AN EXAMPLE FOR THE NON-STABILITY OF MULTI-ADDITIVE-QUADRATIC-CUBIC MAPPINGS

Abasalt Bodaghi

Abstract

In this paper, we improve Corollary 1 of [4] and then present an example to show that the assertion in the mentioned corollary can not be valid in the singularity case.

1. Introduction

Throughout this paper, \mathbb{N}, \mathbb{Q} and \mathbb{R} are the set of all natural numbers, the set of all rationals and the set of all real numbers, respectively. In addition, $\mathbb{N}_{0}:=$ $\mathbb{N} \cup\{0\}, \mathbb{R}_{+}:=[0, \infty)$. For each $l \in \mathbb{N}_{0}, n \in \mathbb{N}, t=\left(t_{1}, \ldots, t_{n}\right) \in\{-1,1\}^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in V^{n}$ we write $l x:=\left(l x_{1}, \ldots, l x_{n}\right)$ and $t x:=\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)$, for which $l x$ is the l th power of an element x of the commutative group V.

Let V and W be linear spaces over $\mathbb{Q}, n \in \mathbb{N}$ and $k, p \in\{0, \ldots, n\}$. Recall from [4] that a multivariable mapping $f: V^{n} \longrightarrow W$ is called k-additive, p-quadratic and $n-k-p$-cubic or briefly, multi-additive-quadratic-cubic if f satisfies $A(x+y)=A(x)+A(y)$ in each of some k components, fulfills $Q(2 x+$ $y)+Q(2 x-y)=Q(x+y)+Q(x-y)+6 Q(x)$ in each of some p components and satisfies equation $C(2 x+y)+C(2 x-y)=2 C(x+y)+2 C(x-y)+12 C(x)$ in each of the other components. Let us note that for $k=n, p=n$ and $k, p=0$, this definition leads us to multi-additive, multi-quadratic and multicubic mappings, respectively. It is easily verified that the function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ defined by $f\left(v_{1}, \ldots, v_{n}\right)=\prod_{j=1}^{k} \prod_{i=k+1}^{k+p} \prod_{r=k+p+1}^{n} v_{j} v_{i}^{2} v_{r}^{3}$ is a multi-additive-quadratic-cubic mapping.

We remember that the celebrated Ulam query [18] about the stability of group homomorphisms has been studied and established for instance in papers and books $[8-10,12,13,16,17]$ and moreover references therein. In addition, in the two last decades, the Ulam stability challenge has been answered and investigated for some special multivariable mappings such as multi-additive, multi-quadratic and multi-cubic mappings for example in $[2,5-7,11,14,15,19]$.

[^0]In [4, Corollary 1], the authors obtained a stability result for the multi-additive-quadratic-cubic functional equation (see equation (2.1)). In this paper, we modify this corollary and then by an example show that the assertion is not true for $\alpha=3 n-2 k-p$.

2. Main results

Let V and W be linear spaces over $\mathbb{Q}, n \in \mathbb{N}$ and $k, p \in\{0, \ldots, n\}$. It is shown in [4, Proposition 2] that every multi-additive-quadratic-cubic mapping $f: V^{n} \longrightarrow W$ satisfies the equation

$$
\begin{align*}
& \sum_{s \in\{-1,1\}^{p}} \sum_{t \in\{-1,1\}^{n-k-p}} f\left(x_{1}^{k}+x_{2}^{k}, 2 x_{1}^{p}+s x_{2}^{p}, 2 x_{1}^{n-k-p}+t x_{2}^{n-k-p}\right) \\
= & \sum_{l=0}^{p} \sum_{m=0}^{n-k-p} \sum_{i \in\{1,2\}} 6^{l} \times 2^{n-k-p-m} \times 12^{m} f\left(x_{i}^{k}, \mathbb{A}_{l}^{k+p}, \mathbb{B}_{m}^{n-k-p}\right) \tag{2.1}
\end{align*}
$$

for all $x_{i}^{k}=\left(x_{i 1}, \ldots, x_{i k}\right) \in V^{k}, x_{i}^{p}=\left(x_{i, k+1}, \ldots, x_{i, k+p}\right) \in V^{p}$ and $x_{i}^{n-k-p}=$ $\left(x_{i, k+p+1}, \ldots, x_{i n}\right) \in V^{n-k-p},(i \in\{1,2\})$, where

$$
f\left(x_{i}^{k}, \mathbb{A}_{l}^{k+p}, \mathbb{B}_{m}^{n-k-p}\right):=\sum_{\mathfrak{A}_{k+p} \in \mathbb{A}_{l}^{k+p}} \sum_{\mathfrak{B}_{n} \in \mathbb{B}_{m}^{n-k-p}} f\left(x_{i}^{k}, \mathfrak{A}_{k+p}, \mathfrak{B}_{n}\right)
$$

for $i \in\{1,2\}$, whereas

$$
\mathbb{A}_{l}^{k+p}:=\left\{\mathfrak{A}_{k+p}=\left(A_{k+1}, \ldots, A_{k+p}\right) \in \mathbb{A}^{k+p} \mid \operatorname{Card}\left\{A_{j}: A_{j}=x_{1 j}\right\}=l\right\}
$$

and

$$
\mathbb{B}_{m}^{n-k-p}:=\left\{\mathfrak{B}_{n}=\left(B_{k+p+1}, \ldots, B_{n}\right) \in \mathbb{B}^{n-k-p} \mid \operatorname{Card}\left\{B_{j}: B_{j}=x_{1 j}\right\}=m\right\}
$$

are the subsets of $\mathbb{A}^{k+p}=\left\{\mathfrak{A}_{k+p}=\left(A_{k+1}, \ldots, A_{k+p}\right) \mid A_{j} \in\left\{x_{1 j} \pm x_{2 j}, x_{1 j}\right\}\right\}$ and $\mathbb{B}^{n-k-p}=\left\{\mathfrak{B}_{n}=\left(B_{k+p+1}, \ldots, B_{n}\right) \mid B_{j} \in\left\{x_{1 j} \pm x_{2 j}, x_{1 j}\right\}\right\}$, respectively.

Recall from [4] that a mapping $f: V^{n} \longrightarrow W$ has the s-power condition in the j th component if

$$
f\left(v_{1}, \ldots, v_{j-1}, 2 v_{j}, v_{j+1}, \ldots, v_{n}\right)=2^{s} f\left(v_{1}, \ldots, v_{j-1}, v_{j}, v_{j+1}, \ldots, v_{n}\right)
$$

for all $v_{1}, \ldots, v_{n} \in V$. Note that 2-power (resp., 3-power) condition is sometimes called the quadratic (resp., cubic) condition.

For a converse version of the above result, it is proved in Proposition 3 of [4] that each mapping $f: V^{n} \longrightarrow W$ fulfills equation (2.1) and the cubic condition in the last $n-k-p$ and the quadratic condition in the middle p components, then it is multi-additive-quadratic-cubic. In the next result, we modify Corollary 2 from [4] without the proof.

Corollary 2.1. Let $\delta>0$ and $\alpha \in \mathbb{R}$ with $\alpha \neq 3 n-2 k-p$. Let also V be a normed space and W be a Banach space. Suppose that $f: V^{n} \longrightarrow W$ is a
mapping fulfilling

$$
\left\|\mathcal{D}_{a q c} f\left(x_{1}, x_{2}\right)\right\| \leq \delta \sum_{i=1}^{2} \sum_{j=1}^{n}\left\|x_{i j}\right\|^{\alpha}
$$

for all $x_{1}, x_{2} \in V^{n}$. Then, there exists a solution $\mathcal{F}: V^{n} \longrightarrow W$ of (2.1) such that

$$
\|f(x)-\mathcal{F}(x)\| \leq \frac{\delta}{2^{n-k}\left|2^{3 n-2 k-p}-2^{\alpha}\right|}\left(2 \sum_{j=1}^{k}\left\|x_{j}\right\|^{\alpha}+\sum_{j=k+1}^{p}\left\|x_{j}\right\|^{\alpha}\right)
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right) \in V^{n}$. Moreover, if \mathcal{F} satisfies the cubic condition in the last $n-k-p$ components and the quadratic condition in the some p components, then it is a unique multi-additive-quadratic-cubic mapping.

In the sequel, we will indicate an example to show that the condition $\alpha \neq$ $3 n-2 k-p$ in Corollary 2.1 is necessary. For doing this we need some fundamental results as follows. At the first, we bring the upcoming result which was presented in [11, Theorem 13.4.3].
Theorem 2.2. Let $h: \mathbb{R}^{d^{m}} \longrightarrow \mathbb{R}$ be a continuous p-additive function. Then there exist constants $c_{j_{1} \cdots j_{d}} \in \mathbb{R}, j_{1}, \ldots, j_{d}=1, \ldots, m$, such that

$$
h\left(x_{1}, \ldots, x_{d}\right)=\sum_{j_{1}=1}^{m} \cdots \sum_{j_{d}=1}^{m} c_{j_{1} \cdots j_{d}} x_{1 j_{1}} \cdots x_{d j_{d}}
$$

for all $x_{i}=\left(x_{i 1}, \ldots, x_{i m}\right)$ and $i=1, \ldots, d$.
We bring the following results which have been proved in [1] and [3].
Proposition 2.3 ([3, Proposition 14]). Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous n-quadratic function. Then, f has the form

$$
f\left(r_{1}, \ldots, r_{n}\right)=c r_{1}^{2} \cdots r_{n}^{2}
$$

for all $r_{1}, \ldots, r_{n} \in \mathbb{R}$, where c is a constant in \mathbb{R}.
Proposition 2.4 ([1, Proposition 2.4]). If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is a continuous n-cubic function, then there exists a constant $c \in \mathbb{R}$ such that

$$
f\left(r_{1}, \ldots, r_{n}\right)=c r_{1}^{3} \cdots r_{n}^{3}, \quad\left(r_{1}, \ldots, r_{n} \in \mathbb{R}\right)
$$

In the next theorem, we give a representation of the multi-additive-quadraticcubic mappings on \mathbb{R}^{n}. Indeed, it is a direct consequence of the above results.
Theorem 2.5. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous k-additive, p-quadratic and $n-k-p$-cubic function. Then, there exists a constant $c \in \mathbb{R}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=c \prod_{j=1}^{k} \prod_{i=k+1}^{k+p} \prod_{r=k+p+1}^{n} x_{j} x_{i}^{2} x_{r}^{3}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$.

Proof. We firstly identify $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ with $\left(x^{k}, x^{p}, x^{n-k}\right) \in \mathbb{R}^{k} \times$ $\mathbb{R}^{p} \times \mathbb{R}^{n-k-p}$, where $x^{k}:=\left(x_{1}, \ldots, x_{k}\right), x^{p}:=\left(x_{k+1}, \ldots, x_{k+p}\right)$ and $x^{n-k-p}:=$ $\left(x_{k+p+1}, \ldots, x_{n}\right)$. For any $x^{p} \in \mathbb{R}^{p}, x^{n-k-p} \in \mathbb{R}^{n-k-p}$, consider the mapping $\mathcal{T}_{x^{p}, x^{n-k-p}}: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ defined by

$$
\mathcal{T}_{x^{p}, x^{n-k-p}}\left(x_{1}, \ldots, x_{k}\right):=f\left(x_{1}, \ldots, x_{k}, x^{p}, x^{n-k-p}\right) .
$$

By assumption, $\mathcal{T}_{x^{p}, x^{n-k-p}}$ is k-additive. It follows from Theorem 2.2 for the case $d=1$ that there exists a constant $c_{1} \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathcal{T}_{x^{p}, x^{n-k-p}}\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}, \ldots, x_{k}, x^{p}, x^{n-k-p}\right)=c_{1} \prod_{j=1}^{k} x_{j} \tag{2.2}
\end{equation*}
$$

Note that c_{1} depends on x^{p}, x^{n-k-p}. In fact,

$$
\begin{equation*}
c_{1}=T\left(x^{p}, x^{n-k-p}\right) \tag{2.3}
\end{equation*}
$$

Putting $x_{1}=\cdots=x_{k}=1$ in (2.2) and applying (2.3), we get

$$
\begin{equation*}
c_{1}=T\left(x^{p}, x^{n-k-p}\right)=f\left(1, \ldots, 1, x^{p}, x^{n-k-p}\right) . \tag{2.4}
\end{equation*}
$$

Once again, for any $x^{n-k-p} \in \mathbb{R}^{n-k-p}$, define the mapping $\mathcal{S}_{x^{n-k-p}}: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ through

$$
\mathcal{S}_{x^{n-k-p}}\left(x_{k+1}, \ldots, x_{k+p}\right):=f\left(1, \ldots, 1, x_{k+1}, \ldots, x_{k+p}, x^{n-k-p}\right) .
$$

Since $\mathcal{S}_{x^{n-k-p}}$ is p-quadratic, by Proposition 2.3 there exists a constant $c_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
\mathcal{S}_{x^{n-k-p}}\left(x_{k+1}, \ldots, x_{k+p}\right) & =f\left(1, \ldots, 1, x_{k+1}, \ldots, x_{k+p}, x^{n-k-p}\right) \\
& =c_{2} \prod_{i=k+1}^{k+p} x_{i}^{2} \tag{2.5}
\end{align*}
$$

It is obvious that c_{2} depends on x^{n-k-p} and hence

$$
\begin{equation*}
c_{2}=S\left(x^{n-k-p}\right) \tag{2.6}
\end{equation*}
$$

Letting $x_{k+1}=\cdots=x_{k+p}=1$ in (2.5) and using (2.6), we get

$$
c_{2}=S\left(x^{n-k-p}\right)=f(\overbrace{1, \ldots, 1}^{k \text {-times }}, \overbrace{1, \ldots, 1}^{p \text {-times }}, x^{n-k-p}) .
$$

On the other hand, S is an $n-k-p$-cubic function, and so by Proposition 2.4, there exists a constant $c_{3} \in \mathbb{R}$ such that

$$
\begin{equation*}
S\left(x^{n-k-p}\right)=f(\overbrace{1, \ldots, 1}^{k \text {-times }}, \overbrace{1, \ldots, 1}^{p \text {-times }}, x_{k+p+1}, \ldots, x_{n})=c_{3} \prod_{r=k+p+1}^{n} x_{r}^{3} \tag{2.7}
\end{equation*}
$$

The result now follows from (2.2), (2.4), (2.5), (2.6) and (2.7).

We remember that in the proofs of Theorem 2.2, Proposition 2.3 and Proposition 2.4 the continuity of f with respect to each variable separately were used, and thus all results again hold if and only if f is assumed separately continuous with respect to each component. On the other hand, in light of the proofs of all mentioned results, if the continuity condition of f is removed, then the results remain valid for a function $f: \mathbb{Q}^{p} \longrightarrow \mathbb{Q}$. Therefore, the same discussions can be repeated without any gap for Theorem 2.5. We use this fact to make a non-stable example. In other words, we show the hypothesis $\alpha \neq 3 n-2 k-p$ can not be eliminated in Corollary 2.1. The argument is taken to what given in [3, Example 1], but we include it completely for the sake of completeness. Before it, we bring a notation as follows.

For a mapping $f: V^{n} \longrightarrow W$, we have the notation

$$
\begin{aligned}
& \mathcal{D}_{a q c} f\left(x_{1}, x_{2}\right) \\
: & \sum_{s \in\{-1,1\}^{p}} \sum_{t \in\{-1,1\}^{n-k-p}} f\left(x_{1}^{k}+x_{2}^{k}, 2 x_{1}^{p}+s x_{2}^{p}, 2 x_{1}^{n-k-p}+t x_{2}^{n-k-p}\right) \\
& -\sum_{l=0}^{p} \sum_{m=0}^{n-k-p} \sum_{i \in\{1,2\}} 6^{l} \times 2^{n-k-p-m} \times 12^{m} f\left(x_{i}^{k}, \mathbb{A}_{l}^{k+p}, \mathbb{B}_{m}^{n-k-p}\right)
\end{aligned}
$$

for all $x_{i}=\left(x_{i}^{k}, x_{i}^{p}, x_{i}^{n-k-p}\right)$ in which $x_{i}^{k}=\left(x_{i 1}, \ldots, x_{i k}\right) \in V^{k}, x_{i}^{p}=\left(x_{i, k+1}, \ldots\right.$, $\left.x_{i, k+p}\right) \in V^{p}$ and $x_{i}^{n-k-p}=\left(x_{i, k+p+1}, \ldots, x_{i n}\right) \in V^{n-k-p}$, where $i \in\{1,2\}$ (see also the begging of this section).

Example 2.6. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Consider the function $1: \mathbb{Q}^{n} \longrightarrow \mathbb{Q}$ whose range is the constant 1 . Set $\left|\mathcal{D}_{a q c} \mathbf{1}\right|=M$ and $\lambda=\frac{2^{3 n-2 k-p}-1}{2^{2(3 n-2 k-p)} M} \varepsilon$. Define the function $\phi: \mathbb{Q}^{n} \longrightarrow \mathbb{Q}$ through

$$
\phi\left(r_{1}, \ldots, r_{n}\right):= \begin{cases}\lambda \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n} r_{j} r_{t}^{2} r_{l}^{3} & \text { for all } r_{u} \text { with }\left|r_{u}\right|<1 \\ \lambda & \text { otherwise }\end{cases}
$$

for $u \in\{1, \ldots, n\}$. Moreover, consider the function $f: \mathbb{Q}^{n} \longrightarrow \mathbb{Q}$ defined via

$$
f\left(r_{1}, \ldots, r_{n}\right)=\sum_{s=0}^{\infty} \frac{\phi\left(2^{s} r_{1}, \ldots, 2^{s} r_{n}\right)}{2^{(3 n-2 k-p) s}}, \quad\left(r_{j} \in \mathbb{Q}\right) .
$$

It is clear that ϕ is bounded by λ. Indeed, for each $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$, we have $\left|f\left(r_{1}, \ldots, r_{n}\right)\right| \leq \frac{2^{3 n-2 k-p}}{2^{3 n-2 k-p}-1} \lambda$. It follows from the last inequality that

$$
\begin{equation*}
\left|\mathcal{D}_{a q c} f\left(x_{1}, x_{2}\right)\right| \leq \frac{2^{3 n-2 k-p}}{2^{3 n-2 k-p}-1} \lambda M \tag{2.8}
\end{equation*}
$$

for all $x_{i}=\left(x_{i}^{k}, x_{i}^{p}, x_{i}^{n-k-p}\right)$ in which $x_{i}^{k}=\left(x_{i 1}, \ldots, x_{i k}\right) \in V^{k}, x_{i}^{p}=\left(x_{i, k+1}, \ldots\right.$, $\left.x_{i, k+p}\right) \in V^{p}$ and $x_{i}^{n-k-p}=\left(x_{i, k+p+1}, \ldots, x_{i n}\right) \in V^{n-k-p}$, where $i \in\{1,2\}$.

We claim that

$$
\begin{equation*}
\left|\mathcal{D}_{a q c} f\left(x_{1}, x_{2}\right)\right| \leq \varepsilon \sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p} \tag{2.9}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \mathbb{Q}^{n}$. Here, we discuss three cases as follows:
(i) For the case that $x_{1}=x_{2}=0$, obviously, (2.9) is valid.
(ii) Assume that $x_{1}, x_{2} \in \mathbb{Q}^{n}$ with

$$
\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}<\frac{1}{2^{3 n-2 k-p}} .
$$

Therefore, there exists a positive integer m such that

$$
\begin{equation*}
\frac{1}{2^{(m+1)(3 n-2 k-p)}}<\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}<\frac{1}{2^{m(3 n-2 k-p)}}, \tag{2.10}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|x_{i j}\right|^{3 n-2 k-p}<\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}<\frac{1}{2^{m(3 n-2 k-p)}} . \tag{2.11}
\end{equation*}
$$

We now concludes from (2.11) that $2^{m}\left|x_{i j}\right|<1$ for all $i \in\{1,2\}$ and $j \in$ $\{1, \ldots, n\}$, and thus $2^{m-1}\left|x_{i j}\right|<1$. Moreover, for any $z_{1}, z_{2} \in\left\{x_{i j} \mid i \in\right.$ $\{1,2\}, j \in\{1, \ldots, n\}\}$, we have

$$
2^{m-1}\left|z_{1} \pm z_{2}\right|<1,2^{m-1}\left|2 z_{1} \pm z_{2}\right|<1
$$

The definition of ϕ shows that it is a multi-additive-quadratic-cubic function on $(-1,1)^{n}$, and hence $\mathcal{D}_{\text {aqc }} \phi\left(2^{s} x_{1}, 2^{s} x_{2}\right)=0$ for all $s \in\{0,1,2, \ldots, m-1\}$. Now, (2.10) and the last equality imply that

$$
\begin{aligned}
\frac{\left|\mathcal{D}_{a q c} f\left(2^{s} x_{1}, 2^{s} x_{2}\right)\right|}{\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}} & \leq \sum_{s=m}^{\infty} \frac{\left|\mathcal{D}_{a q c} \phi\left(2^{s} x_{1}, 2^{s} x_{2}\right)\right|}{2^{(3 n-2 k-p) s} \sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}} \\
& \leq \sum_{s=0}^{\infty} \frac{\lambda M}{2^{(3 n-2 k-p)(s+m)} \sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}} \\
& \leq 2^{3 n-2 k-p} \lambda M \sum_{s=0}^{\infty} \frac{1}{2^{s(3 n-2 k-p)}} \\
& =\lambda M \frac{2^{2(3 n-2 k-p)}}{2^{3 n-2 k-p}-1}=\varepsilon
\end{aligned}
$$

for all $x_{1}, x_{2} \in \mathbb{Q}^{n}$ and therefore (2.9) holds in this case.
(iii) Let $\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p} \geq \frac{1}{2^{3 n-2 k-p}}$. Applying (2.8), we obtain

$$
\frac{\left|\mathcal{D}_{a q c} f\left(2^{s} x_{1}, 2^{s} x_{2}\right)\right|}{\sum_{i=1}^{2} \sum_{j=1}^{n}\left|x_{i j}\right|^{3 n-2 k-p}} \leq 2^{3 n-2 k-p} \frac{2^{3 n-2 k-p}}{2^{3 n-2 k-p}-1} \lambda M=\varepsilon
$$

The above arguments necessitate that inequality (2.9) is true for all $x_{1}, x_{2} \in$ \mathbb{Q}^{n}. Suppose contrary to our claim for non-stability, that there exits a multi-additive-quadratic-cubic mapping $\mathcal{F}_{\text {aqc }}: \mathbb{Q}^{n} \longrightarrow \mathbb{Q}$ of (2.1) and $\delta>0$ such that

$$
\left|f\left(r_{1}, \ldots, r_{n}\right)-\mathcal{F}_{a q c}\left(r_{1}, \ldots, r_{n}\right)\right| \leq \delta \sum_{j=1}^{k} \sum_{t=k+1}^{k+p} \sum_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3}
$$

for all $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$. Without loss of generality, one can take a number $\mu \in[0, \infty)$ so that

$$
\delta \sum_{j=1}^{k} \sum_{t=k+1}^{k+p} \sum_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3} \leq \mu \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3}
$$

Hence,

$$
\left|f\left(r_{1}, \ldots, r_{n}\right)-\mathcal{F}_{a q c}\left(r_{1}, \ldots, r_{n}\right)\right|<\mu \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3}
$$

for all $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$. A consequence of Theorem 2.5 implies that there is a constant $c \in \mathbb{R}$ such that $\mathcal{F}_{a q c}\left(r_{1}, \ldots, r_{n}\right)=c \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3}$ for all $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$. It follows the discussion above that

$$
\begin{equation*}
\left|f\left(r_{1}, \ldots, r_{n}\right)\right| \leq(|c|+\mu) \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3} \tag{2.12}
\end{equation*}
$$

for all $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$. Given $m \in \mathbb{N}$ such that $m \lambda>|c|+\mu$. For $r=$ $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$ with $r_{j} \in\left(0, \frac{1}{2^{m-1}}\right)$ for all $j \in\{1, \ldots, n\}$, we have $2^{s} r_{j} \in$ $(0,1)$ for all $s=0,1, \ldots, m-1$. Therefore,

$$
\begin{aligned}
\left|f\left(r_{1}, \ldots, r_{n}\right)\right| & =\left|\sum_{s=0}^{\infty} \frac{\phi\left(2^{s} r_{1}, \ldots, 2^{s} r_{n}\right)}{2^{s(3 n-2 k-p)}}\right| \\
& =\left|\lambda \sum_{s=0}^{m-1} \frac{2^{s(3 n-2 k-p)} \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n} r_{j} r_{t}^{2} r_{l}^{3}}{2^{s(3 n-2 k-p)}}\right| \\
& =m \lambda \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3} \\
& >(|c|+\mu) \prod_{j=1}^{k} \prod_{t=k+1}^{k+p} \prod_{l=k+p+1}^{n}\left|r_{j}\right| r_{t}^{2}\left|r_{l}\right|^{3},
\end{aligned}
$$

and so we are led to a contradiction with (2.12).
Acknowledgement. The author sincerely thanks the anonymous reviewer for her/his careful reading, constructive comments and suggesting some related references to improve the quality of the first draft of the paper.

References

[1] A. Bodaghi, An example for the nonstability of multicubic mappings, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 3, 273-277. https://doi.org/10.22075/IJNAA. 2022. 25878. 3150
[2] A. Bodaghi, H. Moshtagh, and H. Dutta, Characterization and stability analysis of advanced multi-quadratic functional equations, Adv. Difference Equ. 2021 (2021), Paper No. 380, 15 pp. https://doi.org/10.1186/s13662-021-03541-3
[3] A. Bodaghi, H. Moshtagh, and A. Mousivand, Characterization and stability of multi-Euler-Lagrange quadratic functional equations, J. Funct. Spaces 2022 (2022), Art. ID 3021457, 9 pp. https://doi.org/10.1155/2022/3021457
[4] A. Bodaghi and Th. M. Rassias, Functional inequalities for multi-additive-quadraticcubic mappings, in Approximation and computation in science and engineering, 103-126, Springer Optim. Appl., 180, Springer, Cham., 2022. https://doi.org/10.1007/978-3-030-84122-5_7
[5] A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22 (2021), no. 1, 83-92. https: //doi.org/10.24193/fpt-ro.2021.1.06
[6] K. Ciepliński, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015
[7] K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011), no. 9, 3418-3426. https://doi.org/10.1016/j.camwa. 2011.08.057
[8] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
[9] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
[10] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998. https://doi.org/10.1007/978-1-4612-1790-9
[11] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhäuser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5
[12] Y.-H. Lee, S.-M. Jung, and M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput. 228 (2014), 13-16. https: //doi.org/10.1016/j.amc.2013.11.091
[13] Y.-H. Lee, S.-M. Jung, and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), no. 1, 43-61. https://doi.org/10.7153/jmi-2018-12-04
[14] C. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2501-2504. https://doi.org/10.1090/S0002-9939-02-06886-7
[15] C. Park and A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces, J. Inequal. Appl. 2020 (2020), Paper No. 6, 16 pp. https://doi.org/10.1186/s13660-019-2274-5
[16] C. Park and M. Th. Rassias, Additive functional equations and partial multipliers in C^{*}-algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2261-2275. https://doi.org/10.1007/s13398-018-0612-y
[17] Th. M. Rassias, Functional equations and inequalities, Mathematics and its Applications, 518, Kluwer Acad. Publ., Dordrecht, 2000. https://doi.org/10.1007/978-94-011-4341-7
[18] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley \& Sons, Inc., New York, 1964.
[19] X. Zhao, X. Yang, and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp. https://doi.org/10. 1155/2013/415053

Abasalt Bodaghi
Department of Mathematics
West Tehran Branch
Islamic Azad University
Tehran, Iran
Email address: abasalt.bodaghi@gmail.com

[^0]: Received March 18, 2023; Revised June 5, 2023; Accepted June 16, 2023.
 2020 Mathematics Subject Classification. 39B52, 39B72, 39B82.
 Key words and phrases. Multi-additive mapping, multi-quadratic mapping, multi-cubic mapping, Hyers-Ulam stability.

