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AN EXAMPLE FOR THE NON-STABILITY OF

MULTI-ADDITIVE-QUADRATIC-CUBIC MAPPINGS

Abasalt Bodaghi

Abstract. In this paper, we improve Corollary 1 of [4] and then present
an example to show that the assertion in the mentioned corollary can not

be valid in the singularity case.

1. Introduction

Throughout this paper, N, Q and R are the set of all natural numbers, the set
of all rationals and the set of all real numbers, respectively. In addition, N0 :=
N ∪ {0},R+ := [0,∞). For each l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−1, 1}n and
x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn),
for which lx is the lth power of an element x of the commutative group V .

Let V and W be linear spaces over Q, n ∈ N and k, p ∈ {0, . . . , n}. Recall
from [4] that a multivariable mapping f : V n −→ W is called k-additive,
p-quadratic and n − k − p-cubic or briefly, multi-additive-quadratic-cubic if f
satisfies A(x+ y) = A(x) +A(y) in each of some k components, fulfills Q(2x+
y) +Q(2x− y) = Q(x+ y) +Q(x− y) + 6Q(x) in each of some p components
and satisfies equation C(2x+y)+C(2x−y) = 2C(x+y)+2C(x−y)+12C(x)
in each of the other components. Let us note that for k = n, p = n and
k, p = 0, this definition leads us to multi-additive, multi-quadratic and multi-
cubic mappings, respectively. It is easily verified that the function f : Rn −→ R
defined by f(v1, . . . , vn) =

∏k
j=1

∏k+p
i=k+1

∏n
r=k+p+1 vjv

2
i v

3
r is a multi-additive-

quadratic-cubic mapping.
We remember that the celebrated Ulam query [18] about the stability of

group homomorphisms has been studied and established for instance in papers
and books [8–10, 12, 13, 16, 17] and moreover references therein. In addition,
in the two last decades, the Ulam stability challenge has been answered and
investigated for some special multivariable mappings such as multi-additive,
multi-quadratic and multi-cubic mappings for example in [2,5–7,11,14,15,19].
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In [4, Corollary 1], the authors obtained a stability result for the multi-
additive-quadratic-cubic functional equation (see equation (2.1)). In this paper,
we modify this corollary and then by an example show that the assertion is not
true for α = 3n− 2k − p.

2. Main results

Let V and W be linear spaces over Q, n ∈ N and k, p ∈ {0, . . . , n}. It is
shown in [4, Proposition 2] that every multi-additive-quadratic-cubic mapping
f : V n −→ W satisfies the equation∑

s∈{−1,1}p

∑
t∈{−1,1}n−k−p

f
(
xk
1 + xk

2 , 2x
p
1 + sxp

2, 2x
n−k−p
1 + txn−k−p

2

)

=

p∑
l=0

n−k−p∑
m=0

∑
i∈{1,2}

6l × 2n−k−p−m × 12mf
(
xk
i ,A

k+p
l ,Bn−k−p

m

)
(2.1)

for all xk
i = (xi1, . . . , xik) ∈ V k, xp

i = (xi,k+1, . . . , xi,k+p) ∈ V p and xn−k−p
i =

(xi,k+p+1, . . . , xin) ∈ V n−k−p, (i ∈ {1, 2}), where

f
(
xk
i ,A

k+p
l ,Bn−k−p

m

)
:=

∑
Ak+p∈Ak+p

l

∑
Bn∈Bn−k−p

m

f
(
xk
i ,Ak+p,Bn

)
for i ∈ {1, 2}, whereas

Ak+p
l :=

{
Ak+p = (Ak+1, . . . , Ak+p) ∈ Ak+p |Card{Aj : Aj = x1j} = l

}
and

Bn−k−p
m :=

{
Bn = (Bk+p+1, . . . , Bn) ∈ Bn−k−p |Card{Bj : Bj = x1j} = m

}
are the subsets of Ak+p = {Ak+p = (Ak+1, . . . , Ak+p) |Aj ∈ {x1j ± x2j , x1j}}
and Bn−k−p = {Bn = (Bk+p+1, . . . , Bn) |Bj ∈ {x1j ± x2j , x1j}}, respectively.

Recall from [4] that a mapping f : V n −→ W has the s-power condition in
the jth component if

f(v1, . . . , vj−1, 2vj , vj+1, . . . , vn) = 2sf(v1, . . . , vj−1, vj , vj+1, . . . , vn)

for all v1, . . . , vn ∈ V . Note that 2-power (resp., 3-power) condition is some-
times called the quadratic (resp., cubic) condition.

For a converse version of the above result, it is proved in Proposition 3
of [4] that each mapping f : V n −→ W fulfills equation (2.1) and the cubic
condition in the last n − k − p and the quadratic condition in the middle p
components, then it is multi-additive-quadratic-cubic. In the next result, we
modify Corollary 2 from [4] without the proof.

Corollary 2.1. Let δ > 0 and α ∈ R with α ̸= 3n − 2k − p. Let also V be
a normed space and W be a Banach space. Suppose that f : V n −→ W is a
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mapping fulfilling

∥Daqcf(x1, x2)∥ ≤ δ

2∑
i=1

n∑
j=1

∥xij∥α

for all x1, x2 ∈ V n. Then, there exists a solution F : V n −→ W of (2.1) such
that

∥f(x)−F(x)∥ ≤ δ

2n−k|23n−2k−p − 2α|

2

k∑
j=1

∥xj∥α +

p∑
j=k+1

∥xj∥α


for all x = (x1, . . . , xn) ∈ V n. Moreover, if F satisfies the cubic condition
in the last n − k − p components and the quadratic condition in the some p
components, then it is a unique multi-additive-quadratic-cubic mapping.

In the sequel, we will indicate an example to show that the condition α ̸=
3n− 2k − p in Corollary 2.1 is necessary. For doing this we need some funda-
mental results as follows. At the first, we bring the upcoming result which was
presented in [11, Theorem 13.4.3].

Theorem 2.2. Let h : Rdm −→ R be a continuous p-additive function. Then
there exist constants cj1···jd ∈ R, j1, . . . , jd = 1, . . . ,m, such that

h(x1, . . . , xd) =

m∑
j1=1

· · ·
m∑

jd=1

cj1···jdx1j1 · · ·xdjd

for all xi = (xi1, . . . , xim) and i = 1, . . . , d.

We bring the following results which have been proved in [1] and [3].

Proposition 2.3 ([3, Proposition 14]). Let f : Rn −→ R be a continuous
n-quadratic function. Then, f has the form

f(r1, . . . , rn) = cr21 · · · r2n
for all r1, . . . , rn ∈ R, where c is a constant in R.

Proposition 2.4 ([1, Proposition 2.4]). If f : Rn −→ R is a continuous n-cubic
function, then there exists a constant c ∈ R such that

f(r1, . . . , rn) = cr31 · · · r3n, (r1, . . . , rn ∈ R).

In the next theorem, we give a representation of the multi-additive-quadratic-
cubic mappings on Rn. Indeed, it is a direct consequence of the above results.

Theorem 2.5. Let f : Rn −→ R be a continuous k-additive, p-quadratic and
n− k − p-cubic function. Then, there exists a constant c ∈ R such that

f(x1, . . . , xn) = c

k∏
j=1

k+p∏
i=k+1

n∏
r=k+p+1

xjx
2
ix

3
r

for all x1, . . . , xn ∈ R.
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Proof. We firstly identify x = (x1, . . . , xn) ∈ Rn with (xk, xp, xn−k) ∈ Rk ×
Rp ×Rn−k−p, where xk := (x1, . . . , xk), x

p := (xk+1, . . . , xk+p) and xn−k−p :=
(xk+p+1, . . . , xn). For any xp ∈ Rp, xn−k−p ∈ Rn−k−p, consider the mapping
Txp,xn−k−p : Rk −→ R defined by

Txp,xn−k−p(x1, . . . , xk) := f
(
x1, . . . , xk, x

p, xn−k−p
)
.

By assumption, Txp,xn−k−p is k-additive. It follows from Theorem 2.2 for the
case d = 1 that there exists a constant c1 ∈ R such that

(2.2) Txp,xn−k−p(x1, . . . , xk) = f
(
x1, . . . , xk, x

p, xn−k−p
)
= c1

k∏
j=1

xj .

Note that c1 depends on xp, xn−k−p. In fact,

(2.3) c1 = T (xp, xn−k−p).

Putting x1 = · · · = xk = 1 in (2.2) and applying (2.3), we get

(2.4) c1 = T (xp, xn−k−p) = f(1, . . . , 1, xp, xn−k−p).

Once again, for any xn−k−p ∈ Rn−k−p, define the mapping Sxn−k−p : Rp −→ R
through

Sxn−k−p(xk+1, . . . , xk+p) := f
(
1, . . . , 1, xk+1, . . . , xk+p, x

n−k−p
)
.

Since Sxn−k−p is p-quadratic, by Proposition 2.3 there exists a constant c2 ∈ R
such that

Sxn−k−p(xk+1, . . . , xk+p) = f
(
1, . . . , 1, xk+1, . . . , xk+p, x

n−k−p
)

= c2

k+p∏
i=k+1

x2
i .(2.5)

It is obvious that c2 depends on xn−k−p and hence

(2.6) c2 = S(xn−k−p).

Letting xk+1 = · · · = xk+p = 1 in (2.5) and using (2.6), we get

c2 = S(xn−k−p) = f(

k-times︷ ︸︸ ︷
1, . . . , 1,

p-times︷ ︸︸ ︷
1, . . . , 1, xn−k−p).

On the other hand, S is an n−k−p-cubic function, and so by Proposition 2.4,
there exists a constant c3 ∈ R such that

(2.7) S(xn−k−p) = f

 k-times︷ ︸︸ ︷
1, . . . , 1,

p-times︷ ︸︸ ︷
1, . . . , 1, xk+p+1, . . . , xn

 = c3

n∏
r=k+p+1

x3
r.

The result now follows from (2.2), (2.4), (2.5), (2.6) and (2.7). □
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We remember that in the proofs of Theorem 2.2, Proposition 2.3 and Propo-
sition 2.4 the continuity of f with respect to each variable separately were used,
and thus all results again hold if and only if f is assumed separately continuous
with respect to each component. On the other hand, in light of the proofs of all
mentioned results, if the continuity condition of f is removed, then the results
remain valid for a function f : Qp −→ Q. Therefore, the same discussions can
be repeated without any gap for Theorem 2.5. We use this fact to make a
non-stable example. In other words, we show the hypothesis α ̸= 3n − 2k − p
can not be eliminated in Corollary 2.1. The argument is taken to what given
in [3, Example 1], but we include it completely for the sake of completeness.
Before it, we bring a notation as follows.

For a mapping f : V n −→ W , we have the notation

Daqcf(x1, x2)

:=
∑

s∈{−1,1}p

∑
t∈{−1,1}n−k−p

f
(
xk
1 + xk

2 , 2x
p
1 + sxp

2, 2x
n−k−p
1 + txn−k−p

2

)

−
p∑

l=0

n−k−p∑
m=0

∑
i∈{1,2}

6l × 2n−k−p−m × 12mf
(
xk
i ,A

k+p
l ,Bn−k−p

m

)
for all xi = (xk

i , x
p
i , x

n−k−p
i ) in which xk

i = (xi1, . . . , xik) ∈ V k, xp
i = (xi,k+1, . . .,

xi,k+p) ∈ V p and xn−k−p
i = (xi,k+p+1, . . . , xin) ∈ V n−k−p, where i ∈ {1, 2} (see

also the begging of this section).

Example 2.6. Let ε > 0 and n ∈ N. Consider the function 1 : Qn −→ Q
whose range is the constant 1. Set |Daqc1| = M and λ = 23n−2k−p−1

22(3n−2k−p)M
ε. Define

the function ϕ : Qn −→ Q through

ϕ(r1, . . . , rn) :=

{
λ
∏k

j=1

∏k+p
t=k+1

∏n
l=k+p+1 rjr

2
t r

3
l for all ru with |ru| < 1,

λ otherwise

for u ∈ {1, . . . , n}. Moreover, consider the function f : Qn −→ Q defined via

f(r1, . . . , rn) =

∞∑
s=0

ϕ(2sr1, . . . , 2
srn)

2(3n−2k−p)s
, (rj ∈ Q).

It is clear that ϕ is bounded by λ. Indeed, for each (r1, . . . , rn) ∈ Qn, we have

|f(r1, . . . , rn)| ≤ 23n−2k−p

23n−2k−p−1
λ. It follows from the last inequality that

|Daqcf (x1, x2)| ≤
23n−2k−p

23n−2k−p − 1
λM(2.8)

for all xi = (xk
i , x

p
i , x

n−k−p
i ) in which xk

i = (xi1, . . . , xik) ∈ V k, xp
i = (xi,k+1, . . .,

xi,k+p) ∈ V p and xn−k−p
i = (xi,k+p+1, . . . , xin) ∈ V n−k−p, where i ∈ {1, 2}.
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We claim that

|Daqcf (x1, x2)| ≤ ε

2∑
i=1

n∑
j=1

|xij |3n−2k−p(2.9)

for all x1, x2 ∈ Qn. Here, we discuss three cases as follows:
(i) For the case that x1 = x2 = 0, obviously, (2.9) is valid.
(ii) Assume that x1, x2 ∈ Qn with

2∑
i=1

n∑
j=1

|xij |3n−2k−p <
1

23n−2k−p
.

Therefore, there exists a positive integer m such that

1

2(m+1)(3n−2k−p)
<

2∑
i=1

n∑
j=1

|xij |3n−2k−p <
1

2m(3n−2k−p)
,(2.10)

and so

|xij |3n−2k−p <

2∑
i=1

n∑
j=1

|xij |3n−2k−p <
1

2m(3n−2k−p)
.(2.11)

We now concludes from (2.11) that 2m|xij | < 1 for all i ∈ {1, 2} and j ∈
{1, . . . , n}, and thus 2m−1|xij | < 1. Moreover, for any z1, z2 ∈ {xij | i ∈
{1, 2}, j ∈ {1, . . . , n}}, we have

2m−1| z1 ± z2| < 1, 2m−1| 2z1 ± z2| < 1.

The definition of ϕ shows that it is a multi-additive-quadratic-cubic function
on (−1, 1)n, and hence Daqcϕ (2sx1, 2

sx2) = 0 for all s ∈ {0, 1, 2, . . . ,m − 1}.
Now, (2.10) and the last equality imply that

|Daqcf (2sx1, 2
sx2)|∑2

i=1

∑n
j=1 |xij |3n−2k−p

≤
∞∑

s=m

|Daqcϕ (2sx1, 2
sx2)|

2(3n−2k−p)s
∑2

i=1

∑n
j=1 |xij |3n−2k−p

≤
∞∑
s=0

λM

2(3n−2k−p)(s+m)
∑2

i=1

∑n
j=1 |xij |3n−2k−p

≤ 23n−2k−pλM

∞∑
s=0

1

2s(3n−2k−p)

= λM
22(3n−2k−p)

23n−2k−p − 1
= ε

for all x1, x2 ∈ Qn and therefore (2.9) holds in this case.

(iii) Let
∑2

i=1

∑n
j=1 |xij |3n−2k−p ≥ 1

23n−2k−p . Applying (2.8), we obtain

|Daqcf (2sx1, 2
sx2)|∑2

i=1

∑n
j=1 |xij |3n−2k−p

≤ 23n−2k−p 23n−2k−p

23n−2k−p − 1
λM = ε.
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The above arguments necessitate that inequality (2.9) is true for all x1, x2 ∈
Qn. Suppose contrary to our claim for non-stability, that there exits a multi-
additive-quadratic-cubic mapping Faqc : Qn −→ Q of (2.1) and δ > 0 such
that

|f(r1, . . . , rn)−Faqc(r1, . . . , rn)| ≤ δ

k∑
j=1

k+p∑
t=k+1

n∑
l=k+p+1

|rj |r2t |rl|3

for all (r1, . . . , rn) ∈ Qn. Without loss of generality, one can take a number
µ ∈ [0,∞) so that

δ

k∑
j=1

k+p∑
t=k+1

n∑
l=k+p+1

|rj |r2t |rl|3 ≤ µ

k∏
j=1

k+p∏
t=k+1

n∏
l=k+p+1

|rj |r2t |rl|3.

Hence,

|f(r1, . . . , rn)−Faqc(r1, . . . , rn)| < µ

k∏
j=1

k+p∏
t=k+1

n∏
l=k+p+1

|rj |r2t |rl|3

for all (r1, . . . , rn) ∈ Qn. A consequence of Theorem 2.5 implies that there is a

constant c ∈ R such that Faqc(r1, . . . , rn) = c
∏k

j=1

∏k+p
t=k+1

∏n
l=k+p+1 |rj |r2t |rl|3

for all (r1, . . . , rn) ∈ Qn. It follows the discussion above that

(2.12) |f(r1, . . . , rn)| ≤ (|c|+ µ)

k∏
j=1

k+p∏
t=k+1

n∏
l=k+p+1

|rj |r2t |rl|3

for all (r1, . . . , rn) ∈ Qn. Given m ∈ N such that mλ > |c| + µ. For r =
(r1, . . . , rn) ∈ Qn with rj ∈

(
0, 1

2m−1

)
for all j ∈ {1, . . . , n}, we have 2srj ∈

(0, 1) for all s = 0, 1, . . . ,m− 1. Therefore,

|f(r1, . . . , rn)| =

∣∣∣∣∣
∞∑
s=0

ϕ (2sr1, . . . , 2
srn)

2s(3n−2k−p)

∣∣∣∣∣
=

∣∣∣∣∣λ
m−1∑
s=0

2s(3n−2k−p)
∏k

j=1

∏k+p
t=k+1

∏n
l=k+p+1 rjr

2
t r

3
l

2s(3n−2k−p)

∣∣∣∣∣
= mλ

k∏
j=1

k+p∏
t=k+1

n∏
l=k+p+1

|rj |r2t |rl|3

> (|c|+ µ)

k∏
j=1

k+p∏
t=k+1

n∏
l=k+p+1

|rj |r2t |rl|3,

and so we are led to a contradiction with (2.12).
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