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SOME RESULTS RELATED TO

DIFFERENTIAL-DIFFERENCE COUNTERPART

OF THE BRÜCK CONJECTURE

Md. Adud and Bikash Chakraborty

Abstract. In this paper, our focus is on exploring value sharing
problems related to a transcendental entire function f and its associ-

ated differential-difference polynomials. We aim to establish some results

which are related to differential-difference counterpart of the Brück con-
jecture.

1. Introduction

In this note, we assume that the readers are familiar with the classical Value
Distribution theory ([8, 11, 14]). By meromorphic functions, we always mean
nonconstant meromorphic functions, unless otherwise specified. Let f and g
be two nonconstant meromorphic functions, and let a ∈ C. We say that f and
g share the value a CM (respectively, IM) provided that f − a and g − a have
the same zeros counting multiplicities (respectively, ignoring multiplicities),
and that f and g share the value ∞ CM (respectively, IM) provided that
f and g have the same poles counting multiplicities (respectively, ignoring
multiplicities).

The classical results in the uniqueness theory of meromorphic functions are
the five-value and four-value theorems due to Rolf Nevanlinna. The five-value
theorem states that if two noncostant meromorphic functions f and g share
five distinct values in the extended complex plane IM, then f ≡ g. Similarly,
the four-value theorem states that if two nonconstant meromorphic functions
f and g share four distinct values in the extended complex plane CM, then
f ≡ T ◦g, where T is a Möbius transformation. Later, in the four value theorem,
the assumption 4 CM has been improved to 2 CM+ 2 IM by Gundersen [6].
Moreover, Gundersen [5], showed that 4 CM cannot be improved to 4 IM, while
1 CM+ 3 IM remains an open problem.
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For the uniqueness of the entire functions, if we consider a special situation
where g is the derivative of f , one usually needs sharing of only two values
CM for their uniqueness. In 1977, Rubel and Yang [13] first showed that if a
nonconstant entire function f and its derivative f ′ share two distinct values a,
b CM, then f ≡ f ′. In 1979, Mues and Steinmetz [12] observed that in Rubel
and Yang’s result, the CM sharing can be further relaxed to IM sharing. They
proved that if a non-constant entire function f and its derivative f ′ share two
distinct values a, b IM, then f ≡ f ′. It is well known that in Rubel and Yang’s
result, the two value sharing can not be further relaxed. We recall the following
example. Let

f(z) = ee
z

∫ z

0

e−et(1− et)dt.

Here, one can check that f and f ′ share 1 CM, but (f ′−1) = ez(f −1). In this
connection, we recall a famous conjecture proposed by Brück [1].

Conjecture 1.1. Let f be an entire function and

ρ2(f) := lim sup
r→∞

log log T (r, f)

log r

be the hyper-order of f such that ρ2(f) < ∞ and is not a positive integer. Let
a ∈ C. If f and f ′ share the value a CM, then

f ′ − a

f − a
= c,

where c is a non-zero constant.

Brück’s himself verified the conjecture for a = 0 ([1]) and later Gundersen
and Yang proved that the conjecture is true for finite order entire functions
([7]). Recently, many researchers put their attention to consider the complex
difference equations and the uniqueness of transcendental entire functions shar-
ing values with their shifts. Using difference analogues of logarithmic derivative
lemma, Heittokangas et al. established the following theorems:

Theorem 1.1 ([9]). Let f be a nonconstant meromorphic function such that
its order of growth

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2,

and let η be a nonzero complex number and a ∈ C. If f (z) and f (z + η) share
the values a CM and ∞ CM, then

f (z + η)− a

f (z)− a
= c,

where c is a non-zero constant.

In the same paper ([9]), Heittokangas et al. provided the example f(z) =

ez
2

+ 1, which shows that σ(f) < 2 can’t be relaxed to σ(f) ≤ 2.
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Let f(z) be a nonconstant meromorphic function and η be a nonzero complex
constant. Then f(z + η) is called the shift of f(z). Also, ∆f (z) = f (z + η)−
f (z) is called the difference operator of f(z). Moreover,

∆0
ηf(z) :=f(z), ∆1

ηf(z) :=∆f(z) and ∆k
ηf(z)=∆k−1

η (∆1
ηf(z)) for k ∈ N, k ≥ 2.

In [2], Chen proved a difference analogue of the Brück conjecture as follows:

Theorem 1.2 ([2]). Let f be a transcendental entire function of finite order.
Also, assume that f has a finite Borel exceptional value α ∈ C. Let η be a non-
zero complex constant such that f (z + η) ̸≡ f (z). If ∆f (z) and f (z) share a
finite value a (̸= α) CM, then

∆f (z)− a

f (z)− a
=

a

a− α
.

In [10], Huang and Zhang studied a parallel result corresponding to Theorem
1.1 as follows:

Theorem 1.3 ([10]). Let f be a transcendental entire function of order of
growth

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.

Let k ∈ N and η ∈ C \ {0}. Assume that ∆k
ηf (z) ̸≡ 0. If f (z) and ∆k

ηf (z)
share 0 CM, then

∆k
cf (z) = cf (z)

for some non-zero constant c.

In this paper, we will derive some results related to differential-difference
analogues of the Brück conjecture.

2. Main results

A polynomial which includes f(z) and its derivatives or shifts operator is
defined to be a differential-difference polynomial. Now, we consider a homoge-
neous complex differential-difference polynomials of f(z).

Ψ (f) =

m∑
i=1

ai(f
(i) (z + ξi))

n +

k∑
j=1

bj(f (z + ηj))
n,

where k,m, n ∈ N and ai, ξi, ηj and bj are complex constants such that Ψ(f) is
not identically equal to a constant.

Theorem 2.1. Let f be a transcendental meromorphic function and the order
of f ,

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.

If fn and Ψ(f) share 0 and ∞ CM, then Ψ(f) = cfn for some non-zero
constant c.
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To prove the above result, we need the help of following lemmas.

Lemma 2.1 ([3]). Let us choose two complex numbers η1 and η2 such that
η1 ̸= η2. Also, let f(z) be a nonconstant meromorphic function of finite order.
If σ is the order of f(z), then for each ε > 0,

m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
rσ−1+ε

)
.

Lemma 2.2 ([4]). Let f be a transcendental meromorphic function. If σ(f) <
∞, then

m

(
r,
f (k) (z + η)

f (z + ζ)

)
= S (r, f)

for those z which satisfy |z| = r /∈ E, where the logarithmic measure of E is
finite and ζ and η are constants; k is a non-negative integer.

Proof of Theorem 2.1. Since fn and Ψ (f) share 0 and ∞ CM, thus we have

Ψ (f)

fn
= expH (z) ,

where H (z) is a polynomial with degH (z) ≤ σ (f) < 2. So H (z) is at most
one degree polynomial. Now

T (r, expH (z)) = m (r, expH (z))

= m

(
r,
Ψ(f)

fn

)

= m

r,

m∑
i=1

ai
(
f (i) (z + ξi)

)n
+

k∑
j=1

bj (f (z + ηj))
n

fn

 .

Since σ < 2, thus for each ε > 0, using Lemma 2.1 and Lemma 2.2, we have

T (r, expH (z)) ≤ O
(
rσ−1+ε

)
+ S(r, f).

Therefore H (z) must be a constant. This completes the proof. □

Corollary 2.1. Let f be a transcendental entire function and the order of f ,

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.

Let η be a non-zero complex constant. Assume that ∆k
η(f) ̸≡ 0. If f and

∆k
ηf (z) share 0 CM, then ∆k

η (f) = cf for some non-zero constant c.

Theorem 2.2. Let f be a transcendental entire function and the order of f ,

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.
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If ∆k
η (f) (̸≡ 0) and ∆k−1

η (f) (̸≡ 0) share 0 CM, then

∆k
η (f) = c∆k−1

η (f) , where c is a non-zero constant.

Proof of Theorem 2.2. It is given that ∆k
η (f) (̸≡ 0) and ∆k−1

η (f) (̸≡ 0) share 0
CM. Thus we can write

∆k
ηf (z)

∆k−1
η f (z)

= eH(z),

where H (z) is a polynomial. Now, we consider two cases. If H (z) is a constant
polynomial, then our theorem follows. If H (z) is a nonconstant polynomial,
then

∆k
ηf (z)

∆k−1
η f (z)

= eH(z).

Thus

∆k−1
η f (z + η)−∆k−1

η f (z)

∆k−1
η f (z)

= eH(z).

Let F (z) = ∆k−1
η f (z). Then the above equation reduces to

F (z + η)− F (z)

F (z)
= eH(z).

Thus

T
(
r, eH(z)

)
= m

(
r, eH(z)

)
= m

(
r,
F (z + η)− F (z)

F (z)

)
≤ m

(
r,
F (z + η)

F (z)

)
+O (1) .

Thus for each ε > 0, applying Lemma 2.1, we have

O
(
rdegH(z)

)
≤ O

(
rσ−1+ε

)
+ S(r, f),

which implies degH (z) < 1 as σ(f) < 2. Thus H (z) can not be a nonconstant
polynomial. Hence our theorem follows. □

Next, we recall the definition of a linear differential polynomial.

Definition 2.1. Let f be a transcendental meromorphic function. Then L =
L
(
f (m)

)
denotes a linear differential polynomial of the form

L = L
(
f (m)

)
= b0f

(m) + b1f
(m+1) + b2f

(m+2) + · · ·+ bkf
(m+k),

where b0, b1, b2, . . . , bk (̸= 0) are complex numbers and m (≥ 1) and k (≥ 0) are
integers such that k = 0 if m = 1 and 0 ≤ k ≤ m− 2 if m ≥ 2.
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Theorem 2.3. Let f be a transcendental meromorphic function and the order
of f ,

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.

If L
(
f (m)

)
(̸≡ 0) and f (z + η) share 0 and ∞ CM, then

L
(
f (m)

)
= cf (z + η) ,

where c is a non-zero constant.

For proving the above theorem, we need the help of the following lemma.

Lemma 2.3 ([8]). Let l be any positive integer and f be a meromorphic func-
tion. Then

m

(
r,
f (l) (z)

f (z)

)
= S (r, f) .

Proof of Theorem 2.3. By the given conditions, we can write

L
(
f (m)

)
f (z + η)

= eH(z),

where H (z) is a polynomial. Then obviously degH (z) ≤ σ (f) < 2. If H (z) is
a constant polynomial, then our theorem follows. If H (z) is a polynomial of
degree ≥ 1, then

T (r, expH (z)) = m (r, expH (z))

= m

(
r,

L
(
f (m)

)
f (z + η)

)

= m

(
r,
b0f

(m) + b1f
(m+1) + b2f

(m+2) + · · ·+ bkf
(m+k)

f (z + η)

)
≤ m

(
r,
b0f

(m) + b1f
(m+1) + b2f

(m+2) + · · ·+ bkf
(m+k)

f (z)

)
+m

(
r,

f (z)

f (z + η)

)
.

For each ε > 0, using Lemma 2.3 and Lemma 2.1, we have

T (r, expH (z)) ≤ S(r, f) +O
(
rσ−1+ε

)
.

Since σ < 2, we can conclude that H (z) can not be a polynomial of degree
≥ 1. This completes the proof. □

Theorem 2.4. Let f be a transcendental entire function and the order of f ,

σ (f) = lim sup
r→∞

log T (r, f)

log r
< 2.
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Let η ∈ C \ {0}, k ∈ N and a ∈ C. If f (z + η) − f (k) (z) and f (z) share the
value a CM, then there exists a constant c (̸= 0) such that

f (z + η)− f (k) (z)− a

f (z)− a
= c.

Before proving Theorem 2.4, we prove a lemma.

Lemma 2.4. Let Q (z) be a nonconstant polynomial. If F (z) is a finite order
solution of the equation

F (z + η)− (1 + expQ (z))F (z) = F (k)(z),

then σ (F ) ≥ degQ (z)+ 1, where η is non zero constant and σ(F ) is the order
of F .

Proof. Let F (z) be a solution of the equation

F (z + η)− (1 + expQ (z))F (z) = F (k)(z)

and σ(F ) < ∞. Therefore from the above equation, we have

F (z + η)

F (z)
− F (k)(z)

F (z)
= (1 + expQ (z)) .

Now

T (r, expQ (z)) = m (r, expQ (z))

= m

(
r,
F (z + η)

F (z)
− F (k)(z)

F (z)
− 1

)
≤ m

(
r,
F (z + η)

F (z)

)
+m

(
r,
F (k)(z)

F (z)

)
+O (1) .

Let ε > 0. Now, using Lemma 2.1 and Lemma 2.3, we have from the above
inequality that

O
(
rdegQ(z)

)
≤ O

(
rσ−1+ε

)
+ S(r, F ),

which gives the required proof. □

Proof of Theorem 2.4. By the given condition, we can write

f (z + η)− f (k) (z)− a

f (z)− a
= eH(z),

where H (z) is a polynomial. If H (z) is a constant, then our theorem follows.
If H (z) is a nonconstant polynomial, then substituting F (z) = f (z) − a, we
get

F (z + η)− F (k) (z)

F (z)
= eH(z).
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Proceeding similarly as in Lemma 2.4, and using Lemma 2.1 and Lemma 2.3,
for each ε > 0, we have

O
(
rdegH(z)

)
≤ O

(
rσ−1+ε

)
+ S(r, f)

which implies degH (z) < 1 as σ(f) < 2. So H (z) can not be a nonconstant
polynomial. Hence our theorem follows. □
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