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ON THE GENERALIZED ORNSTEIN-UHLENBECK

OPERATORS WITH REGULAR AND SINGULAR

POTENTIALS IN WEIGHTED Lp-SPACES

Imen Metoui

Abstract. In this paper, we give sufficient conditions for the generalized
Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse

square potentials

AΦ,G,V,c = ∆−∇Φ · ∇+G · ∇ − V + c|x|−2

with a suitable domain generates a quasi-contractive, positive and ana-

lytic C0-semigroup in Lp(RN , e−Φ(x)dx), 1 < p < ∞. The proofs are

based on an Lp-weighted Hardy inequality and perturbation techniques.
The results extend and improve the generation theorems established by

Metoui [7] and Metoui–Mourou [8].

1. Introduction

Generalized Ornstein-Uhlenbeck operators have been widely investigated in
literrature by using different methods, see for instance [1, 3–12]. The main
motivation comes from the study of Metafune–Prüss–Rhandi–Schnaubelt [6] in
which they dealt with the operator

AΦ,G = ∆−∇Φ · ∇u+G · ∇

in the space Lp(RN , dµ), where dµ = e−Φ(x)dx, 1 < p < ∞. More precisely,
under appropriate conditions on Φ and G, they established that AΦ,G with
the domain W 2,p

µ (RN ) generates an analytic C0-semigroup on Lp(RN , dµ), 1 <
p < ∞. Afterwards, Kojima–Yokota [4] also Sobajima–Yokota [12] studied
the operator AΦ,G perturbed by a positive potential V ∈ C1(RN ). By using
different methods and some conditions on Φ, G and V , they proved that the
operator AΦ,G − V endowed with the domain

W 2,p
V (RN , dµ) =

{
u ∈ W 2,p

µ (RN ) : V u ∈ Lp
µ(RN )

}
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generates a quasi-contractive analytic C0-semigroup on Lp
µ(RN ) for 1 < p <

∞. Besides, several recent studies concerned with AΦ,G perturbed by singular
potentials [1, 3, 7, 8]. In [1], Durante–Rhandi considered the case where p = 2,
G(x) = 0, Φ(x) = 1

2 ⟨Mx, x⟩ and V = c|x|−2. More specifically, they showed
that

AM,c = ∆−Mx · ∇+ c|x|−2

is essentially selfadjoint in L2(RN , dµ) if c ≤ (N−2)2

4 − 1 and N > 4, where

dµ = (2Π)−
N
2 (detM)

1
2 e−

1
2 ⟨Mx,x⟩dx

and M is a real, symmetric N × N -matrix. Their result was generalized by
Fornaro–Rhandi [3] to Lp-setting, 1 < p < ∞. Subsequently, the operator AΦ,G

perturbed by a nonnegative singular potential νV in the space Lp(RN , dµ),
1 < p < ∞, has been investigated by Metoui–Mourou [8]. They showed that
AΦ,G−νV generates a quasi-contractive and positive analytic C0-semigroup in
Lp(RN , dµ). More recently, Metoui [7] proved under sufficient conditions on Φ,
G, V and c that

AΦ,G,V,c = δ −∇Φ · ∇u+G · ∇ − V + c|x|−2

generates a positive C0-semigroup in L2(RN , dµ).
To complete the picture, we investigate the perturbation of AΦ,G,V with the

inverse square potential c|x|−2 in the weighted space Lp(RN , dµ), 1 < p < ∞.
We focus on the accretivity and dispersivity of such operator. Moreover, we
provide sufficient conditions on Φ, G, V and c ensuring that AΦ,G,V,c endowed
with a suitable domain generates an analytic semigroup on the weighted spaces
Lp
µ(RN ), 1 < p < ∞. Our proofs based on an Lp-weighted Hardy’s inequality

and on the following perturbation results.

Theorem 1.1 ([11, Theorem 1.6]). Let A and B be linear m-accretive operators
in a Banach space X with uniformly convex X∗. Let D be a core of A. Assume
that there are constants a, b, d ≥ 0 such that for all u ∈ D and ϵ > 0,

Re⟨Au, ∥Bεu∥2−p
p |Bεu|p−2Bεu⟩ ≥ −b∥Bεu∥2p − d∥u∥2p − a∥Bεu∥p∥u∥p,

where Bϵ = B(I + ϵB)−1 denotes the Yosida approximation.
If ν > b, then A+νB with domain D(A)∩D(B) is m-accretive and D(A)∩

D(B) is core for A.
Moreover, A+ bB is essentially m-accretive on D(A) ∩D(B).

Theorem 1.2 ([11, Theorem 1.7]). Let A and B be linear m-accretive operators
in a Banach space X with uniformly convex X∗. Let D be a core of A. Assume
that

(i) there are constants d, a ≥ 0 and k1 > 0 such that for all u ∈ D and
ε > 0,

Re⟨Au, ∥Bεu∥2−p
p |Bεu|p−2Bεu⟩ ≥ k1∥Bεu∥2p − d∥u∥2p − a∥Bεu∥p∥u∥p,

where Bε denote the Yosida approximation of B.
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(ii) Re⟨u, ∥Bεu∥2−p
p |Bεu|p−2Bεu⟩ ≥ 0 for all u ∈ X and ε > 0.

(iii) there is k2 > 0 such that A− k2B is accretive.

Set k = min{k1, k2}. If t > −k, then A+ tB with domain D(A+ tB) = D(A)
is m-accretive and any core of A is also core for A+ tB. Furthermore, A−kB
is essentially m-accretive on D(A).

Now, we introduce the following conditions on Φ, G and V :

(A1) The function Φ ∈ C2(RN ,R) and satisfies that for every τ ∈ (0, 1
2N ),

there is a constant Cτ > 0 such that

|D2Φ| ≤ τ |∇Φ|2 + Cτ .

(A2) The function G ∈ C1(RN ,RN ) satisfies

|G| ≤ κ
(
|∇Φ|2 + V + λ1

) 1
2

for some constants κ ≥ 0 and λ1 ≥ 0.
(A3) There are constants θ < p and β ∈ R such that

G · ∇Φ− divG− θV ≤ β.

(A4) There are constants γ > 0 and λ2 ≥ 0 such that

|∇V | ≤ γV
3
2 + λ2.

(A5) There is a constant ξ > 0 such that∣∣∣G− p− 2

p
∇Φ

∣∣∣ ≤ ξ|x|.

We mention that under the assumptions (A1) for all τ > 0, (A2), (A3) for some
constants θ ∈ R, β1 ∈ R and (A4) Sobajima–Yokota established in [12, Theorem
1.1] that the operator AΦ,G,V with domain

W 2,p
V (RN , dµ) =

{
u ∈ W 2,p

µ (RN ) : V u ∈ Lp
µ(RN )

}
generates an analytic semigroup on Lp

µ(RN ) for 1 < p < ∞ if

θ

p
+ (p− 1)γ

(κ
p
+

γ

4

)
< 1.

The paper is structured as follows. In Section 2, we prove an Lp-weighted Hardy
inequality. Besides, we use them to study the accretivity and the dispersivety
of AΦ,G,V,c. In Section 3, we state and prove the main generation results.

2. Hardy inequality

Our main aim of this section is to extend the result of [7, Theorem 2.1] to
the whole space Lp

µ(RN ) for 1 < p < ∞.
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Theorem 2.1. Assume N ≥ 3 and (A1) hold. Then, for any u ∈ C∞
c (RN ),

one has

γ⋆
N

∫
RN

|u|p

|x|2
dµ ≤ (4 + σ)

∫
RN

|u|p−2|∇u|2dµ+ cσ

∫
RN

|u|pdµ

if p ≥ 2 and

γ⋆
N

∫
RN

|u|p

|x|2
dµ ≤ (4 + σ) lim

δ→0

∫
RN

(|u|2 + δ)
p−2
2 |∇u|2dµ+ cσ

∫
RN

|u|pdµ

if 1 < p < 2, for any σ > 0 with a corresponding constant cσ > 0, where

γ⋆
N =

(
N−2
p

)2

.

Proof. Let u ∈ C∞
c (RN ). Take δ > 0 if 1 < p < 2 and δ = 0 if p ≥ 2. Hence,

we have

(|u|2 + δ)
p
4 (x) exp

(
− Φ(x)

2

)
= −

∫ ∞

1

d

dt

(
(|u|2 + δ)

p
4 (tx) exp(−Φ(tx)

2
)
)
dt.

Thus, by a change of variables, it follows that∥∥∥ (|u|2 + δ)
p
4

|x|

∥∥∥
L2

µ

≤
(∫ ∞

1

t−
N
2 dt

)∥∥∥p
2
∇|u||u|(|u|2 + δ)

p−4
4 − 1

2
(|u|2 + δ)

p
4∇Φ

∥∥∥
L2

µ

≤
( p

N − 2

)2∥∥∥∇|u||u|(|u|2 + δ)
p−4
4 − 1

p
(|u|2 + δ)

p
4∇Φ

∥∥∥
L2

µ

.

Moreover, by using the Höder, Young and Jensen inequalities, we infer that(N − 2

p

)2
∫
RN

(|u|2 + δ)
p
2

|x|2
dµ(2.1)

≤
∫
RN

|∇|u||2|u|2(|u|2 + δ)
p−4
2 dµ+

1

p2

∫
RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

+
2

p

∫
RN

∇Φ · ∇|u||u|(|u|2 + δ)
p−2
2 dµ

≤
∫
RN

|∇|u||2|u|2(|u|2 + δ)
p−4
2 dµ+

1

p2

∫
RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

+
2

p

(∫
RN

|u|2|∇|u||2(|u|2 + δ)
p−4
2 dµ

) 1
2
(∫

RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

) 1
2

≤
(

1

p2
+

η

p

)∫
RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

+

(
1 +

1

ηp

)∫
RN

|u|2|∇|u||2(|u|2 + δ)
p−4
2 dµ.
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Furthermore, combining integration by parts, (A1) and Young inequalities, we
deduce that∫

RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

=

∫
RN

∆Φ(|u|2 + δ)
p
2 dµ+ p

∫
RN

∇Φ · ∇|u||u|(|u|2 + δ)
p−2
2 dµ

≤
(
Nτ +

1

2

)∫
RN

|∇Φ|2(|u|2 + δ)
p
2 dµ+NCτ

∫
RN

(|u|2 + δ)
p
2 dµ

+
p2

2

∫
RN

|u|2|∇|u||2(|u|2 + δ)
p−4
2 dµ.

Hence,∫
RN

|∇Φ|2(|u|2 + δ)
p
2 dµ

≤ 2NCτ

1− 2Nτ

∫
RN

(|u|2 + δ)
p
2 dµ+

p2

1− 2Nτ

∫
RN

|u|2|∇|u||2(|u|2 + δ)
p−4
2 dµ

for every τ ∈ (0, 1
2N ). Hence, collecting all the terms and using the identity

|∇u| ≥ |∇|u||, we conclude that(N − 2

p

)2
∫
RN

(|u|2 + δ)
p
2

|x|2
dµ

≤
[( 1

p2
+

η

p

)
p2

1− 2Nτ
+ 1 +

1

ηp

] ∫
RN

|∇u|2(|u|2 + δ)
p−2
2 dµ

+

(
1

p2
+

η

p

)
2NCτ

1− 2Nτ

∫
RN

(|u|2 + δ)
p
2 dµ

− δ
[( 1

p2
+

η

p

)
p2

1− 2Nτ
+ 1 +

1

ηp

] ∫
RN

|∇|u||2(|u|2 + δ)
p−4
2 dµ.

So, taking the minimum with respect to η, that is, choosing η = 1
p , τ small,

and letting δ go to zeros, we get (2.1). The case where p ≥ 2 can be handled
similarly. □

3. Dissipativity and dispersivity of AΦ,G,V,c

As an application of Theorem 2.1, we establish firstly the dissipativity of the
operator AΦ,G,V,c.

Proposition 3.1. Assume that (A1) and (A3) hold. Then, the operator
AΦ,G,V,c − γ2 with domain C∞

c (RN ) is dissipative in Lp
µ(RN ) if and only if

c ≤ γ0, where γ0 = (N−2)2(p−1)
4(4+σ) and γ2 = β

p + cσ(p−1)
4+σ , σ > 0.
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Proof. Let u ∈ C∞
c (RN ). Take δ > 0 if 1 < p < 2 and δ = 0 if p ≥ 2. Then, by

using the identity Re(u∇u) = |u|∇|u| and integration by parts, it follows that

Re⟨AΦ,G,V u, u(|u|2 + δ)
p−2
2 ⟩Lp

µ

= −
∫
RN

|∇u|2(|u|2 + δ)
p−2
2 dµ

− (p− 2)

∫
RN

|Re(u∇u)|2(|u|2 + δ)
p−4
2 dµ

− 1

p

∫
RN

(
divG−G · ∇Φ

)
(|u|2 + δ)

p
2 dµ

−
∫
RN

V (|u|2 + δ)
p
2 dµ+ δ

∫
RN

V (|u|2 + δ)
p−2
2 dµ.

So, using the identity |∇u|2 ≥ |∇|u||2, we obtain

Re⟨AΦ,G,V u, u|u|p−2⟩Lp
µ

≤ − (p− 1)

∫
RN

|∇|u||2|u|p−2dµ− 1

p

∫
RN

(
divG−G · ∇Φ

)
|u|pdµ

−
∫
RN

V |u|pdµ

if p ≥ 2 and

Re⟨AΦ,G,V u, u|u|p−2⟩Lp
µ

≤ − (p− 1) lim
δ→0+

∫
RN

|∇|u||2(|u|2 + δ)
p−2
2 dµ

− 1

p

∫
RN

(
divG−G · ∇Φ

)
|u|pdµ−

∫
RN

V |u|pdµ

if 1 < p < 2. Using now Theorem 2.1 and (A3), we infer, in both cases, that

Re⟨AΦ,G,V u, u|u|p−2⟩Lp
µ

≤ − (N − 2)2(p− 1)

4(4 + σ)

∫
RN

|u|p

|x|2
dµ+

(β
p
+

cσ(p− 1)

4 + σ

)∫
RN

|u|pdµ.

Hence, we have

Re⟨AΦ,G,V u+ c|x|−2u, u|u|p−2⟩Lp
µ

≤
(
c− (N − 2)2(p− 1)

4(4 + σ)

)∫
RN

|u|p

|x|2
dµ+

(β
p
+

cσ(p− 1)

4 + σ

)∫
RN

|u|pdµ.

Thus, it follows that

Re⟨AΦ,G,V,cu− γ2u, u|u|p−2⟩Lp
µ
≤ 0

if and only if c ≤ γ0 so the proof is now complete. □

Now, we present sufficient conditions for the dispersivity of AΦ,G,V,c.
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Proposition 3.2. Suppose that (A1) and (A3) are verified. Then, the operator
AΦ,G,V,c − γ2 with domain C∞

c (RN ) is dispersive in Lp
µ(RN ) if and only if

c ≤ γ0.

Proof. Let u ∈ C∞
c (RN ) be real-valued and fix δ > 0. By straightforward

computation we deduce that

⟨AΦ,Gu, u+(u
2
+ + δ)

p−2
2 ⟩Lp

µ
= −

∫
RN

(u2
+ + δ)

p−2
2 |∇u+|2dµ

− (p− 2)

∫
RN

(u2
+ + δ)

p−4
2 u2

+|∇u+|2dµ

− 1

p

∫
RN

(u2
+ + δ)

p
2

(
divG−G · ∇Φ

)
dµ

−
∫
RN

V (u2
+ + δ)

p
2 dµ+ δ

∫
RN

V (u2
+ + δ)

p−2
2 dµ.

Hence, we have

⟨AΦ,Gu, (u+)
p−1⟩Lp

µ

≤ (1− p)

∫
RN

up−2
+ |∇u+|2dµ− 1

p

∫
RN

(
divG−G · ∇Φ

)
up
+dµ−

∫
RN

V up
+dµ

if p ≥ 2 and

⟨AΦ,Gu, (u+)
p−1⟩Lp

µ

≤ (1− p) lim
δ→0

∫
RN

(u2
+ + δ)

p−2
2 |∇u+|2dµ− 1

p

∫
RN

(
divG−G · ∇Φ

)
up
+dµ

−
∫
RN

V up
+dµ

if 1 < p < 2. Whence, by applying Theorem 2.1 where u is replaced by u+ and
(A3), we get the thesis. □

4. Main result

In this section, we present and prove our main results of this paper. First,
we deal with the case when 2p(4 + σ) ≥ N .

Theorem 4.1. Let 1 < p < ∞, N ≥ 3 and σ > 0 such that 2p(4 + σ) ≥ N .
Suppose that (A1)-(A5) are verified and

θ

p
+ (p− 1)γ

(κ
p
+

γ

4

)
< 1.

Then, for every c < α0, AΦ,G,V + c|x|−2 endowed with domain W 2,p
µ (RN ) ∩

D(|x|−2) generates a quasi-contractive analytic semigroup in Lp
µ(RN ). Fur-

thermore, the closure of
(
AΦ,G,V + α0|x|−2,W 2,p

µ (RN ) ∩D(|x|−2)
)
generates a

quasi-contractive semigroup in Lp
µ(RN ).
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Proof. As the main consequence of Theorem 1.1 together with Proposition 3.1,
we have

−AΦ,G,V + γ2 − c|x|−2

with domain W 2,p
µ (RN ) ∩D(|x|−2) is m-accretive if c < α0 and

−AΦ,G,V + γ2 − α0|x|−2

is essentially m-accretive.
Furthermore, thanks to [12, Theorem 1.1], the semigroup generated by

AΦ,G,V is analytic if
θ

p
+ (p− 1)γ

(κ
p
+

γ

4

)
< 1.

Whence, under this condition, AΦ,G,V is sectorial and therefore there exists γp
such that

|Im⟨AΦ,G,V u, |u|p−2u⟩Lp
µ
| ≤ γp Re⟨AΦ,G,V u, |u|p−2u⟩Lp

µ

for every u ∈ W 2,p(RN , dµ). Replacing AΦ,G,V by AΦ,G,V − γ2 + c|x|−2 where
c ≤ α0, the above estimate continues to hold for all u ∈ W 2,p

µ (RN ) ∩D(|x|−2).

This means that AΦ,G,V + c|x|−2 is sectorial and whence by virtue of [3, The-
orem 1.54], we infer that AΦ,G,V + c|x|−2 generates an analytic semigroup in
Lp
µ(RN ). □

Next, we treat the case when 2p(4+σ) ≤ N . In this connection, in order to
apply Theorem 1.2, we will need the following result.

Proposition 4.2. Set Uϵ = 1
|x|2+ϵ . Assume that (A1)-(A6) hold. Then, for

every u ∈ C∞
c (RN ), one has

Re⟨−AΦ,G,V u+ γ2u, ∥Uϵu∥2−p|Uϵu|p−2Uϵu⟩Lp
µ

≥ α0∥Uϵu∥2Lp
µ
− α1∥Uϵu∥Lp

µ
∥u∥Lp

µ
,

where

α0 =
(p− 1)

p2

( N

4 + σ
− 2p

)
N, α1 =

2ξ(p− 1)

p
.

Proof. Let u ∈ C∞
c (RN ) and set uδ = ((R|u|)2 + δ)

1
2 where Rp = Up−1

ϵ . In the
computations below, we have to take δ > 0 in the case 1 < p < 2, whereas we
only take δ = 0 to deal with the case p ≥ 2. We have

⟨−AΦ,G,V u, |Uϵu|p−2Uϵu⟩Lp
µ

= lim
δ→0

∫
RN

up−2
δ R2u(−∆u+∇Φ · ∇u−G · ∇u+ V u)dµ.

Integration by parts gives∫
RN

up−2
δ R2u(−∆u+∇Φ · ∇u)dµ

=

∫
RN

up−2
δ R(u∇u) · ∇Rdµ+

∫
RN

up−2
δ |∇(Ru)|2dµ
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−
∫
RN

up−2
δ u∇R · ∇(Ru)dµ

+ (p− 2)

∫
RN

up−4
δ R2|u|R(u∇u) · ∇(R|u|)dµ.

Since Re(u∇u) = |u|∇|u|, taking the real parts in the identity above we see
that

−Re

∫
RN

up−2
δ R2u(∆u−∇Φ · ∇u)dµ

=

∫
RN

up−2
δ |∇(Ru)|2dµ−

∫
RN

up−2
δ |u|2|∇R|2dµ

+ (p− 2)

∫
RN

up−4
δ R2|u|2R∇|u| · ∇(R|u|)dµ︸ ︷︷ ︸

=I

.

Now, we rearrange the last integral in the following way

I =

∫
RN

up−4
δ R2|u|2|∇(R|u|)|2dµ−

∫
RN

up−4
δ R2|u|2|u|∇(R|u|) · ∇Rdµ

=

∫
RN

up−2
δ |∇(R|u|)|2dµ−

∫
RN

up−2
δ |u|2|∇R|2dµ

−
∫
RN

up−2
δ R|u|∇|u| · ∇Rdµ− δ

∫
RN

up−4
δ R∇(R|u|) · ∇|u|dµ.

On the other hand, an integration by parts implies

−Re

∫
RN

G · (u∇u)R2up−2
δ dµ+

∫
RN

V |u|2R2up−2
δ dµ

=
1

p

∫
RN

(
divG−G · ∇Φ

)
up
δdµ+

∫
RN

|u|2R(G · ∇R)up−2
δ dµ

+

∫
RN

V up
δdµ− δ

∫
RN

V up−2
δ dµ.

Collecting all the terms gives∫
RN

up−2
δ R2u(−Aϕ,G,V u)dµ

≥ (p− 1)

∫
RN

up−2
δ |∇(R|u|)|2dµ− (p− 1)

∫
RN

up−2
δ |u|2|∇R|2dµ

− (p− 2)

∫
RN

up−2
δ R|u|∇|u| · ∇Rdµ− (p− 2)δ

∫
RN

up−4
δ R∇(R|u|) · ∇|u|dµ

+
1

p

∫
RN

(
divG−G · ∇Φ+ θV

)
up
δdµ+

∫
RN

|u|2R(G · ∇R)up−2
δ dµ

+

(
1− θ

p

)∫
RN

V up
δdµ− δ

∫
RN

V up−2
δ dµ,
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where we have used the inequality |∇(Ru)| ≥ |∇(R|u|)|. Letting δ → 0+ and
recalling the definition of Rp = Up−1

ϵ , we infer that

Re⟨−AΦ,G,V u, |Uϵu|p−2Uϵu⟩Lp
µ

≥ (p− 1)

∫
RN

|u|p−2Rp−2|∇(R|u|)|2dµ− (p− 1)

∫
RN

|u|pRp−2|∇R|2dµ

+
4p(p− 1)(p− 2)

p2

∫
RN

|u|p|x|2Up+1
ϵ dµ− 2N(p− 1)(p− 2)

p2

∫
RN

|u|pUp
ϵ dµ

− p− 2

p2

∫
RN

∇Φ · ∇Rp|u|pdµ+
1

p

∫
RN

(
divG−G · ∇Φ+ θV

)
Rp|u|pdµ

+

∫
RN

|u|pR(G · ∇R)Rp−2dµ.

Thus, combining Theorem 1.2, the inequalities |∇Uϵ| ≤ 2U
3
2
ϵ , the assumptions

(A3) and the Young inequality, we deduce that

Re⟨−AΦ,G,V u, |Uϵu|p−2Uϵu⟩Lp
µ

≥ (p− 1)(N − 2)2

p2(4 + σ)

∫
RN

Up−1
ϵ

|u|p

|x|2
dµ− Cσ(p− 1)

4 + σ

∫
RN

Up−1
ϵ |u|pdµ

− 4
(p− 1)3

p2

∫
RN

|x|2Up+1
ϵ |u|pdµ+

4p(p− 1)(p− 2)

p2

∫
RN

|u|p|x|2Up+1
ϵ dµ

− 2N(p− 1)(p− 2)

p2

∫
RN

|u|pUp
ϵ dµ− β

p

∫
RN

Up−1
ϵ |u|pdµ

− p− 2

p2

∫
RN

∇Φ · ∇Up−1
ϵ |u|pdµ+

1

p

∫
RN

G · ∇Up−1
ϵ |u|pdµ.

Thus, by means of the inequality |x|2Uϵ ≤ 1 and (A5), we obtain

Re⟨−AΦ,G,V u, |Uϵu|p−2Uϵu⟩Lp
µ

≥ (p− 1)(N − 2)2

p2(4 + σ)

∫
RN

Up
ϵ |u|pdµ− Cσ(p− 1)

4 + σ

∫
RN

Up−1
ϵ |u|pdµ

− 4
(p− 1)3

p2

∫
RN

Up
ϵ |u|pdµ+

4p(p− 1)(p− 2)

p2

∫
RN

|u|p|x|2Up+1
ϵ dµ

− 2N(p− 1)(p− 2)

p2

∫
RN

|u|pUp
ϵ dµ− β

p

∫
RN

Up−1
ϵ |u|pdµ

− 2ξ(p− 1)

p

∫
RN

Up−1
ϵ |u|pdµ.

Hence, we have

Re⟨−AΦ,G,V u+ γ2u, |Uϵu|p−2Uϵu⟩Lp
µ

≥ α0

∫
RN

Up
ϵ |u|pdµ− α1

∫
RN

Up−1
ϵ |u|pdµ.

This completes the proof. □
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We now come to state and establish the second main result of this paper.

Theorem 4.3. Let 1 < p < ∞, N ≥ 3 and σ > 0 such that 2p(4+σ) < N and

set ν = min{α0, γ0}, where γ0 = (p−1)(N−2)2

p2(4+σ) and α0 = (p−1)
p2

(
N

4+σ − 2p
)
N .

Assume that (A1)-(A5) hold. Then, for every c < ν, AΦ,G,V + c|x|−2 endowed
with domain W 2,p(RN , dµ) generates a quasi-contractive positive semigroup in
Lp
µ(RN ) and C∞

c (RN ) is a core for such an operator. Moreover, the closure

of
(
AΦ,G,V + ν|x|−2,W 2,p(RN , dµ)

)
generates a quasi-contractive semigroup in

Lp
µ(RN ).

Proof. Our purpose is to apply Theorem 1.2. Indeed, set A = −AΦ,G,V + γ2
with D(A) = W 2,p

µ (RN ) and let B be the multiplicative operator by |x|−2 en-

dowed with the maximal domainD(|x|−2) =
{
u ∈ Lp

µ(RN ) : |x|−2u ∈ Lp
µ(RN )

}
in Lp

µ(RN ). We mention that the Yosida approximation Bϵ of B is the mul-

tiplicative operator by Uϵ = (|x|2 + ϵ)−1. Both A and B are m-accretive in
Lp
µ(RN ). Set D = C∞

c (RN ). Then, Proposition 4.2 yields (i) with k1 = α0,
d = 0 and a = α1. The second assumption (ii) is obviously satisfied. More-
over, (iii) holds with γ0 = k2 thanks to Proposition 3.1. As a consequence
of Theorem 1.2, we infer that for every c > −ν, −AΦ,G,V + γ2 + c|x|−2

with domain W 2,p
µ (RN ) is m-accretive in Lp

µ(RN ) and C∞
c (RN ) is a core for

−AΦ,G,V + γ2 + c|x|−2. In addition, −AΦ,G,V + γ2 − ν|x|−2 is essentially
m-accretive. The generation results follow then by Lumer Phillips Theorem
[2, Theorem 3.15]. Lastly, the positivity of the generated semigroups follows
by virtue of Proposition 3.2, which implies that AΦ,G,V − γ2 − c|x|−2 is disper-
sive for every c ≥ −ν. The dispersivity is equivalent to the positivity of the
resolvent, which is equivalent to the positivity of the semigroup, we complete
so the proof of our results. □
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