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THE CLASS OF p-DEMICOMPACT OPERATORS ON

LATTICE NORMED SPACES

Imen Ferjani and Bilel Krichen

Abstract. In the present paper, we introduce a new class of operators

called p-demicompact operators between two lattice normed spaces X and
Y . We study the basic properties of this class. Precisely, we give some

conditions under which a p-bounded operator be p-demicompact. Also,
a sufficient condition is given, under which each p-demicompact operator

has a modulus which is p-demicompact. Further, we put in place some

properties of this class of operators on lattice normed spaces.

1. Introduction

In 1936, lattice-normed spaces were first defined by L. Kantorovich in [18].
After that, the theory of lattice-normed spaces was studied and then well-
developed by S. Kutateladze, and A. Kusraev. Many results from ergodic
theory, probability theory have been extended to lattice-normed vector lattices
(see for instance [9, 15, 16]). It should be noticed that the theory of lattice-
normed spaces was always studied under the condition of decomposability of
lattice norm in [7, 10, 22, 23]. In this paper, we develop a general approach
to lattice-normed vector lattices without requiring decomposability of lattice
norm. We recall that a vector lattice X equipped with a norm ∥ · ∥ is said to
be a normed lattice if |x| ≤ |y| in X implies ∥x∥ ≤ ∥y∥. If a normed lattice is
norm complete, then it is called a Banach lattice.

Recently, based on the theory of Banach lattice and the class of demicom-
pactness, H. Benkhaled et al. in [6] introduced the notion of order weakly
demicompact operator. Note that, the class of demicompactness was used by
W. V. Petryshyn in [25, 26] to construct and investigate the structure of fixed
point sets for nonlinear operators acting on Hilbert and Banach spaces. Let
us recall from [25] that an operator T : D ⊂ X −→ X is said to be demicom-
pact if every bounded sequence (xn)n in D such that (xn − Txn)n converges
strongly, has a convergent subsequence. Further, several results focused on this
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class which contains compact operators [8, 19, 20, 25] and its important role in
spectral theory (see [11, 13, 17]). Some other analyzes were related with the
class of demicompact linear operators (see for instance [2, 12,14,21,27]).

Motivated by demicompactness and related results on bounded linear op-
erators acting on lattice spaces, we introduce in this paper the notion of p-
demicompact operator. Then, we use the framework of the theory of lattice
normed spaces to provide a systematic approach to the demicompactness cri-
teria and generalize some results regarding the characterization of p-compact
operators between lattice normed spaces, which was introduced by A. Aydın
et al. in [4]. These operators generalize several known classes of operators such
as compact, weakly compact and order weakly compact. Let us recall that, a
linear operator T between two lattices normed spaces is said to be p-compact
if, for any p-bounded net (xα)α, the net (Txα)α has a p-convergent subnet.

In what follows, we present some notations and recall some basic definitions
that will be used in the sequel. Let ≤ be an order relation on a real vector
space X. Then X is called an ordered vector space, if it satisfies the following
conditions:

(i) x ≤ y implies x+ z ≤ y + z for all z ∈ X.
(ii) x ≤ y implies λx ≤ λy for all λ ∈ R+.

For an ordered vector space X we let X+ := {x ∈ X : x ≥ 0}. The subset X+

is called the positive cone of X. For each x and y in an ordered vector space
X we let x ∨ y := sup{x, y} and x ∧ y := inf{x, y}. If x ∈ X+ and x ̸= 0,
then we write x > 0. A net (xα)α in a vector lattice X is order convergent (or
o-convergent for short) to x ∈ X, if there exists another net (yβ)β satisfying
yβ ↓ 0 and for any β ∈ B, there exists αβ ∈ A such that |xα − x| ≤ yβ for

all α ≥ αβ . In this case we write xα
o−→ x. A vector e > 0 is called a strong

unit in vector lattice E if, for every x ∈ E, there exists a positive number λ,
depending on x, such that |x| ≤ λe.

Let X be a vector space, E be a vector lattice and p : X → E+ be a vector
norm, i.e.,

(i) p(x) = 0 ⇐⇒ x = 0.
(ii) p(λx) = |λ|p(x) for all λ ∈ R, x ∈ X.
(iii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Then the triple (X, p,E) is called a lattice-normed-space abbreviated as LNS.
The lattice norm p in an LNS (X, p,E) is said to be decomposable if for all
x ∈ X and e1, e2 ∈ E+ it follows from p(x) = e1+e2, that there exist x1, x2 ∈ X
such that x = x1+x2 and p(xk) = ek, k = 1, 2. If X is a vector lattice and the
vector norm p is monotone (|x| ≤ |y| =⇒ p(x) ≤ p(y)), then the triple (X, p,E)
is called a lattice-normed vector lattice abbreviated as LNVL. We abbreviate
the convergence p(xα−x)

o−→ 0 as xα
p−→ x and say that xα p-converges to x.

In an LNS (X, p,E) a subset A of X is called p-bounded if there exists e ∈ E
such that p(a) ≤ e for all a ∈ A. An LNVL (X, p,E) is called op-continuous

if xα
o−→ 0 implies that p(xα)

o−→ 0. Consider LNSs (X, p,E) and (Y,m, F ).
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A linear operator T : X → Y is said to be dominated if there is a positive
operator S : E → F satisfying

m(T (x)) ≤ S(p(x)) for all x ∈ X.

In this case, S is called a dominant for T . The set of all dominated operators
from X to Y is denoted by M(X,Y ).

The sets L(X,Y ) and L∼(E,F ) denote, respectively, the space of all linear
operators between vector spaces X and Y , and the ordered vector spaces of all
order bounded operators from E into F . Recall that T ∈ L(X;Y ), where X

and Y are normed spaces, is called a Dunford-Pettis operator if xn
w−→ 0 in X

implies that Txn
∥.∥−→ 0 in Y , here

w−→ denotes the weak convergence. For an
operator T ∈ L(X;Y ), the range of T is denoted by R(T ).

A normed lattice (X, ∥ · ∥) is called order continuous if a net xα ↓ 0 in X

implies ∥x∥ ↓ 0 or equivalently xα
o−→ 0 in X implies ∥xα∥ → 0. A normed

lattice (X, ∥ · ∥) is called σ-order continuous if a sequence xn ↓ 0 in X implies

∥xn∥ ↓ 0 or equivalently xn
o−→ 0 in X implies ∥xn∥ → 0. Every order

continuous normed lattice is σ-order continuous. A normed lattice (X, ∥ · ∥) is
called a KB-space if for 0 ≤ xα ↑ and supα ∥xα∥ < ∞ we get that the net (xα)
is norm convergent. A positive vector a ̸= 0 in a vector lattice X is called atom
if, for any x ∈ [0, a], there is λ ∈ R such that x = λa.

Let a be an atom in a vector lattice X. The principal band Ba generated by
a is a projection band, and Ba = Ia = span{a} = {λa, λ ∈ R}, where Ia is the
ideal generated by a. A vector lattice X is called atomic if the band generated
by its atoms is X. If a vector lattice X is atomic, then for any x > 0, there
is an atom a such that a ≤ x. A Banach lattice E is said to be an AM-space
if x ∧ y = 0 in E implies ∥x ∨ y∥ = max{∥x∥; ∥y∥}. It is know that, in an
AM-space with strong unit, every norm bounded set is order bounded. For
more details on lattice spaces, the reader can see ([1, 3, 5, 7, 22,24]).

An outline of this paper is as follows: In Section 2, we introduce a new class
of operators, called p-demicompact (Definition 2.1). Then, we use our new
class to generalize some results regarding the characterizations of the operators
p-compact. Furthermore, we give relations between demicompact operator on
acting mixed norm and p-demicompact operators. Note also that under a suf-
ficient condition, we show that each p-demicompact operator has a modulus
which is p-demicompact (see Theorem 2.5). We end this paper by studying the
relationship between polynomially p-demicompact and p-demicompact opera-
tors (see Theorem 2.6).

2. Main results

Definition 2.1. LetX, Y be two LNSs and T ∈ L(X,Y ) such thatR(T ) ⊂ X.
T is called p-demicompact if, for every p-bounded net (xα)α in X such that

xα − Txα
p−→ y, there exists a p-convergent subnet (xαβ)β .
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In the next theorem, we show that if a net of p-demicompact dominated
operators p-convergent to a dominated operator, then it is also p-demicompact.

Theorem 2.1. Let (X, p,E) be a decomposable LNS and (Y, q, F ) LNS such
that F is order complete. Let (Tm)m be a sequence in M(X,Y ) such that R(Tm)

and R(T ) are subsets of X. If each Tm is p-demicompact with Tm
p−→ T in

M(X,Y ), then T is a p-demicompact operator.

Proof. Let xα be a p-bounded net in X such that xα − Txα
p−→ y. Since xα is

a p-bounded net in X, there is e ∈ E+ such that p(xα) ≤ e for all α. Now, we
can write

xα − Tmxα = xα − Tmxα + Txα − Txα,

therefore, we get

q(xα − Tmxα) = q(xα − Tmxα + Txα − Txα)

≤ q(xα − Txα) + q(Tmxα − Txα).

Since Tm ∈ M(X,Y ) for all m ∈ N, we have

q(Tmxα − Txα) ≤ |Tm − T |(p(xα)) ≤ |Tm − T |(e).

Since Tm
p−→ T in M(X,Y ), by Theorem VIII.2.3 [28] it follows that

|Tm − T |(e) o−→ 0 in F as n → ∞. On the other hand, by hypothesis, we

have xα − Txα
p−→ y, this implies that q(xα − Txα)

o−→ y. Hence, we deduce

that q(xα − Tmxα)
o−→ y. Thus, xα − Tmxα

p−→ y. Now, using the fact that
Tm is p-demicompact, we infer that there exists a p-convergent subnet (xαβ)β
of (xα)α. Consequently, T is p-demicompact. □

In following two propositions, we have relations between demicompact op-
erators on acting mixed norm and p-demicompact operators.

Proposition 2.1. Let (X, p,E) be an LNS, where (E, ∥ · ∥E) is a normed
lattice and (Y, q, F ) be an LNS, where (F, ∥ · ∥F ) is a Banach lattice. Let
T : (X, p, ∥ · ∥E) → (Y, q, ∥ · ∥F ) such that R(T ) ⊂ X. If T is demicompact,
then T : (X, p,E) → (Y, q, F ) is p-demicompact.

Proof. Let (xα)α be a p-bounded net in X such that xα − Txα
p−→ y. Since

xα is a p-bounded net in X, there is e ∈ E such that p(xα) ≤ e for all α. So,
∥p(xα)∥E ≤ ∥e∥E < ∞. Hence, xα is norm bounded in (X, p, ∥·∥E). This allows
us to get q(xα − Txα)

o−→ y or q-∥xα − Txα∥F → y. Since T is demicompact,
there exists a subnet xαβ such that q-∥xαβ − x∥F → 0 or ∥q(xαβ − x)∥F → 0.
Since (F, ∥ · ∥F ) is a Banach lattice, by Theorem VII.2.1 [28] there is a further

subnet xαβk
such that q(xαβk

−x)
o−→ 0. Therefore, xαβk

p−→ x. Consequently,
T is a p-demicompact operator. □

Proposition 2.2. Let (X, p,E) be an LNS, where (E, ∥ · ∥E) is an AM-space
with a strong unit. Let (Y, q, F ) be an LNS, where (F, ∥ · ∥F ) is an order
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continuous normed lattice. If T : (X, p,E) → (Y, q, F ) such that R(T ) ⊂ X is
p-demicompact, then T : (X, p, ∥ · ∥E) → (Y, q, ∥ · ∥F ) is demicompact.

Proof. Let (xα)α be a normed bounded net in (X, p, ∥ · ∥E) that is ∥p(xα)∥E ≤
k < ∞ for all α such that ∥xα − Txα∥F → y. Since (E, ∥ · ∥E) is an AM-space
with a strong unit, p(xα) is order bounded in E. Thus xα is a p-bounded net in

(X, p,E). Thus, we have xα − Txα
p−→ y. Now, from the p-demicompactness

of T , it follows that there exists a subnet xαβ such that xαβ
p−→ x, then

q(xαβ−x)
o−→ 0 in F . Since (F, ∥·∥F ) is order continuous, ∥q(xαβ−x)∥F → 0.

Hence, ∥xαβ∥E → x. Consequently, T is a demicompact operator. □

It is known that a finite rank operator is demicompact. Similarly, we have
the following result.

Proposition 2.3. Let (X, p,E) and (Y, q, F ) be LNSs. Let T : (X, p,E) →
(Y, q, F ) such that R(T ) ⊂ X. If T is a p-bounded finite rank operator, then T
is p-demicompact.

Proof. Without loss of generality, we may suppose that T is given by Tx =
f(x)y0 for some p-bounded functional f : (X, p,E) → (R, | · |,R) and y0 ∈ Y .

Let xα be a p-bounded net in X such that xα − Txα
p−→ y. Since xα is a

p-bounded net in X, f(xα) is bounded in R. So there is a subnet xαβ such that
f(xαβ) → λ for some λ ∈ R. Now, we have

q(xαβ − λy0) = q(xαβ − Txαβ + Txαβ − λy0)

≤ q(xαβ − Txαβ) + q(Txαβ − λy0).

We have

q(Txαβ − λy0) = q(f(xαβ)y0 − λy0)

= |f(xαβ)− λ| q(y0)
o−→ 0.

Further, by hypothesis, we have xα − Txα
p−→ y, this implies that q(xα −

Txα)
o−→ y. Hence, we deduce that q(xαβ − λy0)

o−→ y. Consequently, xαβ −
λy0

p−→ y. Thus, T is p-demicompact. □

Remark 2.1 ([4]). If X is an atomic KB-space, then every order bounded net
has an order convergent subnet.

Lemma 2.1. Let (X, ∥ · ∥) be a normed space. Then xn
∥·∥−→ x if and only

if for any subsequence (xnk
)k, there is a further subsequence (xnkj

)j such that

xnkj

∥·∥−→ x.

The following proposition gives information about when an order bounded
operator is p-demicompact.
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Proposition 2.4. Let X be a vector lattice and (Y, q, F ) be an op-continuous
LNVL such that Y is an atomic KB-space. If T ∈ L∼(X,Y ) such that R(T ) ⊂
X, then T : (X, | · |, X) → (Y, q, F ) is p-demicompact.

Proof. Let (xα)α be a p-bounded net in (X, | · |, X) such that xα − Txα
p−→ y.

Since xα be a p-bounded net in (X, | · |, X), xα is order bounded in X. The fact
that T is order bounded, allows us to get (Txα)α is order bounded in Y , which
is an atomic KB-space, so from Remark 2.1 there are a subnet xαβ and z ∈ Y

such that Txαβ
o−→ z. Since (Y, q, F ) is op-continuous, q(Txαβ − z)

o−→ 0. By

hypothesis, we have xα−Txα
p−→ y, which implies that q(xα−Txα−y)

o−→ 0.
Now, we can write xαβ = xαβ − Txαβ + Txαβ . Thus

q(xαβ − (y + z)) = q(xαβ − Txαβ − y + Txαβ − z)

≤ q(xαβ − Txαβ − y) + q(Txαβ − z)
o−→ 0.

Hence, we deduce that q(xαβ − (y + z))
o−→ 0. Thus, xαβ

p−→ y + z. Conse-
quently, T is p-demicompact. □

In the next proposition, under some conditions, we see that p-bounded op-
erator is p-demicompact.

Proposition 2.5. Let (X, p,E) and (Y, | · |, Y ) be two LNVLs such that Y is
an atomic KB-space. If T : (X, p,E) → (Y, | · |, Y ) such that R(T ) ⊂ X is
p-bounded, then T is p-demicompact.

Proof. Let (xα)α be a p-bounded net in (X, | · |, X) such that xα − Txα
p−→ y.

From the fact that T is p-bounded, it follows that Txα is order bounded in
Y . Since Y is an atomic KB-space, by Remark 2.1, there is a subnet xαβ and

z ∈ Y such that Txαβ
o−→ z. Now, we have xαβ = xαβ − Txαβ + Txαβ , which

implies that

|xαβ − (y + z)| = |xαβ − Txαβ − y + Txαβ − z|

≤ |xαβ − Txαβ − y|+ |Txαβ − z| o−→ 0.

Hence, |xαβ |
o−→ y + z. Thus, xαβ

p−→ y + z. Consequently, T is p-demi-
compact. □

In the next examples, we see that we can not omit the atomicity in Propo-
sitions 2.4 and 2.5.

Example 2.1. We consider the identity operator

I : (L1[0; 1]; | · |;L1[0; 1]) → (L1[0; 1]; | · |;L1[0; 1]).

The sequence of Rademacher functions, that is the function rn : [0; 1] → R
defined by

rn(t) = sgn sin(2nπt) for t ∈ [0; 1],
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is order bounded by 1 and has no order convergent subsequence. Indeed, let
rnk be a subsequence of rn such that

rnk → f.

Then
rnk(x) → f(x) a.e. for each x ∈ [0; 1].

But, for each x ∈ [0; 1], there are infinitely many n’s such that rnk(x) = 1 and
infinitely many n’s such that rnk(x) = −1. So, I is not p-demicompact.

Example 2.2. The identity operator I : (l1; | · |; l1) → (l1; | · |; l1) satisfies
the conditions of Proposition 2.4, where X = l1, (Y ;m;F ) = (l1; | · |; l1),
Y = l1, which is an atomic KB-space, because l1 has no copy of c0 (note
that x =

(
1
n

)
∈ c0 but

∑∞
n=1

1
n = ∞, so

(
1
n

)
/∈ l1), and also (l1; | · |; l1) is

op-continuous, so I is p-demicompact. This shows that the identity operator
on an infinite dimensional space can be p-demicompact.

Theorem 2.2. Let (X, p,E) be an LNS with (E, ∥ · ∥E) be an order continuous
Banach lattice. T : (X, p,E) → (X, p,E) is p-demicompact if and only if T is
order weakly demicompact.

Proof. Assume that T is p-demicompact. Let xα be an order bounded net in E

such that xα
w−→ 0 and ∥xα − Txα∥E → 0. We have ∥xα − Txα∥E → 0, since

(E, ∥ · ∥E) is a Banach lattice, it follows that there is a subnet xαβ
such that

xαβ
− Txαβ

o−→ 0 in E. From Theorem VII.2.1 [28], we get xαβ
− Txαβ

p−→ 0
in (X, p,E). Now, taking into account that T is p-demicompact, there exists a

subnet xαβk
such that xαβk

p−→ 0. Now, we can write Txαβk
= Txαβk

−xαβk
+

xαβk
. We get

p(Txαβk
) = p(Txαβk

− xαβk
+ xαβk

)

≤ p(Txαβk
− xαβk

) + p(xαβk
) → 0.

Which implies that p(Txαβk
) → 0. So, Txαβk

o−→ 0. Thus, since (E, ∥ · ∥E) is
order continuous, we obtain that ∥Txαβk

∥
E
→ 0. Hence, from Lemma 2.1, we

get ∥Txα∥E → 0. Further, we have xα = xα − Txα + Txα. Thus,

∥xα∥E = ∥xα − Txα + Txα∥E
≤ ∥xα − Txα∥E + ∥Txα∥E → 0.

Hence, we deduce that ∥xα∥E → 0. Consequently, T is order weakly demicom-
pact. To prove the converse. Assume that T is order weakly demicompact.

Let xα be a p-bounded net in E such that xα
w−→ 0 and xα − Txα

p−→ 0 in

(X, p,E). This implies that xα − Txα
o−→ 0 in E. Since (E, ∥ · ∥E) is an order

continuous Banach lattice, ∥xα − Txα∥E → 0. Now, from the fact that T is
order weakly demicompact, we get ∥xα∥E → 0. Therefore, since (E, ∥ · ∥E)
is a Banach lattice, there is a subnet xαβ

such that xαβ

o−→ 0 in E and so

xαβ

p−→ 0 in (X, p,E). □
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Theorem 2.3. Let (X, p,E) be an LNS with (E, ∥ · ∥E) is a Banach lattice. Let
T : (X, p,E) → (X, p,E) such that T is Dunford-Pettis. If T is p-demicompact,
then T is order weakly demicompact.

Proof. Let (xα)α be an order bounded net in E such that xα
w−→ 0 and

∥xα − Txα∥E → 0. We have ∥xα − Txα∥E → 0, since (E, ∥ · ∥E) is a Ba-

nach lattice, there is a subnet xαβ
such that xαβ

− Txαβ

o−→ 0 in E. So,

we get xαβ
− Txαβ

p−→ 0 in (X, p,E). Now, since T is p-demicompact, there

exists a subnet xαβk
such that xαβk

p−→ 0. Since xα
w−→ 0 and T is Dunford-

Pettis, we obtain ∥Txα∥E → 0, so we have ∥Txαβk
∥
E
→ 0. Now, we can write

xαβk
= xαβk

− Txαβk
+ Txαβk

. Thus

∥xαβk
∥
E
= ∥xαβk

− Txαβk
+ Txαβk

∥
E

≤ ∥xαβk
− Txαβk

∥
E
+ ∥Txαβk

∥
E
→ 0.

Hence, we deduce that ∥xαβk
∥
E
→ 0. Now, applying Lemma 2.1, we infer that

∥xα∥E → 0. Consequently, T is order weakly demicompact. □

Theorem 2.4. Let (X, p,E) be an LNS with (E, ∥ · ∥E) is order continuous.
Let T : (X, p,E) → (X, p,E). If T is order weakly demicompact, then T is
p-demicompact.

Proof. Let (xα)α be a p-bounded net, then order bounded in E such that

xα
w−→ 0 and xα − Txα

p−→ 0. We have xα − Txα
p−→ 0, then xα − Txα

o−→ 0
in E. Since (E, ∥ · ∥E) is order continuous, we get ∥xα − Txα∥E → 0. Now,
from the fact that T is order weakly demicompact, we obtain that ∥xα∥E → 0.
Thus, using Lemma 2.1, there is further subnet such that ∥xαβk

∥
E
→ 0. Hence,

we deduce that xαβk

p−→ 0. Consequently, T is p-demicompact. □

A linear mapping T : E → F between two vector lattices is called disjoint-
ness preserving if |T (x)| ∧ |T (y)| = 0 for all x, y ∈ E satisfying |x| ∧ |y| = 0.
Now, we give a sufficient condition under which each p-demicompact operator
has a modulus which is p-demicompact.

Theorem 2.5. Let (X, p,E) and (Y, q, F ) be LNSs. Let T : (X, p,E) →
(Y, q, F ) such that R(T ) ⊂ X be p-demicompact. Then the modulus of T is
p-demicompact if T is a p-bounded disjointness preserving operator.

Proof. T is a p-bounded disjointness preserving operator, so it is an order dis-
jointness preserving operator, then a theorem of Meyer Nieberg ([24], Theorem
3.1.4) implies that |T | exists and that |T |(x) = |T (x)| for all x ∈ E+. Now,

let xα be a p-bounded net in E such that xα − |T |xα
p−→ y. This implies that

xα − |Txα|
p−→ y. Hence, q(xα − |Txα|)

o−→ y.

q(xα − Txα) = q(|xα − Txα|)

≤ q(xα − |T |xα)
o−→ y.
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Thus, we obtain that q(xα − Txα)
o−→ y. Hence, xα − Txα

p−→ y. Since T is
p-demicompact, it follows that there is a p-convergent subnet (xαβ

)β of (xα)α.
Consequently, |T | is a p-demicompact operator. □

Theorem 2.6. Let (X, p,E) be an LNS and T : (X, p,E) → (X, p,E). Then,
Tm is p-demicompact for some m ≥ 1 if and only if T is p-demicompact.

Proof. We assume that the assumption holds and let (xα)α be a p-bounded net

in E such that xα − Txα
p−→ y. Now, we have the following equality

I − Tm =

m−1∑
j=0

T j(I − T ).

Thus, we obtain that

(I − Tm)xα =

m−1∑
j=0

T j(I − T )xα.

From hypothesis, we have that xα − Txα
p−→ y, and this implies that (I −

Tm)xα
p−→ z. Now, using the fact that Tm is p-demicompact, we infer that

there exists a p-convergent subnet (xαβ
)β of (xα)α. Consequently, we deduce

that T is a p-demicompact operator. The converse is similarly. □

Theorem 2.7. Let (X, p,E) be an LNS and T : (X, p,E) → (X, p,E) be a
p-demicompact operator. If S : (X, p,E) → (X, p,E) is p-compact, then T + S
is a p-demicompact operator.

Proof. Let (xα)α be a p-bounded net in E such that xα − (T + S)xα
p−→ y.

Using the fact that S is p-compact, it follows that there is a subnet xαβ
such

that Sxαβ

p−→ z. Thus, from hypothesis, we obtain that xαβ
−Txαβ

p−→ y+z.
Now, since T is p-demicompact, we infer that there is a subnet xαβk

of xαβ

p-convergent. Consequently, T + S is a p-demicompact operator. □

Remark 2.2. (i) Every p-compact operator T : (X, p,E) → (X, p,E) is p-

demicompact. Indeed, let xα be a p-bounded net in E such that xα−Txα
p−→

y. Since T is p-compact, it follows that there exists a subnet xαβ
such that

Txαβ

p−→ z. Thus, we get xαβ
−Txαβ

p−→ y, which implies that xαβ

p−→ y+z.
Consequently, T is p-demicompact.

(ii) Let (X, ∥ · ∥X ,R) and (Y, ∥ · ∥Y ,R) be normed spaces. Then

T : (X, ∥ · ∥X ,R) → (Y, ∥ · ∥Y ,R)

such that R(T ) ⊂ X is p-demicompact if and only if T : X → Y is demicom-
pact.
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