ON THE GENERALIZED ORNSTEIN-UHLENBECK OPERATORS WITH REGULAR AND SINGULAR POTENTIALS IN WEIGHTED L^{p}-SPACES

Imen Metoui

Abstract. In this paper, we give sufficient conditions for the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials

$$
A_{\Phi, G, V, c}=\Delta-\nabla \Phi \cdot \nabla+G \cdot \nabla-V+c|x|^{-2}
$$

with a suitable domain generates a quasi-contractive, positive and analytic C_{0}-semigroup in $L^{p}\left(\mathbb{R}^{N}, e^{-\Phi(x)} d x\right), 1<p<\infty$. The proofs are based on an L^{p}-weighted Hardy inequality and perturbation techniques. The results extend and improve the generation theorems established by Metoui [7] and Metoui-Mourou [8].

1. Introduction

Generalized Ornstein-Uhlenbeck operators have been widely investigated in literrature by using different methods, see for instance [1, 3-12]. The main motivation comes from the study of Metafune-Prüss-Rhandi-Schnaubelt [6] in which they dealt with the operator

$$
A_{\Phi, G}=\Delta-\nabla \Phi \cdot \nabla u+G \cdot \nabla
$$

in the space $L^{p}\left(\mathbb{R}^{N}, d \mu\right)$, where $d \mu=e^{-\Phi(x)} d x, 1<p<\infty$. More precisely, under appropriate conditions on Φ and G, they established that $A_{\Phi, G}$ with the domain $W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right)$ generates an analytic C_{0}-semigroup on $L^{p}\left(\mathbb{R}^{N}, d \mu\right), 1<$ $p<\infty$. Afterwards, Kojima-Yokota [4] also Sobajima-Yokota [12] studied the operator $A_{\Phi, G}$ perturbed by a positive potential $V \in C^{1}\left(\mathbb{R}^{N}\right)$. By using different methods and some conditions on Φ, G and V, they proved that the operator $A_{\Phi, G}-V$ endowed with the domain

$$
W_{V}^{2, p}\left(\mathbb{R}^{N}, d \mu\right)=\left\{u \in W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right): V u \in L_{\mu}^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

[^0]generates a quasi-contractive analytic C_{0}-semigroup on $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ for $1<p<$ ∞. Besides, several recent studies concerned with $A_{\Phi, G}$ perturbed by singular potentials $[1,3,7,8]$. In [1], Durante-Rhandi considered the case where $p=2$, $G(x)=0, \Phi(x)=\frac{1}{2}\langle M x, x\rangle$ and $V=c|x|^{-2}$. More specifically, they showed that
$$
A_{M, c}=\Delta-M x \cdot \nabla+c|x|^{-2}
$$
is essentially selfadjoint in $L^{2}\left(\mathbb{R}^{N}, d \mu\right)$ if $c \leq \frac{(N-2)^{2}}{4}-1$ and $N>4$, where
$$
d \mu=(2 \Pi)^{-\frac{N}{2}}(\operatorname{det} M)^{\frac{1}{2}} e^{-\frac{1}{2}\langle M x, x\rangle} d x
$$
and M is a real, symmetric $N \times N$-matrix. Their result was generalized by Fornaro-Rhandi [3] to L^{p}-setting, $1<p<\infty$. Subsequently, the operator $A_{\Phi, G}$ perturbed by a nonnegative singular potential νV in the space $L^{p}\left(\mathbb{R}^{N}, d \mu\right)$, $1<p<\infty$, has been investigated by Metoui-Mourou [8]. They showed that $A_{\Phi, G}-\nu V$ generates a quasi-contractive and positive analytic C_{0}-semigroup in $L^{p}\left(\mathbb{R}^{N}, d \mu\right)$. More recently, Metoui [7] proved under sufficient conditions on Φ, G, V and c that
$$
A_{\Phi, G, V, c}=\delta-\nabla \Phi \cdot \nabla u+G \cdot \nabla-V+c|x|^{-2}
$$
generates a positive C_{0}-semigroup in $L^{2}\left(\mathbb{R}^{N}, d \mu\right)$.
To complete the picture, we investigate the perturbation of $A_{\Phi, G, V}$ with the inverse square potential $c|x|^{-2}$ in the weighted space $L^{p}\left(\mathbb{R}^{N}, d \mu\right), 1<p<\infty$. We focus on the accretivity and dispersivity of such operator. Moreover, we provide sufficient conditions on Φ, G, V and c ensuring that $A_{\Phi, G, V, c}$ endowed with a suitable domain generates an analytic semigroup on the weighted spaces $L_{\mu}^{p}\left(\mathbb{R}^{N}\right), 1<p<\infty$. Our proofs based on an L^{p}-weighted Hardy's inequality and on the following perturbation results.

Theorem 1.1 ([11, Theorem 1.6]). Let A and B be linear m-accretive operators in a Banach space X with uniformly convex X^{*}. Let D be a core of A. Assume that there are constants $a, b, d \geq 0$ such that for all $u \in D$ and $\epsilon>0$,

$$
\left.\left.\operatorname{Re}\left\langle A u,\left\|B_{\varepsilon} u\right\|_{p}^{2-p}\right| B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u\right\rangle \geq-b\left\|B_{\varepsilon} u\right\|_{p}^{2}-d\|u\|_{p}^{2}-a\left\|B_{\varepsilon} u\right\|_{p}\|u\|_{p},
$$

where $B_{\epsilon}=B(I+\epsilon B)^{-1}$ denotes the Yosida approximation.
If $\nu>b$, then $A+\nu B$ with domain $D(A) \cap D(B)$ is m-accretive and $D(A) \cap$ $D(B)$ is core for A.

Moreover, $A+b B$ is essentially m-accretive on $D(A) \cap D(B)$.
Theorem 1.2 ([11, Theorem 1.7]). Let A and B be linear m-accretive operators in a Banach space X with uniformly convex X^{*}. Let D be a core of A. Assume that
(i) there are constants $d, a \geq 0$ and $k_{1}>0$ such that for all $u \in D$ and $\varepsilon>0$,
$\left.\left.\operatorname{Re}\left\langle A u,\left\|B_{\varepsilon} u\right\|_{p}^{2-p}\right| B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u\right\rangle \geq k_{1}\left\|B_{\varepsilon} u\right\|_{p}^{2}-d\|u\|_{p}^{2}-a\left\|B_{\varepsilon} u\right\|_{p}\|u\|_{p}$, where B_{ε} denote the Yosida approximation of B.
(ii) $\left.\left.\operatorname{Re}\left\langle u,\left\|B_{\varepsilon} u\right\|_{p}^{2-p}\right| B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u\right\rangle \geq 0$ for all $u \in X$ and $\varepsilon>0$.
(iii) there is $k_{2}>0$ such that $A-k_{2} B$ is accretive.

Set $k=\min \left\{k_{1}, k_{2}\right\}$. If $t>-k$, then $A+t B$ with domain $D(A+t B)=D(A)$ is m-accretive and any core of A is also core for $A+t B$. Furthermore, $A-k B$ is essentially m-accretive on $D(A)$.

Now, we introduce the following conditions on Φ, G and V :
(A1) The function $\Phi \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and satisfies that for every $\tau \in\left(0, \frac{1}{2 N}\right)$, there is a constant $C_{\tau}>0$ such that

$$
\left|D^{2} \Phi\right| \leq \tau|\nabla \Phi|^{2}+C_{\tau}
$$

(A2) The function $G \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ satisfies

$$
|G| \leq \kappa\left(|\nabla \Phi|^{2}+V+\lambda_{1}\right)^{\frac{1}{2}}
$$

for some constants $\kappa \geq 0$ and $\lambda_{1} \geq 0$.
(A3) There are constants $\theta<p$ and $\beta \in \mathbb{R}$ such that

$$
G \cdot \nabla \Phi-\operatorname{div} G-\theta V \leq \beta
$$

(A4) There are constants $\gamma>0$ and $\lambda_{2} \geq 0$ such that

$$
|\nabla V| \leq \gamma V^{\frac{3}{2}}+\lambda_{2}
$$

(A5) There is a constant $\xi>0$ such that

$$
\left|G-\frac{p-2}{p} \nabla \Phi\right| \leq \xi|x| .
$$

We mention that under the assumptions (A1) for all $\tau>0$, (A2), (A3) for some constants $\theta \in \mathbb{R}, \beta_{1} \in \mathbb{R}$ and (A4) Sobajima-Yokota established in [12, Theorem 1.1] that the operator $A_{\Phi, G, V}$ with domain

$$
W_{V}^{2, p}\left(\mathbb{R}^{N}, d \mu\right)=\left\{u \in W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right): V u \in L_{\mu}^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

generates an analytic semigroup on $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ for $1<p<\infty$ if

$$
\frac{\theta}{p}+(p-1) \gamma\left(\frac{\kappa}{p}+\frac{\gamma}{4}\right)<1
$$

The paper is structured as follows. In Section 2, we prove an L^{p}-weighted Hardy inequality. Besides, we use them to study the accretivity and the dispersivety of $A_{\Phi, G, V, c}$. In Section 3, we state and prove the main generation results.

2. Hardy inequality

Our main aim of this section is to extend the result of [7, Theorem 2.1] to the whole space $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ for $1<p<\infty$.

Theorem 2.1. Assume $N \geq 3$ and (A1) hold. Then, for any $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$, one has

$$
\gamma_{N}^{\star} \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{2}} d \mu \leq(4+\sigma) \int_{\mathbb{R}^{N}}|u|^{p-2}|\nabla u|^{2} d \mu+c_{\sigma} \int_{\mathbb{R}^{N}}|u|^{p} d \mu
$$

if $p \geq 2$ and

$$
\gamma_{N}^{\star} \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{2}} d \mu \leq(4+\sigma) \lim _{\delta \rightarrow 0} \int_{\mathbb{R}^{N}}\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}}|\nabla u|^{2} d \mu+c_{\sigma} \int_{\mathbb{R}^{N}}|u|^{p} d \mu
$$

if $1<p<2$, for any $\sigma>0$ with a corresponding constant $c_{\sigma}>0$, where $\gamma_{N}^{\star}=\left(\frac{N-2}{p}\right)^{2}$.
Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$. Take $\delta>0$ if $1<p<2$ and $\delta=0$ if $p \geq 2$. Hence, we have

$$
\left(|u|^{2}+\delta\right)^{\frac{p}{4}}(x) \exp \left(-\frac{\Phi(x)}{2}\right)=-\int_{1}^{\infty} \frac{d}{d t}\left(\left(|u|^{2}+\delta\right)^{\frac{p}{4}}(t x) \exp \left(-\frac{\Phi(t x)}{2}\right)\right) d t
$$

Thus, by a change of variables, it follows that

$$
\begin{aligned}
& \left\|\frac{\left(|u|^{2}+\delta\right)^{\frac{p}{4}}}{|x|}\right\|_{L_{\mu}^{2}} \\
\leq & \left(\int_{1}^{\infty} t^{-\frac{N}{2}} d t\right)\left\|\frac{p}{2} \nabla|u||u|\left(|u|^{2}+\delta\right)^{\frac{p-4}{4}}-\frac{1}{2}\left(|u|^{2}+\delta\right)^{\frac{p}{4}} \nabla \Phi\right\|_{L_{\mu}^{2}} \\
\leq & \left(\frac{p}{N-2}\right)^{2}\left\|\nabla|u||u|\left(|u|^{2}+\delta\right)^{\frac{p-4}{4}}-\frac{1}{p}\left(|u|^{2}+\delta\right)^{\frac{p}{4}} \nabla \Phi\right\|_{L_{\mu}^{2}} .
\end{aligned}
$$

Moreover, by using the Höder, Young and Jensen inequalities, we infer that

$$
\begin{align*}
& \left(\frac{N-2}{p}\right)^{2} \int_{\mathbb{R}^{N}} \frac{\left(|u|^{2}+\delta\right)^{\frac{p}{2}}}{|x|^{2}} d \mu \tag{2.1}\\
\leq & \left.\int_{\mathbb{R}^{N}}|\nabla| u\right|^{2}|u|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu+\frac{1}{p^{2}} \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& +\frac{2}{p} \int_{\mathbb{R}^{N}} \nabla \Phi \cdot \nabla|u||u|\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu \\
\leq & \left.\int_{\mathbb{R}^{N}}|\nabla| u\right|^{2}|u|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu+\frac{1}{p^{2}} \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& +\frac{2}{p}\left(\left.\int_{\mathbb{R}^{N}}|u|^{2}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N^{N}}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu\right)^{\frac{1}{2}} \\
\leq & \left(\frac{1}{p^{2}}+\frac{\eta}{p}\right) \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& +\left.\left(1+\frac{1}{\eta p}\right) \int_{\mathbb{R}^{N}}|u|^{2}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu .
\end{align*}
$$

Furthermore, combining integration by parts, (A1) and Young inequalities, we deduce that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
= & \int_{\mathbb{R}^{N}} \Delta \Phi\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu+p \int_{\mathbb{R}^{N}} \nabla \Phi \cdot \nabla|u||u|\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu \\
\leq & \left(N \tau+\frac{1}{2}\right) \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu+N C_{\tau} \int_{\mathbb{R}^{N}}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& +\left.\frac{p^{2}}{2} \int_{\mathbb{R}^{N}}|u|^{2}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla \Phi|^{2}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
\leq & \frac{2 N C_{\tau}}{1-2 N \tau} \int_{\mathbb{R}^{N}}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu+\left.\frac{p^{2}}{1-2 N \tau} \int_{\mathbb{R}^{N}}|u|^{2}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu
\end{aligned}
$$

for every $\tau \in\left(0, \frac{1}{2 N}\right)$. Hence, collecting all the terms and using the identity $|\nabla u| \geq|\nabla| u| |$, we conclude that

$$
\begin{aligned}
& \left(\frac{N-2}{p}\right)^{2} \int_{\mathbb{R}^{N}} \frac{\left(|u|^{2}+\delta\right)^{\frac{p}{2}}}{|x|^{2}} d \mu \\
\leq & {\left[\left(\frac{1}{p^{2}}+\frac{\eta}{p}\right) \frac{p^{2}}{1-2 N \tau}+1+\frac{1}{\eta p}\right] \int_{\mathbb{R}^{N}}|\nabla u|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu } \\
& +\left(\frac{1}{p^{2}}+\frac{\eta}{p}\right) \frac{2 N C_{\tau}}{1-2 N \tau} \int_{\mathbb{R}^{N}}\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& -\left.\delta\left[\left(\frac{1}{p^{2}}+\frac{\eta}{p}\right) \frac{p^{2}}{1-2 N \tau}+1+\frac{1}{\eta p}\right] \int_{\mathbb{R}^{N}}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu .
\end{aligned}
$$

So, taking the minimum with respect to η, that is, choosing $\eta=\frac{1}{p}, \tau$ small, and letting δ go to zeros, we get (2.1). The case where $p \geq 2$ can be handled similarly.

3. Dissipativity and dispersivity of $\boldsymbol{A}_{\Phi, G, V, c}$

As an application of Theorem 2.1, we establish firstly the dissipativity of the operator $A_{\Phi, G, V, c}$.

Proposition 3.1. Assume that (A1) and (A3) hold. Then, the operator $A_{\Phi, G, V, c}-\gamma_{2}$ with domain $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is dissipative in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ if and only if $c \leq \gamma_{0}$, where $\gamma_{0}=\frac{(N-2)^{2}(p-1)}{4(4+\sigma)}$ and $\gamma_{2}=\frac{\beta}{p}+\frac{c_{\sigma}(p-1)}{4+\sigma}, \sigma>0$.

Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$. Take $\delta>0$ if $1<p<2$ and $\delta=0$ if $p \geq 2$. Then, by using the identity $\operatorname{Re}(\bar{u} \nabla u)=|u| \nabla|u|$ and integration by parts, it follows that

$$
\begin{aligned}
& \mathcal{R} e\left\langle A_{\Phi, G, V} u, u\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}}\right\rangle_{L_{\mu}^{p}} \\
= & -\int_{\mathbb{R}^{N}}|\nabla u|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu \\
& -(p-2) \int_{\mathbb{R}^{N}}|\operatorname{Re}(\bar{u} \nabla u)|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-4}{2}} d \mu \\
& -\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi)\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu \\
& -\int_{\mathbb{R}^{N}} V\left(|u|^{2}+\delta\right)^{\frac{p}{2}} d \mu+\delta \int_{\mathbb{R}^{N}} V\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu .
\end{aligned}
$$

So, using the identity $|\nabla u|^{2} \geq|\nabla| u| |^{2}$, we obtain

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle A_{\Phi, G, V} u, u\right| u\right|^{p-2}\right\rangle_{L_{\mu}^{p}} \\
\leq & -(p-1) \int_{\mathbb{R}^{N}}|\nabla| u| |^{2}|u|^{p-2} d \mu-\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi)|u|^{p} d \mu \\
& -\int_{\mathbb{R}^{N}} V|u|^{p} d \mu
\end{aligned}
$$

if $p \geq 2$ and

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle A_{\Phi, G, V} u, u\right| u\right|^{p-2}\right\rangle_{L_{\mu}} \\
\leq & -\left.(p-1) \lim _{\delta \rightarrow 0^{+}} \int_{\mathbb{R}^{N}}|\nabla| u\right|^{2}\left(|u|^{2}+\delta\right)^{\frac{p-2}{2}} d \mu \\
& -\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi)|u|^{p} d \mu-\int_{\mathbb{R}^{N}} V|u|^{p} d \mu
\end{aligned}
$$

if $1<p<2$. Using now Theorem 2.1 and (A3), we infer, in both cases, that

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle A_{\Phi, G, V} u, u\right| u\right|^{p-2}\right\rangle_{L_{\mu}^{p}} \\
\leq & -\frac{(N-2)^{2}(p-1)}{4(4+\sigma)} \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{2}} d \mu+\left(\frac{\beta}{p}+\frac{c_{\sigma}(p-1)}{4+\sigma}\right) \int_{\mathbb{R}^{N}}|u|^{p} d \mu .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle A_{\Phi, G, V} u+c\right| x\right|^{-2} u, u|u|^{p-2}\right\rangle_{L_{\mu}^{p}} \\
\leq & \left(c-\frac{(N-2)^{2}(p-1)}{4(4+\sigma)}\right) \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{2}} d \mu+\left(\frac{\beta}{p}+\frac{c_{\sigma}(p-1)}{4+\sigma}\right) \int_{\mathbb{R}^{N}}|u|^{p} d \mu
\end{aligned}
$$

Thus, it follows that

$$
\left.\left.\mathcal{R} e\left\langle A_{\Phi, G, V, c} u-\gamma_{2} u, u\right| u\right|^{p-2}\right\rangle_{L_{\mu}^{p}} \leq 0
$$

if and only if $c \leq \gamma_{0}$ so the proof is now complete.
Now, we present sufficient conditions for the dispersivity of $A_{\Phi, G, V, c}$.

Proposition 3.2. Suppose that (A1) and (A3) are verified. Then, the operator $A_{\Phi, G, V, c}-\gamma_{2}$ with domain $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is dispersive in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ if and only if $c \leq \gamma_{0}$.
Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ be real-valued and fix $\delta>0$. By straightforward computation we deduce that

$$
\begin{aligned}
\left\langle A_{\Phi, G} u, u_{+}\left(u_{+}^{2}+\delta\right)^{\frac{p-2}{2}}\right\rangle_{L_{\mu}^{p}}= & -\int_{\mathbb{R}^{N}}\left(u_{+}^{2}+\delta\right)^{\frac{p-2}{2}}\left|\nabla u_{+}\right|^{2} d \mu \\
& -(p-2) \int_{\mathbb{R}^{N}}\left(u_{+}^{2}+\delta\right)^{\frac{p-4}{2}} u_{+}^{2}\left|\nabla u_{+}\right|^{2} d \mu \\
& -\frac{1}{p} \int_{\mathbb{R}^{N}}\left(u_{+}^{2}+\delta\right)^{\frac{p}{2}}(\operatorname{div} G-G \cdot \nabla \Phi) d \mu \\
& -\int_{\mathbb{R}^{N}} V\left(u_{+}^{2}+\delta\right)^{\frac{p}{2}} d \mu+\delta \int_{\mathbb{R}^{N}} V\left(u_{+}^{2}+\delta\right)^{\frac{p-2}{2}} d \mu .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left\langle A_{\Phi, G} u,\left(u_{+}\right)^{p-1}\right\rangle_{L_{\mu}^{p}} \\
\leq & (1-p) \int_{\mathbb{R}^{N}} u_{+}^{p-2}\left|\nabla u_{+}\right|^{2} d \mu-\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi) u_{+}^{p} d \mu-\int_{\mathbb{R}^{N}} V u_{+}^{p} d \mu
\end{aligned}
$$

if $p \geq 2$ and

$$
\begin{aligned}
& \left\langle A_{\Phi, G} u,\left(u_{+}\right)^{p-1}\right\rangle_{L_{\mu}^{p}} \\
\leq & (1-p) \lim _{\delta \rightarrow 0} \int_{\mathbb{R}^{N}}\left(u_{+}^{2}+\delta\right)^{\frac{p-2}{2}}\left|\nabla u_{+}\right|^{2} d \mu-\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi) u_{+}^{p} d \mu \\
& -\int_{\mathbb{R}^{N}} V u_{+}^{p} d \mu
\end{aligned}
$$

if $1<p<2$. Whence, by applying Theorem 2.1 where u is replaced by u_{+}and (A3), we get the thesis.

4. Main result

In this section, we present and prove our main results of this paper. First, we deal with the case when $2 p(4+\sigma) \geq N$.

Theorem 4.1. Let $1<p<\infty, N \geq 3$ and $\sigma>0$ such that $2 p(4+\sigma) \geq N$. Suppose that (A1)-(A5) are verified and

$$
\frac{\theta}{p}+(p-1) \gamma\left(\frac{\kappa}{p}+\frac{\gamma}{4}\right)<1
$$

Then, for every $c<\alpha_{0}, A_{\Phi, G, V}+c|x|^{-2}$ endowed with domain $W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right) \cap$ $D\left(|x|^{-2}\right)$ generates a quasi-contractive analytic semigroup in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$. Furthermore, the closure of $\left(A_{\Phi, G, V}+\alpha_{0}|x|^{-2}, W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right) \cap D\left(|x|^{-2}\right)\right)$ generates a quasi-contractive semigroup in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$.

Proof. As the main consequence of Theorem 1.1 together with Proposition 3.1, we have

$$
-A_{\Phi, G, V}+\gamma_{2}-c|x|^{-2}
$$

with domain $W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right) \cap D\left(|x|^{-2}\right)$ is m-accretive if $c<\alpha_{0}$ and

$$
-A_{\Phi, G, V}+\gamma_{2}-\alpha_{0}|x|^{-2}
$$

is essentially m-accretive.
Furthermore, thanks to [12, Theorem 1.1], the semigroup generated by $A_{\Phi, G, V}$ is analytic if

$$
\frac{\theta}{p}+(p-1) \gamma\left(\frac{\kappa}{p}+\frac{\gamma}{4}\right)<1
$$

Whence, under this condition, $A_{\Phi, G, V}$ is sectorial and therefore there exists γ_{p} such that

$$
\left.\left.\left|\mathcal{I} m\left\langle A_{\Phi, G, V} u,\right| u\right|^{p-2} u\right\rangle_{L_{\mu}^{p}} \mid \leq\left.\gamma_{p} \mathcal{R} e\left\langle A_{\Phi, G, V} u,\right| u\right|^{p-2} u\right\rangle_{L_{\mu}^{p}}
$$

for every $u \in W^{2, p}\left(\mathbb{R}^{N}, d \mu\right)$. Replacing $A_{\Phi, G, V}$ by $A_{\Phi, G, V}-\gamma_{2}+c|x|^{-2}$ where $c \leq \alpha_{0}$, the above estimate continues to hold for all $u \in W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right) \cap D\left(|x|^{-2}\right)$. This means that $A_{\Phi, G, V}+c|x|^{-2}$ is sectorial and whence by virtue of [3, Theorem 1.54], we infer that $A_{\Phi, G, V}+c|x|^{-2}$ generates an analytic semigroup in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$.

Next, we treat the case when $2 p(4+\sigma) \leq N$. In this connection, in order to apply Theorem 1.2 , we will need the following result.
Proposition 4.2. Set $U_{\epsilon}=\frac{1}{|x|^{2}+\epsilon}$. Assume that (A1)-(A6) hold. Then, for every $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$, one has

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle-A_{\Phi, G, V} u+\gamma_{2} u,\left\|U_{\epsilon} u\right\|^{2-p}\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
\geq & \alpha_{0}\left\|U_{\epsilon} u\right\|_{L_{\mu}^{p}}^{2}-\alpha_{1}\left\|U_{\epsilon} u\right\|_{L_{\mu}^{p}}\|u\|_{L_{\mu}^{p}},
\end{aligned}
$$

where

$$
\alpha_{0}=\frac{(p-1)}{p^{2}}\left(\frac{N}{4+\sigma}-2 p\right) N, \quad \alpha_{1}=\frac{2 \xi(p-1)}{p}
$$

Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ and set $u_{\delta}=\left((R|u|)^{2}+\delta\right)^{\frac{1}{2}}$ where $R^{p}=U_{\epsilon}^{p-1}$. In the computations below, we have to take $\delta>0$ in the case $1<p<2$, whereas we only take $\delta=0$ to deal with the case $p \geq 2$. We have

$$
\begin{aligned}
& \left.\left.\left\langle-A_{\Phi, G, V} u,\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
= & \lim _{\delta \rightarrow 0} \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R^{2} \bar{u}(-\Delta u+\nabla \Phi \cdot \nabla u-G \cdot \nabla u+V u) d \mu .
\end{aligned}
$$

Integration by parts gives

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R^{2} \bar{u}(-\Delta u+\nabla \Phi \cdot \nabla u) d \mu \\
= & \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R(\bar{u} \nabla u) \cdot \nabla R d \mu+\int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|\nabla(R u)|^{2} d \mu
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{\mathbb{R}^{N}} u_{\delta}^{p-2} u \nabla R \cdot \nabla(R \bar{u}) d \mu \\
& +(p-2) \int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R^{2}|u| R(\bar{u} \nabla u) \cdot \nabla(R|u|) d \mu
\end{aligned}
$$

Since $\operatorname{Re}(\bar{u} \nabla u)=|u| \nabla|u|$, taking the real parts in the identity above we see that

$$
\begin{aligned}
& -\mathcal{R} e \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R^{2} \bar{u}(\Delta u-\nabla \Phi \cdot \nabla u) d \mu \\
= & \int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|\nabla(R u)|^{2} d \mu-\int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|u|^{2}|\nabla R|^{2} d \mu \\
& +(p-2) \underbrace{\int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R^{2}|u|^{2} R \nabla|u| \cdot \nabla(R|u|) d \mu}_{=I} .
\end{aligned}
$$

Now, we rearrange the last integral in the following way

$$
\begin{aligned}
I= & \int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R^{2}|u|^{2}|\nabla(R|u|)|^{2} d \mu-\int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R^{2}|u|^{2}|u| \nabla(R|u|) \cdot \nabla R d \mu \\
= & \int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|\nabla(R|u|)|^{2} d \mu-\int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|u|^{2}|\nabla R|^{2} d \mu \\
& -\int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R|u| \nabla|u| \cdot \nabla R d \mu-\delta \int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R \nabla(R|u|) \cdot \nabla|u| d \mu .
\end{aligned}
$$

On the other hand, an integration by parts implies

$$
\begin{aligned}
& -\mathcal{R} e \int_{\mathbb{R}^{N}} G \cdot(\bar{u} \nabla u) R^{2} u_{\delta}^{p-2} d \mu+\int_{\mathbb{R}^{N}} V|u|^{2} R^{2} u_{\delta}^{p-2} d \mu \\
= & \frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi) u_{\delta}^{p} d \mu+\int_{\mathbb{R}^{N}}|u|^{2} R(G \cdot \nabla R) u_{\delta}^{p-2} d \mu \\
& +\int_{\mathbb{R}^{N}} V u_{\delta}^{p} d \mu-\delta \int_{\mathbb{R}^{N}} V u_{\delta}^{p-2} d \mu .
\end{aligned}
$$

Collecting all the terms gives

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R^{2} \bar{u}\left(-A_{\phi, G, V} u\right) d \mu \\
\geq & (p-1) \int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|\nabla(R|u|)|^{2} d \mu-(p-1) \int_{\mathbb{R}^{N}} u_{\delta}^{p-2}|u|^{2}|\nabla R|^{2} d \mu \\
& -(p-2) \int_{\mathbb{R}^{N}} u_{\delta}^{p-2} R|u| \nabla|u| \cdot \nabla R d \mu-(p-2) \delta \int_{\mathbb{R}^{N}} u_{\delta}^{p-4} R \nabla(R|u|) \cdot \nabla|u| d \mu \\
& +\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi+\theta V) u_{\delta}^{p} d \mu+\int_{\mathbb{R}^{N}}|u|^{2} R(G \cdot \nabla R) u_{\delta}^{p-2} d \mu \\
& +\left(1-\frac{\theta}{p}\right) \int_{\mathbb{R}^{N}} V u_{\delta}^{p} d \mu-\delta \int_{\mathbb{R}^{N}} V u_{\delta}^{p-2} d \mu,
\end{aligned}
$$

where we have used the inequality $|\nabla(R u)| \geq|\nabla(R|u|)|$. Letting $\delta \rightarrow 0^{+}$and recalling the definition of $R^{p}=U_{\epsilon}^{p-1}$, we infer that

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle-A_{\Phi, G, V} u,\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
\geq & (p-1) \int_{\mathbb{R}^{N}}|u|^{p-2} R^{p-2}|\nabla(R|u|)|^{2} d \mu-(p-1) \int_{\mathbb{R}^{N}}|u|^{p} R^{p-2}|\nabla R|^{2} d \mu \\
& +\frac{4 p(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p}|x|^{2} U_{\epsilon}^{p+1} d \mu-\frac{2 N(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p} U_{\epsilon}^{p} d \mu \\
& -\frac{p-2}{p^{2}} \int_{\mathbb{R}^{N}} \nabla \Phi \cdot \nabla R^{p}|u|^{p} d \mu+\frac{1}{p} \int_{\mathbb{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi+\theta V) R^{p}|u|^{p} d \mu \\
& +\int_{\mathbb{R}^{N}}|u|^{p} R(G \cdot \nabla R) R^{p-2} d \mu .
\end{aligned}
$$

Thus, combining Theorem 1.2, the inequalities $\left|\nabla U_{\epsilon}\right| \leq 2 U_{\epsilon}^{\frac{3}{2}}$, the assumptions (A3) and the Young inequality, we deduce that

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle-A_{\Phi, G, V} u,\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
\geq & \frac{(p-1)(N-2)^{2}}{p^{2}(4+\sigma)} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1} \frac{|u|^{p}}{|x|^{2}} d \mu-\frac{C_{\sigma}(p-1)}{4+\sigma} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu \\
& -4 \frac{(p-1)^{3}}{p^{2}} \int_{\mathbb{R}^{N}}|x|^{2} U_{\epsilon}^{p+1}|u|^{p} d \mu+\frac{4 p(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p}|x|^{2} U_{\epsilon}^{p+1} d \mu \\
& -\frac{2 N(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p} U_{\epsilon}^{p} d \mu-\frac{\beta}{p} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu \\
& -\frac{p-2}{p^{2}} \int_{\mathbb{R}^{N}} \nabla \Phi \cdot \nabla U_{\epsilon}^{p-1}|u|^{p} d \mu+\frac{1}{p} \int_{\mathbb{R}^{N}} G \cdot \nabla U_{\epsilon}^{p-1}|u|^{p} d \mu
\end{aligned}
$$

Thus, by means of the inequality $|x|^{2} U_{\epsilon} \leq 1$ and (A5), we obtain

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle-A_{\Phi, G, V} u,\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
\geq & \frac{(p-1)(N-2)^{2}}{p^{2}(4+\sigma)} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p}|u|^{p} d \mu-\frac{C_{\sigma}(p-1)}{4+\sigma} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu \\
& -4 \frac{(p-1)^{3}}{p^{2}} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p}|u|^{p} d \mu+\frac{4 p(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p}|x|^{2} U_{\epsilon}^{p+1} d \mu \\
& -\frac{2 N(p-1)(p-2)}{p^{2}} \int_{\mathbb{R}^{N}}|u|^{p} U_{\epsilon}^{p} d \mu-\frac{\beta}{p} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu \\
& -\frac{2 \xi(p-1)}{p} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left.\left.\mathcal{R} e\left\langle-A_{\Phi, G, V} u+\gamma_{2} u,\right| U_{\epsilon} u\right|^{p-2} U_{\epsilon} u\right\rangle_{L_{\mu}^{p}} \\
\geq & \alpha_{0} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p}|u|^{p} d \mu-\alpha_{1} \int_{\mathbb{R}^{N}} U_{\epsilon}^{p-1}|u|^{p} d \mu .
\end{aligned}
$$

This completes the proof.

We now come to state and establish the second main result of this paper.
Theorem 4.3. Let $1<p<\infty, N \geq 3$ and $\sigma>0$ such that $2 p(4+\sigma)<N$ and set $\nu=\min \left\{\alpha_{0}, \gamma_{0}\right\}$, where $\gamma_{0}=\frac{(p-1)(N-2)^{2}}{p^{2}(4+\sigma)}$ and $\alpha_{0}=\frac{(p-1)}{p^{2}}\left(\frac{N}{4+\sigma}-2 p\right) N$. Assume that (A1)-(A5) hold. Then, for every $c<\nu, A_{\Phi, G, V}+c|x|^{-2}$ endowed with domain $W^{2, p}\left(\mathbb{R}^{N}, d \mu\right)$ generates a quasi-contractive positive semigroup in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ and $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for such an operator. Moreover, the closure of $\left(A_{\Phi, G, V}+\nu|x|^{-2}, W^{2, p}\left(\mathbb{R}^{N}, d \mu\right)\right)$ generates a quasi-contractive semigroup in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$.

Proof. Our purpose is to apply Theorem 1.2. Indeed, set $A=-A_{\Phi, G, V}+\gamma_{2}$ with $D(A)=W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right)$ and let B be the multiplicative operator by $|x|^{-2}$ endowed with the maximal domain $D\left(|x|^{-2}\right)=\left\{u \in L_{\mu}^{p}\left(\mathbb{R}^{N}\right):|x|^{-2} u \in L_{\mu}^{p}\left(\mathbb{R}^{N}\right)\right\}$ in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$. We mention that the Yosida approximation B_{ϵ} of B is the multiplicative operator by $U_{\epsilon}=\left(|x|^{2}+\epsilon\right)^{-1}$. Both A and B are m-accretive in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$. Set $D=C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$. Then, Proposition 4.2 yields (i) with $k_{1}=\alpha_{0}$, $d=0$ and $a=\alpha_{1}$. The second assumption (ii) is obviously satisfied. Moreover, (iii) holds with $\gamma_{0}=k_{2}$ thanks to Proposition 3.1. As a consequence of Theorem 1.2, we infer that for every $c>-\nu,-A_{\Phi, G, V}+\gamma_{2}+c|x|^{-2}$ with domain $W_{\mu}^{2, p}\left(\mathbb{R}^{N}\right)$ is m-accretive in $L_{\mu}^{p}\left(\mathbb{R}^{N}\right)$ and $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $-A_{\Phi, G, V}+\gamma_{2}+c|x|^{-2}$. In addition, $-A_{\Phi, G, V}+\gamma_{2}-\nu|x|^{-2}$ is essentially m-accretive. The generation results follow then by Lumer Phillips Theorem [2, Theorem 3.15]. Lastly, the positivity of the generated semigroups follows by virtue of Proposition 3.2 , which implies that $A_{\Phi, G, V}-\gamma_{2}-c|x|^{-2}$ is dispersive for every $c \geq-\nu$. The dispersivity is equivalent to the positivity of the resolvent, which is equivalent to the positivity of the semigroup, we complete so the proof of our results.

References

[1] T. Durante and A. Rhandi, On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), no. 3, 649-655. https://doi.org/10.3934/dcdss.2013.6.649
[2] K.-J. Engel and R. J. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.
[3] S. Fornaro and A. Rhandi, On the Ornstein Uhlenbeck operator perturbed by singular potentials in L^{p}-spaces, Discrete Contin. Dyn. Syst. 33 (2013), no. 11-12, 5049-5058. https://doi.org/10.3934/dcds.2013.33.5049
[4] T. Kojima and T. Yokota, Generation of analytic semigroups by generalized OrnsteinUhlenbeck operators with potentials, J. Math. Anal. Appl. 364 (2010), no. 2, 618-629. https://doi.org/10.1016/j.jmaa.2009.10.028
[5] G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt, The domain of the OrnsteinUhlenbeck operator on an L^{p}-space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 2, 471-485.
[6] G. Metafune, J. Prüss, R. Schnaubelt, and A. Rhandi, L^{p}-regularity for elliptic operators with unbounded coefficients, Adv. Differential Equations 10 (2005), no. 10, 1131-1164.
[7] I. Metoui, On the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials in weighted L^{2}-spaces, Proyecciones 41 (2022), no. 4, 941-948.
[8] I. Metoui and S. Mourou, An L^{p}-theory for generalized Ornstein-Uhlenbeck operators with nonnegative singular potentials, Results Math. 73 (2018), no. 4, Paper No. 157, 21 pp. https://doi.org/10.1007/s00025-018-0918-2
[9] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan 34 (1982), no. 4, 677-701. https://doi.org/10.2969/jmsj/03440677
[10] N. Okazawa, An L^{p} theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan 36 (1984), no. 4, 675-688. https://doi.org/10.2969/jmsj/03640675
[11] N. Okazawa, L^{p}-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math. (N.S.) 22 (1996), no. 2, 199-239. https://doi.org/10.4099/math1924. 22.199
[12] M. Sobajima and T. Yokota, A direct approach to generation of analytic semigroups by generalized Ornstein-Uhlenbeck operators in weighted L^{p} spaces, J. Math. Anal. Appl. 403 (2013), no. 2, 606-618. https://doi.org/10.1016/j.jmaa.2013.02.054

Imen Metoui
Laboratory of Mathematical Analysis and Applications (LMAA-LR11-ES11)
Faculty of Mathematical, Physical and Natural Sciences of Tunis
University of Tunis El-Manar
2092 Tunis, Tunisia
Email address: imen.metoui@fst.utm.tn

[^0]: Received June 3, 2023; Accepted July 21, 2023.
 2020 Mathematics Subject Classification. Primary 47D60, 47D06, 35K15.
 Key words and phrases. Inverse square potential, regular potential, weighted Hardy inequality, generalized Ornstein-Uhlenbeck operator, C_{0}-semigroup, perturbation theory.

