
functions with period c. If f(z), f(z + c) share a1, a2 CM and a3 IM, then
f(z) = f(z + c) for all z ∈ C.

In 2017, Chen-Lin [2] proved the following result that improved Theorem
1.2 by replacing the assumption ρ(f) <∞ with the assumption ρ2(f) <∞.

Theorem 1.3 ([2], Thm 1.3). Let f be a non-constant meromorphic function
of hyper-order ρ2(f) < 1, c ∈ C\{0} and let a1, a2, a3 ∈ S∞(f) be three distinct
periodic functions with period c. If f(z), f(z + c) share a1, a2 CM and a3 IM,
then f(z) = f(z + c) for all z ∈ C.

On the other hand, Li-Yi [12] proved the following result of meromorphic
functions of hyper-order ρ2(f) < 1 sharing three distinct finite values IM and
∞ CM with their shifts:
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Theorem 1.4 ([12], Thm 1.3). Let f be a non-constant meromorphic function
of hyper-order ρ2(f) < 1 and c ∈ C\{0}. Suppose that f(z), f(z + c) share
0, 1, a IM and ∞ CM, where a is a finite value such that a ̸= 0, 1. Then
f(z) = f(z + c) for all z ∈ C.

In 2016, Charak-Korhonen-Kumar [1] considered the notions of the partial
shared value and the partial shared small function and proved the following
result:

Theorem 1.5 ([1], Thm 1.6). Let f be a non-constant meromorphic function
of hyper-order ρ2(f) < 1 and c ∈ C\{0}. Let a1, a2, a3, a4 ∈ S∞(f) be four
distinct periodic functions with period c. If δ(a, f) > 0 for some a ∈ S∞(f)
and

E(ai, f(z)) ⊆ E(ai, f(z + c)), i = 1, 2, 3, 4,

then f(z) = f(z + c) for all z ∈ C.

In this paper, we will prove the following result of meromorphic functions of
hyper-order ρ2(f) < 1 sharing two values CM and two partially shared values
IM:

Theorem 1.6. Let f be a non-constant meromorphic function of hyper-order
ρ2(f) < 1, c ∈ C\{0} and let a be a non-zero finite complex number. If f(z)
and f(z + c) share 0,∞ CM and satisfy

E(a, f(z)) ⊆ E(a, f(z + c)), E(−a, f(z)) ⊆ E(−a, f(z + c)),(1.1)

then f(z) = f(z + c) for all z ∈ C.

The following examples are available to confirm that our result is on of the
best possible.

Example 1.1. Let f(z) = 3e2z

e3z+3ez−1 and c = 2πi. It is easy to see that f(z)

and f(z+c) share 0,∞ CM and satisfy the condition (1.1), then f(z) = f(z+c)
for all z ∈ C.

Example 1.2. Let f(z) = 2ez

e2z+1 and c = 2πi. Then f(z) and f(z + c) share

0,∞ CM and satisfy the condition (1.1) and then f(z) = f(z+ c) for all z ∈ C.

Example 1.3. Let f(z) = sin z and c = 2π. Then f(z) and f(z + c) share
0,∞ CM and satisfy the condition (1.1) and then f(z) = f(z+ c) for all z ∈ C.

Remark 1.4. Naturally, one question arise in our mind that what happens if
the condition for a1 = a, a2 = −a “partially shared values E(aj , f(z)) ⊆
E(aj , f(z + c)) for j ∈ {1, 2}” is replaced by “weakly partially shared values

Ek)(aj , f(z)) ⊆ Ek)(aj , f(z+c)) for j ∈ {1, 2} of order k”, where k is a positive
integer. Moreover, the next example suggests that Theorem 1.6 does not hold
for each positive integer k.
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Example 1.5. Let f(z) = e3z+3ez

3e2z+1 and c = πi. Then f(z) and f(z + c) share

0,∞ CM and a1 = 1, a2 = −1, k = 1, 2 satisfy Ek)(aj , f(z)) = Ek)(aj , f(z +
c)) = ∅, j = 1, 2 but f(z) ̸≡ f(z + c) in z ∈ C.

Remark 1.6. The following example is to see that the condition “2 CM”and “2
partially IM”can not be weakened to the assumption “2 CM ”in Theorem 1.6.

Example 1.7. If f(z) = 2ez

(ez+1)2 and c = πi, then f(z + c) = −2ez

(ez−1)2 . Then

we can see that f(z) and f(z+ c) share 0,∞ CM but f(z) ̸≡ f(z+ c) in z ∈ C.

2. Preliminary lemmas

Firstly, we introduce the following results by Halburd-Korhonen-Tohge [6]:

Lemma 2.1 ([6], Lem 8.3). Let T : [0,+∞) → [0,+∞) be a non-decreasing
continuous function and let s ∈ (0,∞). If the hyper-order of T is strictly less
than one, i.e.,

lim sup
r→∞

log log T (r)

log r
= ρ2 < 1,

and ϵ ∈ (0, 1− ρ2), then

T (r + s) = T (r) + o

(
T (r)

rϵ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

Lemma 2.2 ([6], Thm 5.1). Let f be a meromorphic function of hyper-order
ρ2(f) =: ρ2 < 1 and let c ∈ C. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o

(
T (r, f)

r1−ρ2−ϵ

)
,

where ϵ ∈ (0, 1− ρ2) and r runs to infinity outside of a set of finite logarithmic
measure.

The lemma of a difference analogue of the second main theorem was first
proved in [5] and the next following was extended to the case of hyper-order
less than 1 in [6].

Lemma 2.3 ([6], Thm 2.1). Let f be a meromorphic function of hyper-order
ρ2(f) =: ρ2 < 1 and let c ∈ C be such that △cf(z) =: f(z + c)− f(z) ̸≡ 0. Let
p ≥ 2 and let a1, a2, . . . , ap be p distinct finite complex numbers. Then we have

m(r, f) +

p∑
q=1

m

(
r,

1

f − aq

)
≤ 2T (r, f)−Npair(r, f) + S(r, f),

where

Npair(r, f) =: 2N(r, f)−N(r,△cf) +N

(
r,

1

△cf

)
.

The following lemma is called the three small function theorem:
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Lemma 2.4 ([13], Thm 1.38). Let f be a meromorphic function in the complex
plane and a1, a2, a3 be three distinct small functions of f . Then

T (r, f) ≤
3∑

p=1

N

(
r,

1

f − ap

)
+ S(r, f).

We also need the following lemmas:

Lemma 2.5 ([13], Thm 1.13). Let f be a meromorphic function. If

g =
af + b

cf + d
,

where a, b, c, d are small functions with respect to f such that ad ̸≡ bc, then

T (r, g) = T (r, f) + S(r, f).

Lemma 2.6 ([11], Lem 5). Let f1 and f2 be two non-constant meromorphic
functions satisfying

N(r, fj) +N

(
r,

1

fj

)
= S(r), j = 1, 2.

If fu1 f
v
2 − 1 is not identically zero for all integers u and v (|u|+ |v| > 0), then

for any positive number ϵ, we have

N0(r, 1; f1, f2) ≤ T (r) + S(r),

where N0(r, 1; f1, f2) denotes the reduced counting function of f1 and f2 related
to the common 1-points and T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r)) as
r → ∞, except for a set of r of finite linear measure.

3. Proof of Theorem 1.6

First of all, we prove that f is a transcendental meromorphic function on
account of the assumptions of Theorem 1.6. On contrary, assume that f is a
non-constant rational function and we set

f(z) =
P (z)

Q(z)
, f(z + c) =

P (z + c)

Q(z + c)
, z ∈ C,

where P and Q are two relatively prime polynomials such that PQ ̸≡ 0. Now,
we assume that Q is not a constant. Since f(z) and f(z + c) share ∞ CM, it
is easy to see that if z0 ∈ {z : |z| < r} is a pole of f(z), then z0 also is a pole
of f(z + c). Thus, if Q has a zero z0, then we have Q(z0 + c) = 0. Keep going,
for all positive integers Q(z0 + nc) = 0 holds. Thus, Q is a non-zero constant.
However, f is a non-constant polynomial. Under the assumption that f(z) and
f(z + c) share 0 CM, it follows that

f(z + c)

f(z)
= A,
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where A is a non-zero constant. We obtain that f(z + c) = f(z), which is due
to the assumption (1.1) and which leads to the contradiction that f is not a
constant. Thus, f is transcendental.

We assume contrary to our desired result that f(z) = f(z + c) were true.
Since, the assumption that f(z), f(z + c) share 0 CM, it deduces that

f(z + c)

f(z)
= eν(z),(3.1)

where ν is an entire function with ρ(ν) < 1. According to Lemma 2.2, it follows
that m(r, eν) = S(r, f) and so that

T (r, eν) = S(r, f).(3.2)

Together this with Lemma 2.5, it shows that

T (r, f(z + c)) = T (r, f(z)) + S(r, f).

Thus, we have

S(r, f(z + c)) = S(r, f(z)),

and we denote, for benefit

S(r) = S(r, f(z + c)) = S(r, f(z)).

Then the assumption f(z) ̸≡ f(z + c) implies eν(z) ̸≡ 1. Then, from the
estimates it follows

N

(
r,

1

f(z)− a

)
≤ N

(
r,

1

eν − 1

)
= S(r),(3.3)

and also

N

(
r,

1

f(z) + a

)
≤ N

(
r,

1

eν − 1

)
= S(r).(3.4)

Let us define the non-constant meromorphic function λ by

λ(z) =
f(z + c)− a

f(z)− a
,(3.5)

we claim that

N(r, λ) +N

(
r,

1

λ

)
= S(r).(3.6)

In the following discussion, we introduce some notations as below.
We denote dega(f, z) by the multiplicity of a-point of f at z, by NΓk

the
counting function with respect to the set Γk (k = 1, 2, 3, 4) and by NΓk

the
reduced counting function as well.

Let

Γ1 := {z |f(z) = ∞, f(z + c) ̸= ∞},
Γ2 := {z | f(z) ̸= ∞, f(z + c) = ∞},
Γ3 := {z | f(z) = ∞, f(z + c) = ∞,deg∞(f, z) = deg∞(f(z + c), z)},
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Γ4 := {z | f(z) = ∞, f(z + c) = ∞,deg∞(f, z) ̸= deg∞(f(z + c), z)}.

It is clear that Γ1 is the set of the poles of f(z), that is not the poles of f(z+c);
Γ2 is the set of the poles of f(z+ c), that is not the poles of f(z); Γ3 is the set
of the common poles of f(z) and f(z + c) with same multiplicity; Γ4 is the set
of the common poles of f(z) and f(z + c) with different multiplicity.

If z1 ∈ Γ2, then z1 is a pole of eν(z) according to (3.1). Thus, Γ2 = ∅, i.e.,
NΓ2 = S(r).(3.7)

Again, if z1 ∈ Γ1, then z1 is also a zero of eν(z) according to (3.1). Thus,
Γ1 = ∅, i.e.,

NΓ1 = S(r).(3.8)

Similar to the proof as above, it yields

NΓ4
= S(r).(3.9)

Hence, from (3.5) we have

N(r, λ) ≤ N

(
r,

1

f(z)− a

)
+NΓ2

(3.10)

and also using Lemma 2.1, we have from (3.5) that

N

(
r,

1

λ

)
≤ N

(
r,

1

f(z + c)− a

)
+NΓ1

+NΓ4

≤ N

(
r + |c|, 1

f(z)− a

)
+NΓ1 +NΓ4

= N

(
r,

1

f(z)− a

)
+NΓ1

+NΓ4
.(3.11)

Combining (3.3) and (3.7)-(3.11), we have the desired assertion (3.6) as we
claimed. Set the non-constant meromorphic function µ by

µ(z) =
f(z) + a

f(z + c) + a
.(3.12)

We claim that

N(r, µ) +N

(
r,

1

µ

)
= S(r).(3.13)

In the same sense as (3.4) and (3.7)-(3.11), the desired conclusion (3.13) as
we claimed is true. Submitting (3.1) into (3.5) and (3.12), it follows that

λ(z) =
f(z)eν(z) − a

f(z)− a
, λ(z)− 1 =

f(z)(eν(z) − 1)

f(z)− a
(3.14)

and

µ(z) =
f(z) + a

f(z)eν(z) + a
, µ(z)− 1 =

f(z)(1− eν(z))

f(z)eν(z) + a
,(3.15)
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which using Lemma 2.5 and from (3.2) give

T (r, λ) = T (r, f) + S(r)(3.16)

and

T (r, µ) = T (r, f) + S(r)(3.17)

and that

N0(r, 1;λ, µ) = N

(
r,

1

f(z)

)
+ S(r),(3.18)

where N0(r, 1;λ, µ) is defined as in Lemma 2.6. Now by Lemma 2.6, we have
for some integers p and q such that |p|+ |q| > 0 either

λp(z)µq(z) ≡ 1(3.19)

holds or for any positive number ϵ

N0(r, 1;λ, µ) ≤ ϵT (r)(3.20)

holds, where T (r) = T (r, λ) + T (r, µ). Next, we consider the following two
cases concerning (3.19) and (3.20) hold, separately.

Case 1. First we assume that the result (3.20) holds.
By choosing ϵ = 1

4 , it follows from (3.16) and (3.17) that

N0(r, 1;λ, µ) ≤
1

2
T (r, f) + S(r).(3.21)

Now we rewrite the result (3.1), as on the another hand

f(z + c)− a = eν(z)(f(z)− ae−ν(z)),

then it deduces from Lemma 2.1 and (3.3) that

N

(
r,

1

f − ae−ν

)
= N

(
r,

1

f(z + c)− a

)
≤ N

(
r,

1

f(z)− a

)
≤ S(r).(3.22)

Noting eν(z) ̸≡ 1, using Lemma 2.4, we deduce from (3.3), (3.18), (3.21) and
(3.22) that

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f

)
+N

(
r,

1

f − ae−ν

)
≤ 1

2
T (r, f) + S(r),

which gives to a contradiction.
Case 2. Secondly we assume that the result (3.19) holds, i.e.,(

f(z + c)− a

f(z)− a

)p(
f(z) + a

f(z + c) + a

)q

≡ 1.(3.23)

We discuss the following four subcases for further examination.
Subcase 2.1. Suppose that p = 0, and q ̸= 0. Then, it follows from (3.23)

that

f(z) + a

f(z + c) + a
≡ B,(3.24)
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where B is a non-zero constant. 0 is not a Picard value of f , otherwise it follows
from (3.1) and (3.4) that

T (r, f) ≤ N

(
r,

1

f + a

)
+N

(
r,

1

f

)
+N

(
r,

1

f + ae−ν

)
≤ S(r),

which leads to a contradiction. Since 0 is not a Picard value of f , then there
exists one point z0 ∈ C such that f(z0) = 0, then we have f(z0 + c) = 0 due to
the assuming condition that f(z) and f(z+c) share 0 CM. Hence, by (3.24) we
can obtain B = 1, which leads to a contradiction of our present assumption.

Subcase 2.2. Suppose that q = 0, and p ̸= 0. Then, it deduces from (3.23)
that

f(z + c)− a

f(z)− a
≡ C,

where C is a non-zero constant. If 0 is a Picard value of f , we have a contra-
diction from (3.3) and (3.22) that

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f

)
+N

(
r,

1

f − ae−ν

)
can not hold. Again, if 0 is not a Picard value of f , then similar to the proof
of Subcase 2.1, we can get a contradiction.

Subcase 2.3. Suppose that pq ̸= 0, and pq > 0. If a is a Picard value
of f , then we can get a contradiction use the difference version of the second
fundamental theorem of Lemma 2.3 and the assuming conditions that f(z),
f(z + c) share 0,∞ CM as follows. That is

m(r, f) +m

(
r,

1

f

)
+m

(
r,

1

f − a

)
≤ 2T (r, f)− 2N(r, f) +N(r,∆cf)−N

(
r,

1

∆cf

)
+ S1(r, f)

≤ 2T (r, f)−N(r, f)−N

(
r,

1

f

)
+ S1(r, f).

The definition of characteristic function implies from the above estimate that

T (r, f) ≤ N

(
r,

1

f − a

)
+ S1(r, f) ≤ S1(r, f).

So, let z0 ∈ {z : |z| < r} be one of the common zero of f(z) − a and
f(z+ c)−a with multiplicity u and v, respectively. It deduces from (3.23) that

u = v.

Moreover, we can get the expression from (3.1) as follows:

ν′(z) =
f ′(z + c)

f(z + c)
− f ′(z)

f(z)
.(3.25)
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Obviously, ν′ ̸≡ 0. Otherwise, it reduces to f(z+c)
f(z) = D, where D is a non-zero

constant. Since a is not a Picard value of f , instantly we obtain that D = 1
and we get again a contradiction. However, it follows from (3.25) that z0 must
be a zero of ν′(z) with multiplicity at least u− 1. Thus, we have

N(2

(
r,

1

f − a

)
≤ 2N

(
r,

1

ν′

)
≤ 4T (r, ν) ≤ 4T (r, eν) = S(r).

Together this with (3.3), it yields that

N

(
r,

1

f − a

)
≤ S(r).

In the same manner before we can use the difference version of the second
fundamental theorem of Lemma 2.3 and our given assumption to get a contra-
diction again.

Subcase 2.4. Suppose that pq ̸= 0, and pq < 0. Then, without loss of
generality, we may assume that p > 0 and q < 0. Letting s = −q, (3.23) can
be written as (

f(z + c)− a

f(z)− a

)p

≡
(

f(z) + a

f(z + c) + a

)s

.

This implies that p = s. Otherwise, we can write

pT (r, λ) = sT (r, µ) + S(r),

which violets (3.16) and (3.17) together. Then, there exists a non-zero constant
W with W 2p = 1 such that

f(z + c)− a

f(z)− a
≡W 2

(
f(z) + a

f(z + c) + a

)
.(3.26)

We see from the above equality that W 2 ̸= 1. Otherwise, we obtain that
f(z + c) = f(z) or f(z + c) = −f(z). But f(z + c) = f(z), contradicts our
present assumption. So, f(z + c) = −f(z). If a is a Picard value of f , then we
can get a contradiction as we did in Subcase 2.3. So, a is not a Picard value of f .
Then, there exists z0 ∈ C such that f(z0) = a = f(z0+ c), due to the assuming
condition (1.1). Hence, we can get from the relation f(z + c) = −f(z) that
a = 0. This is impossible, since a is a non-zero finite value. Then, by (3.26) it
yields

(f(z + c)−Wf(z))(f(z + c) +Wf(z)) = a2(1−W 2).(3.27)

Let us assume that

γ1(z) = f(z + c)−Wf(z), γ2(z) = f(z + c) +Wf(z).

Then each of the above estimates imply

f(z + c) =
γ1(z) + γ2(z)

2
, f(z) =

γ2(z)− γ1(z)

2W
.(3.28)
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Next, (3.27) can be written in the form

γ1(z)γ2(z) = a2(1−W 2).(3.29)

Now from the results of γ1(z) and γ2(z), we get

T (r, γ1) ≤ 2T (r, f) + S(r), T (r, γ2) ≤ 2T (r, f) + S(r).

From the above estimates, we can write for it convenience

S(r, γ1) = S(r, γ2) = S(r).

Let

ϕ(z) =
γ1(z + c)

γ1(z)
, ψ(z) =

γ2(z + c)

γ2(z)
.

Now, taking into account of (3.1) in ϕ(z), we have

ϕ(z) =
eν(z+c) −W

1−We−ν(z)
.

It follows from (3.2) that

N(r, ϕ) ≤ N

(
r,

1

1−We−ν

)
≤ T (r, eν) = S(r).

In the same manner, we get

N(r, ψ) ≤ S(r).

This together with m(r, ϕ) = S(r, γ1) and m(r, ψ) = S(r, γ2) follows simply by
Lemma 2.2, that

T (r, ϕ) = S(r), T (r, ψ) = S(r).(3.30)

From (3.28), we deduce that

Wγ1(z) +Wγ2(z) = γ2(z + c)− γ1(z + c).

On dividing γ1(z)γ2(z) both sides, we obtain that

(W + ϕ(z))γ1(z) = (ψ(z)−W )γ2(z).(3.31)

From (3.29) and (3.31), it deduces that

γ21(z) = a2(1−W 2)
ψ(z)−W

ϕ(z) +W
.

Together with (3.30) we get a contradiction that

2T (r, γ1) = T (r, γ21) ≤ T (r, ϕ) + T (r, ψ) +O(1)

can not hold. Therefore, this completes the proof of Theorem 1.6.
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