CONFORMAL RICCI SOLITON ON PARACONTACT METRIC (k, μ)-MANIFOLDS WITH SCHOUTEN-VAN KAMPEN CONNECTION

Pardip Mandal, Mohammad Hasan Shahid, and Sarvesh Kumar Yadav

Abstract

The main object of the present paper is to study conformal Ricci soliton on paracontact metric (k, μ)-manifolds with respect to Schouten-van Kampen connection. Further, we obtain the result when paracontact metric (k, μ)-manifolds with respect to Schouten-van Kampen connection satisfying the condition $\stackrel{\star}{C}(\xi, U) \cdot \stackrel{\star}{S}=0$. Finally we characterized concircular curvature tensor on paracontact metric (k, μ) manifolds with respect to Schouten-van Kampen connection.

1. Introduction

In differential geometry of manifolds Schouten-van Kampen connection has been used for studying hyperdistributions in Riemannian manifolds as well as non-holonomic manifolds. In [9] Z. Olzak studied Schouten-van Kampen connection adapted to almost paracontact metric structure. Many authors investigated the hyperdistributions and some kind of affine connections adapted to these distributions [13-15]. Recently many authors studied Sasakian manifold, quasi Sasakian, Kenmotsu manifolds, f-Kenmotsu manifolds and transSasakian manifolds with respect to Schouten-van Kampen connection [5, 8, 11, 16]. M. Manev [6] studied Schouten-van Kampen connection on almost contact B-metric structure which is counterpart of almost contact metric structure. S. Kaneyuki and F. L. Williams in [4] introduced paracontact metric structure as an odd dimensional counter part of para-Hermitian manifolds. S. Zamkovoy [19] defined a canonical paracontact connection on a paracontact metric manifold. A paracontact metric (k, μ)-manifold is a paracontact metric manifold for which the curvature tensor satisfies [7]

$$
\begin{equation*}
R(U, V) \xi=k(\eta(V) U-\eta(U) V)+\mu(\eta(V) h U-\eta(U) h V) \tag{1}
\end{equation*}
$$

[^0]for all vector fields U, V on manifold and k, μ are real constant. A. Yildiz and S. Y. Perktaş [18] studied h-projectively and ϕ-projectively semi-symmetric and S. Y. Perktaş et al. [10] studied some solitons on paracontact metric (k, μ) manifold with respect to Schouten-van Kampen connection.
R. S. Hamilton [3] introduced the concept of Ricci flow in 1982 and the equation for Ricci flow is given by
$$
\frac{\partial g}{\partial t}=-2 S g
$$

In a Riemannian manifold $(M, g), g$ is called a Ricci soliton if

$$
\begin{equation*}
L_{V} g+2 S+2 \lambda g=0 \tag{2}
\end{equation*}
$$

where L is the Lie derivative, S is the Ricci tensor, V is a vector field on M and λ is a real constant. It is well known that if λ is a smooth function, then the soliton is known as almost Ricci soliton. Further a Ricci soliton is expanding, steady and shrinking if λ is positive, zero and negative, respectively. A. E. Fisher modified Hamilton's Ricci flow equation by introducing conformal Ricci flow equation given by [2]

$$
\frac{\partial g}{\partial t}+2\left(S+\frac{g}{2 n+1}\right)=-p g, r(g)=-1
$$

where p is the conformal pressure and $r(g)$ is the scalar curvature of the manifold. Further N. Basu and A. Bhattacharyya generalizes the concept of Ricci soliton by introducing conformal Ricci soliton and given by the equation [1]

$$
\begin{equation*}
L_{V} g+2 S+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g=0 \tag{3}
\end{equation*}
$$

where λ is constant and p is conformal pressure.
Concircular curvature tensor on paracontact metric (k, μ)-manifolds with respect to Levi-Civita connection as well as Schouten-van Kampen connection is given as follows:

$$
\begin{align*}
& C(U, V) W=R(U, V) W-\frac{\tau}{2 n(2 n+1)}(g(V, W) U-g(U, W) V), \tag{4}\\
& \stackrel{\star}{C}(U, V) W=\stackrel{\star}{R}(U, V) W-\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}(g(V, W) U-g(U, W) V), \tag{5}
\end{align*}
$$

where $R, \stackrel{\star}{R}(\tau, \stackrel{\star}{\tau})$ are curvature tensors (scalar curvature tensors) with respect to Levi-Civita and Schouten-van Kampen connections.

2. Preliminaries

Let M be a $(2 n+1)$-dimensional smooth manifold with the structure (ϕ, ξ, η) called almost para contact structure if it satisfies

$$
\begin{aligned}
& \eta(\xi)=1, \quad \phi^{2}(U)=U-\eta(U) \xi \\
& \phi \xi=0, \quad g(U, \xi)=\eta(U)
\end{aligned}
$$

for any vector fields U, V in M, where ϕ, ξ and η are the $(1,1)$ tensor field, characteristic vector field and one-form, respectively. The $(1,1)$ tensor field ϕ induces an almost paracomplex structure on each horizontal distribution $\mathrm{D}=\operatorname{ker}(\eta)$, that is eigen distribution $\mathrm{D}^{+}, \mathrm{D}^{-}$have equal dimension n. If a pseudo Riemannian metric g satisfies

$$
\begin{equation*}
g(\phi U, \phi V)=-g(U, V)+\eta(U) \eta(V) \tag{6}
\end{equation*}
$$

for all vector fields U, V in M, then (M, ϕ, ξ, η, g) is known as almost paracontact metric manifold. The fundamental two form Φ defined on M by $\Phi(U, V)=g(U, \phi V)$. If $d \eta(U, V)=g(U, \phi V)$ for all vector fields U, V on (M, ϕ, ξ, η, g), then almost paracontact metric manifold (M, ϕ, ξ, η, g) is called paracontact metric manifold. In a paracontact metric manifold, a traceless and symmetric operator h is defined as $h=\frac{1}{2} L_{\xi} \phi$ and it satisfies $h \xi=0$ and $h \phi+\phi h=0$. Moreover $h=0$ if and only if ξ is a killing vector field and in this case manifold is known as K-paracontact manifold. If ∇ denotes the LeviCivita connection on paracontact metric manifold, then the following relation satisfied [7]:

$$
\begin{equation*}
\nabla_{U} \xi=-\phi U+\phi h U \tag{7}
\end{equation*}
$$

Lemma 2.1. For a paracontact metric (k, μ)-manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>$ $1, k \neq-1)$, the following relations hold [7]:

$$
\begin{align*}
h^{2}= & (1+k) \phi^{2} \tag{8}\\
\left(\nabla_{U} \phi\right) V= & -g(U-h U, V) \xi+\eta(V)(U-h U), \\
S(U, V)= & {[2(1-n)+n \mu] g(U, V)+[2(n-1)+\mu] g(h U, V) } \\
& +[2(n-1)+n(2 k-\mu)] \eta(U) \eta(V), \\
Q U= & {[2(1-n)+n \mu] U+[2(n-1)+\mu] h U } \\
& +[2(n-1)+n(2 k-\mu)] \eta(U) \xi, \\
S(U, \xi)= & 2 n k \eta(U), \\
Q \xi= & 2 n k \xi \\
Q \phi-\phi Q= & 2[2(n-1)+\mu] h \phi
\end{align*}
$$

for all vector fields U, V on $M^{2 n+1}(\phi, \xi, \eta, g)$, where Q and S denote the Ricci operator and Ricci tensor of $M^{2 n+1}(\phi, \xi, \eta, g)$, respectively.

In [17] A. Yildiz and U. C. De proved the following identity on paracontact metric (k, μ)-manifold

$$
\begin{align*}
& R(U, V) h W-h R(U, V) W \tag{15}\\
= & \mu(k+1)\{g(V, W) \eta(U) \xi-g(U, W) \eta(V) \xi \\
& +\eta(U) \eta(W) V-\eta(V) \eta(W) U\} \\
& +k\{g(h V, W) \eta(U) \xi-g(h U, W) \eta(V) \xi \\
& +\eta(U) \eta(W) h V-\eta(V) \eta(W) h U
\end{align*}
$$

$$
\begin{aligned}
& +g(\phi V, W) \phi h U-g(\phi U, W) \phi h V\} \\
& +(\mu+k)\{g(\phi h U, W) \phi V-g(\phi h V, W) \phi U\} \\
& +2 \mu g(\phi U, V) \phi h W .
\end{aligned}
$$

If ∇ and $\stackrel{\star}{\nabla}$ denote the Levi-Civita connection and Schouten-van Kampen connection, respectively, then on paracontact metric (k, μ)-manifold the two connections are related by [12]

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{U} V=\nabla_{U} V+\eta(V) \phi U-\eta(V) \phi h U+g(U, \phi V) \xi-g(h U, \phi V) \xi \tag{16}
\end{equation*}
$$

Also, the torsion $\stackrel{\star}{T}$ of $\stackrel{\star}{\nabla}$ is defined by

$$
\begin{equation*}
\stackrel{\star}{T}(U, V)=\eta(U) \nabla_{V} \xi-\eta(V) \nabla_{U} \xi+2 d \eta(U, V) \xi \tag{17}
\end{equation*}
$$

Let R and $\stackrel{\star}{R}$ be the curvature tensors of $M^{2 n+1}$ with respect to Levi-Civita connection ∇ and the Schouten-van Kampen connection $\stackrel{\star}{\nabla}$. Then R and $\stackrel{\star}{R}$ are connected by the following formula [18]:
(18) $\stackrel{\star}{R}(U, V) W=R(U, V) W+g(U, \phi W) \phi V-g(V, \phi W) \phi U+g(h V, \phi W) \phi U$

$$
\begin{aligned}
& -g(h U, \phi W) \phi V+g(V, \phi W) \phi h U-g(U, \phi W) \phi h V \\
& +g(h U, \phi W) \phi h V-g(h V, \phi W) \phi h U \\
& +k(g(U, W) \eta(V) \xi-g(V, W) \eta(U) \xi \\
& +\eta(U) \eta(W) V-\eta(V) \eta(W) U) \\
& +\mu(g(h U, W) \eta(V) \xi-g(h V, W) \eta(U) \xi \\
& +\eta(U) \eta(W) h V-\eta(V) \eta(W) h U)
\end{aligned}
$$

Now taking the inner product in (18) with a vector field Z, then contracting with $U=Z=e_{i}$ we have

$$
\begin{equation*}
\stackrel{\star}{S}(V, W)=S(V, W)-2 n k \eta(V) \eta(W)-\mu g(h V, W), \tag{19}
\end{equation*}
$$

where $\stackrel{\star}{S}$ and S denote the Ricci tensor of $M^{2 n+1}$ with respect to the connections $\stackrel{\star}{\nabla}$ and ∇, respectively. As a consequence of (19), we get for the Ricci operator

$$
\begin{equation*}
\stackrel{\star}{Q} V=Q V-2 n k \eta(V) \xi-\mu h V \tag{20}
\end{equation*}
$$

Also if we take $V=W=e_{i},\{i=1, \ldots, 2 n+1\}$, in (19), we get

$$
\begin{equation*}
\stackrel{\star}{\tau}=\tau-2 n k, \tag{21}
\end{equation*}
$$

where $\stackrel{\star}{\tau}$ and τ denote the scalar curvatures of $M^{2 n+1}$ with respect to the connections $\stackrel{\star}{\nabla}$ and ∇, respectively.

3. Conformal Ricci soliton on paracontact metric (k, μ)-manifold with Schouten-van Kampen connection

In this section we consider conformal Ricci soliton on a paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection. From (3), we have

$$
\begin{equation*}
\left(\stackrel{\star}{L}_{V} g+2 \stackrel{\star}{S}+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g\right)(U, W)=0 \tag{22}
\end{equation*}
$$

that is
(23) $g\left(\stackrel{\star}{\nabla}_{U} V, W\right)+g\left(U, \stackrel{\star}{\nabla}_{W} V\right)+2 \stackrel{\star}{S}(U, W)+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W)=0$.

Using equation (16) in (23) we obtain

$$
\begin{align*}
& g\left(\nabla_{U} V, W\right)-\eta(V) g(\phi h U, W)+g(U, \phi V) \eta(W)-g(h U, \phi V) \eta(W) \tag{24}\\
& +g\left(\nabla_{W} V, U\right)-\eta(V) g(\phi h W, U)+g(W, \phi V) \eta(U)-g(h W, \phi V) \eta(U) \\
& +2 \stackrel{\star}{S}(U, W)+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W)=0 .
\end{align*}
$$

Putting $V=\xi$ in (24) and using (7), we obtain

$$
\begin{equation*}
2 \stackrel{\star}{S}(U, W)=-\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W) \tag{25}
\end{equation*}
$$

Also, from (19) and (25) we get

$$
2 S(U, W)=-\left(p+\frac{2}{2 n+1}+2 \lambda\right) g(U, W)+4 n k \eta(U) \eta(W)+2 \mu g(h U, W)
$$

Thus, we have the following result.
Theorem 3.1. Let M be an paracontact metric (k, μ)-manifold bearing conformal Ricci soliton (g, V, λ) with respect to the Schouten-van Kampen connection. Then M is an Einstein manifold with respect to the Schouten-van Kampen connection and M is an η-Einstein manifold with respect to the Levi-Civita connection.

Now we consider V is a pointwise collinear vector field with the structure vector field ξ, that is $V=f \xi$, where f is a smooth function on M. From (23) and using $V=f \xi$, we have
(26) $g\left(\stackrel{\star}{\nabla}_{U} f \xi, W\right)+g\left(U, \stackrel{\star}{\nabla}_{W} f \xi\right)+2 \stackrel{\star}{S}(U, W)+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W)=0$.

Then by using (7) and (16) in (26) we have

$$
\begin{equation*}
U[f] \eta(W)+W[f] \eta(U)+2 \stackrel{\star}{S}(U, W)+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W)=0 \tag{27}
\end{equation*}
$$

By virtue of (19), equation (27) becomes

$$
\begin{equation*}
U[f] \eta(W)+W[f] \eta(U)+2\{S(U, W)-2 n k \eta(U) \eta(W)-\mu g(h U, W)\} \tag{28}
\end{equation*}
$$

$$
+\left(p+\frac{2}{2 n+1}-2 \lambda\right) g(U, W)=0
$$

Putting $W=\xi$ in (28) and using (12) we get

$$
\begin{equation*}
U[f]+(\xi f) \eta(U)+\left(p+\frac{2}{2 n+1}-2 \lambda\right) \eta(U)=0 \tag{29}
\end{equation*}
$$

Taking $U=\xi$ in (29) gives

$$
\begin{equation*}
\xi f=\frac{p}{2}+\frac{1}{2 n+1}-\lambda . \tag{30}
\end{equation*}
$$

If we replace (30) in (29), we get

$$
\begin{equation*}
U[f]=\left(\frac{3 p}{2}+\frac{3}{2 n+1}-3 \lambda\right) \eta(U) \tag{31}
\end{equation*}
$$

which yields

$$
\begin{equation*}
d f=\left(\frac{3 p}{2}+\frac{3}{2 n+1}-3 \lambda\right) \eta \tag{32}
\end{equation*}
$$

Applying d on both sides in above equation and $p=\frac{-2}{2 n+1}$, we have

$$
\begin{equation*}
\lambda=0 . \tag{33}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
d f=0, \text { that is } f=\text { constant } \tag{34}
\end{equation*}
$$

Thus using constancy of f in (27), we obtain

$$
\begin{equation*}
\stackrel{\star}{S}(U, W)=0 . \tag{35}
\end{equation*}
$$

Thus

$$
S(U, W)=(k+2) g(U, W)-(k+2-2 n k) \eta(U) \eta(W)+(\mu-1) g(h U, W)
$$

for any $U, W \in T M$.
Hence we have the following theorem.
Theorem 3.2. Let M be a paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection. If M admits conformal Ricci soliton (g, V, λ) with conformal pressure $p=\frac{-2}{2 n+1}$ and V is pointwise collinear with the structure vector field ξ, then V is a constant multiple of the structure vector field, M is an η-Einstein manifold with respect to the Levi-Civita connection and the conformal Ricci soliton is steady.

4. Paracontact metric (k, μ)-manifold with respect to Schouten-van

$$
\text { Kampen connection satisfying } \stackrel{\star}{C}(\xi, U) \cdot \stackrel{\star}{S}=0
$$

In this section we study paracontact metric (k, μ)-manifold with respect to Schouten-van Kampen connection satisfying $\stackrel{\star}{C}(\xi, U) \cdot \stackrel{\star}{S}=0$. Therefore

$$
\begin{equation*}
\stackrel{\star}{S}(\stackrel{\star}{C}(\xi, U) V, W)+\stackrel{\star}{S}(V, \stackrel{\star}{C}(\xi, U) W)=0 \tag{36}
\end{equation*}
$$

From (18) we get

$$
\begin{equation*}
\stackrel{\star}{R}(\xi, U) V=\eta(U) \eta(V) \xi-g(U, V) \xi+g(h U, V) \xi . \tag{37}
\end{equation*}
$$

Using (18) in (5) we have

$$
\begin{equation*}
\stackrel{\star}{C}(\xi, U) V=\stackrel{\star}{R}(\xi, U) V-\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}(g(U, V) \xi-\eta(V) U) . \tag{38}
\end{equation*}
$$

Making use of (37) and (38) we have

$$
\begin{align*}
\stackrel{\star}{C}(\xi, U) V= & {[\eta(U) \eta(V) \xi-g(U, V) \xi+g(h U, V) \xi] } \tag{39}\\
& -\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}(g(U, V) \xi-\eta(V) U) .
\end{align*}
$$

By virtue of (39), equation (36) becomes

$$
\begin{equation*}
\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}(\eta(V) \stackrel{\star}{S}(U, W))+\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}(\eta(W) \stackrel{\star}{S}(U, V))=0 . \tag{40}
\end{equation*}
$$

Taking $V=\xi$ in (40) and using (19) we obtain

$$
\begin{equation*}
\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)} \stackrel{\star}{S}(U, W)=0 . \tag{41}
\end{equation*}
$$

From (41) we have the following theorem.
Theorem 4.1. If M is a paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection satisfies $\stackrel{\star}{C}(\xi, U) \cdot \stackrel{\star}{S}=0$, then M is Ricci flat with respect to the Schouten-van Kampen connection and η-Einstein manifold with respect to Levi-Civita connection provided $\frac{\star}{2 n(2 n+1)} \neq 0$.
5. Concircular curvature tensor on paracontact metric
(k, μ)-manifold with Schouten-van Kampen connection

(k, μ)-manifold with Schouten-van Kampen connection

In this section we study concircular curvature tensor on paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection.

Definition. A $(2 n+1)$-dimensional semi-Riemannian manifold M, is said to be h-concircular semisymmetric with respect to Schouten-van Kampen connection if

$$
\begin{equation*}
\stackrel{\star}{C}(U, V) \cdot h=0 \tag{42}
\end{equation*}
$$

holds on M.
The above equation is equivalent to

$$
\begin{equation*}
\stackrel{\star}{C}(U, V) h W-h \stackrel{\star}{C}(U, V) W=0 \tag{43}
\end{equation*}
$$

for any $U, V, W \in \chi(M)$. Thus using (5) in (43) we get

$$
\begin{align*}
& {[\stackrel{\star}{R}(U, V) h W-h \stackrel{\star}{R}(U, V) W]-\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}[g(V, h W) U} \tag{44}\\
& -g(V, W) h U-g(U, h W) V+g(U, W) h V]=0 .
\end{align*}
$$

Next, Making use of (18) in (44), we have

$$
\begin{align*}
& {[R(U, V) h W-h R(U, V) W+g(U, \phi h W) \phi V-g(V, \phi h W) \phi U} \tag{45}\\
& +g(h V, \phi h W) \phi U+g(h U, h \phi W) \phi V+g(V, \phi h W) \phi h U \\
& -g(U, \phi h W) \phi h V-g(h U, h \phi W) \phi h V+g(h V, h \phi W) \phi h U \\
& +(k+1)\{g(U, h W) \eta(V) \xi-g(V, h W) \eta(U) \xi\} \\
& +(\mu-1)\{g(h U, h W) \eta(V) \xi-g(h V, h W) \eta(U) \xi\} \\
& -g(U, \phi W) h \phi V+g(V, \phi W) h \phi U-g(h V, \phi W) h \phi U \\
& +g(h U, \phi W) h \phi V-g(V, \phi W) h \phi h U+g(U, \phi W) h \phi h V \\
& -g(h U, \phi W) h \phi h V+g(h V, \phi W) h \phi h U \\
& -k\{\eta(U) \eta(W) h V-\eta(V) \eta(W) h U\} \\
& \left.-\mu\left\{\eta(U) \eta(W) h^{2} V-\eta(V) \eta(W) h^{2} U\right\}\right] \\
& \quad \stackrel{\star}{\tau} \\
& -\frac{2 n}{2 n(2 n+1)}[g(V, h W) U-g(V, W) h U \\
& -g(U, h W) V+g(U, W) h V]=0 .
\end{align*}
$$

Next, using (15) in (45), we get

$$
\begin{align*}
& {[\mu(k+1)\{g(V, W) \eta(U) \xi-g(U, W) \eta(V) \xi+\eta(U) \eta(W) V} \tag{46}\\
& -\eta(V) \eta(W) U\}+k\{g(h V, W) \eta(U) \xi-g(h U, W) \eta(V) \xi \\
& +\eta(U) \eta(W) h V-\eta(V) \eta(W) h U-g(\phi V, W) h \phi U \\
& +g(\phi U, W) h \phi V\}-(\mu+k)\{g(h \phi U, W) \phi V-g(h \phi V, W) \phi U\} \\
& -2 \mu g(\phi U, V) h \phi W+g(U, \phi h W) \phi V-g(V, \phi h W) \phi U \\
& +g(h V, \phi h W) \phi U+g(h U, h \phi W) \phi V+g(V, \phi h W) \phi h U \\
& -g(U, \phi h W) \phi h V-g(h U, h \phi W) \phi h V+g(h V, h \phi W) \phi h U \\
& +(k+1)\{g(U, h W) \eta(V) \xi-g(V, h W) \eta(U) \xi\} \\
& +(\mu-1)\{g(h U, h W) \eta(V) \xi-g(h V, h W) \eta(U) \xi\} \\
& -g(U, \phi W) h \phi V+g(V, \phi W) h \phi U-g(h V, \phi W) h \phi U \\
& +g(h U, \phi W) h \phi V-g(V, \phi W) h \phi h U+g(U, \phi W) h \phi h V
\end{align*}
$$

$$
\begin{aligned}
& -g(h U, \phi W) h \phi h V+g(h V, \phi W) h \phi h U \\
& -k\{\eta(U) \eta(W) h V-\eta(V) \eta(W) h U\} \\
& -\mu\left\{\eta(U) \eta(W) h^{2} V-\eta(V) \eta(W) h^{2} U\right\} \\
& -\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}[g(V, h W) U-g(V, W) h U \\
& -g(U, h W) V+g(U, W) h V]=0
\end{aligned}
$$

which gives to
(47) $\quad[\mu\{g(h \phi V, W) g(\phi U, X)-g(h \phi U, W) g(\phi V, X)+2(U, \phi V) g(h \phi W, X)\}$

$$
+(k+1)\{g(V, W) \eta(U) \eta(X)-g(U, W) \eta(V) \eta(X)\}
$$

$$
+g(h U, W) \eta(V) \eta(X)-g(h V, W) \eta(U) \eta(X)]
$$

$$
-\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}[g(V, h W) g(U, X)-g(V, W) g(h U, X)
$$

$$
-g(V, W) g(U, h X)+g(U, W) g(h V, X)]=0 .
$$

Putting $U=X=e_{i}$ in (47), we get

$$
\begin{align*}
& {[\mu(k+1) g(h W, V)+\mu(k+1)\{g(V, W)-\eta(V) \eta(W)\}-g(h V, W)]} \tag{48}\\
& +2 n(k-2 n) g(V, h W)-2 n(k+1)(2 n-1) g(V, W)-S(h W, V) \\
& -S(h V, W)+(k+2) g(h V, W)+(k+2) g(h W, V)+2 g(h V, h W) \\
& -\frac{\stackrel{\star}{\tau}}{2 n(2 n+1)}\{(2 n+1) g(V, h W)-g(h W, V)+g(h V, W)\}=0 .
\end{align*}
$$

Again putting $V=h V$ in (48) and using $h^{2}=(k+1) \phi^{2}$, we obtain

$$
\begin{align*}
& (k+1)\left[\left\{\mu(k+1)-1+2 n(k-2 n)+2(k+\mu+1)-\frac{\stackrel{\star}{\tau}}{2 n}\right\} g(V, W)\right. \tag{49}\\
& -\{\mu(k+1)-1+2 n(k+2 n)-(k+2 \mu)\} \eta(V) \eta(W) \\
& +\{\mu-2 n(2 n-1)\} g(h V, W)-2 S(V, W)]=0
\end{align*}
$$

From equation (10) we have

$$
\begin{align*}
g(h V, W)= & \frac{1}{2(n-1)+\mu} S(V, W)-\frac{2(1-n)+n \mu}{2(n-1)+\mu} g(V, W) \tag{50}\\
& -\frac{2(n-1)+n(2 k-\mu)}{2(n-1)+\mu} \eta(V) \eta(W) .
\end{align*}
$$

Hence using (50) in (49), we get

$$
\begin{align*}
& (k+1)[\{\mu(k+1)-1+2 n(k-2 n)+2(k+\mu+1) \tag{51}\\
& \left.-\frac{\stackrel{\star}{\tau}}{2 n} g(V, W)+2 n(k+2 n)-(k+2 \mu)\right\} \eta(V) \eta(W)
\end{align*}
$$

$$
\begin{aligned}
& -\{\mu(k+1)-1+\mu-2 n(2 n-1)\}\left\{\frac{1}{2(n-1)+\mu} S(V, W)\right. \\
& \left.-\frac{2(1-n)+n \mu}{2(n-1)+\mu} g(V, W)-\frac{2(n-1)+n(2 k-\mu)}{2(n-1)+\mu} \eta(V) \eta(W)\right\} \\
& -2 S(V, W)]=0
\end{aligned}
$$

Hence one can write

$$
\begin{equation*}
S(V, W)=\frac{A_{1}}{A_{3}} g(V, W)+\frac{A_{2}}{A_{3}} \eta(V) \eta(W), \tag{52}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{1}= & \mu(k+1)-1+2 n(k-2 n)+2(k+\mu+1)-\frac{\stackrel{\star}{\tau}}{2 n}-\mu \\
& -2 n(2 n-1) \frac{2(1-n)+n \mu}{2(n-1)+\mu} \\
A_{2}= & \mu(k+1)-1+2 n(k+2 n)-\{\mu-2 n(2 n-1)\} \frac{2(1-n)+n \mu}{2(n-1)+\mu} \\
& -(k+2 \mu) \\
A_{3}=2 & -\{\mu-2 n(2 n-1)\} \frac{1}{2(n-1)+\mu} .
\end{aligned}
$$

Therefore from (52) it follows that the manifold M is an η-Einstein manifold with respect to the Levi-Civita connection. Thus we have the following:

Theorem 5.1. Let M be a $(2 n+1)$-dimensional h-concircular semisymmetric paracontact (k, μ)-manifold $(k \neq-1)$ with respect to the Schouten-van Kampen connection. Then M is an η-Einstein manifold with respect to the Levi-Civita connection provided $\mu \neq 2(1-n)$.

Example 5.2. Let G be a Lie group with Lie algebra g endowed with a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ and non-zero Lie brackets [10]:

$$
\begin{aligned}
& {\left[e_{1}, e_{5}\right]=e_{1}+e_{2}, \quad\left[e_{2}, e_{5}\right]=e_{1}+e_{2}} \\
& {\left[e_{3}, e_{5}\right]=-e_{3}+e_{4}, \quad\left[e_{4}, e_{5}\right]=e_{3}-e_{4}} \\
& {\left[e_{1}, e_{2}\right]=e_{1}+e_{2}, \quad\left[e_{1}, e_{3}\right]=e_{2}+e_{4}-2 e_{5},} \\
& {\left[e_{1}, e_{4}\right]=e_{2}+e_{3}, \quad\left[e_{2}, e_{3}\right]=e_{1}-e_{4}} \\
& {\left[e_{2}, e_{4}\right]=e_{1}-e_{3}+2 e_{5}, \quad\left[e_{3}, e_{4}\right]=-e_{3}+e_{4} .}
\end{aligned}
$$

Define on G a left invariant para contact metric structure (ϕ, ξ, η, g) such that $g\left(e_{1}, e_{1}\right)=g\left(e_{4}, e_{4}\right)=-g\left(e_{2}, e_{2}\right)=-g\left(e_{3}, e_{3}\right)=g\left(e_{5}, e_{5}\right)=1, g\left(e_{i}, e_{j}\right)=0$ for any $i \neq j$, and $\phi e_{1}=e_{3}, \phi e_{2}=e_{4}, \phi e_{3}=e_{1}, \phi e_{4}=e_{2}, \phi e_{5}=0, \xi=e_{5}$ and $\eta=g\left(\cdot, e_{5}\right)$. A straightforward computation shows that

$$
\begin{aligned}
\nabla_{e_{1}} \xi & =e_{1}-\phi e_{1}, & & \nabla_{e_{2}} \xi=e_{2}-\phi e_{2} \\
\nabla_{\phi e_{1}} \xi & =-e_{1}-\phi e_{1}, & & \nabla_{\phi e_{2}} \xi=-e_{2}-\phi e_{2},
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\xi} e_{1} & =-e_{2}-\phi e_{1}, & & \nabla_{\xi} e_{2}=-e_{1}-\phi e_{2}, \\
\nabla_{\xi} \phi e_{1} & =-e_{1}-\phi e_{2}, & & \nabla_{\xi} \phi e_{2}=-e_{2}-\phi e_{1}, \\
\nabla_{e_{1}} e_{1} & =e_{2}-e_{5}, & & \nabla_{e_{1}} e_{2}=e_{1}, \\
\nabla_{e_{1}} \phi e_{1} & =\phi e_{2}-e_{5}, & & \nabla_{e_{1}} \phi e_{2}=\phi e_{1}, \\
\nabla_{e_{2}} e_{1} & =e_{2}, & & \nabla_{e_{2}} e_{2}=-e_{1}+e_{5}, \\
\nabla_{e_{2}} \phi e_{1} & =-\phi e_{2}, & & \nabla_{e_{2}} \phi e_{2}=-\phi e_{1}+e_{5}, \\
\nabla_{\phi e_{1}} e_{1} & =-e_{2}+e_{5}, & & \nabla_{\phi e_{1}} e_{2}=-e_{1}, \\
\nabla_{\phi e_{1}} \phi e_{1} & =-\phi e_{2}-\alpha e_{5}, & & \nabla_{\phi e_{1}} \phi e_{2}=-\phi e_{1}, \\
\nabla_{\phi e_{2}} e_{1} & =-e_{2}, & & \nabla_{\phi e_{2}} e_{2}=-e_{1}-e_{5}, \\
\nabla_{\phi e_{2}} \phi e_{1} & =-\phi e_{2}, & & \nabla_{\phi e_{2}} \phi e_{2}=-\phi e_{1}+e_{5} .
\end{aligned}
$$

Which implies that (G, ϕ, ξ, η, g) is a 5 -dimensional paracontact metric manifold with $\kappa=-2$ and $\mu=2$. Using (16), we have

$$
\begin{aligned}
& \stackrel{\star}{\nabla}_{e_{1}} e_{1}=e_{2}, \quad \stackrel{\star}{\nabla}_{e_{1}} e_{2}=e_{1}, \quad \stackrel{\star}{\nabla}_{e_{1}} e_{3}=e_{4}, \quad \stackrel{\star}{\nabla}_{e_{1}} e_{4}=e_{3}, \\
& \stackrel{\star}{\nabla} e_{e_{2}} e_{1}=-e_{2}, \quad \stackrel{\star}{\nabla}_{e_{2}} e_{2}=-e_{1}, \stackrel{\star}{\nabla}_{e_{2}} e_{3}=-e_{4}, \quad \stackrel{\star}{\nabla}_{e_{2}} e_{4}=-e_{3} \text {, } \\
& \stackrel{\star}{\nabla}_{e_{3}} e_{1}=-e_{2}, \stackrel{\star}{\nabla}_{e_{3}} e_{2}=-e_{1}, \quad \stackrel{\star}{\nabla}_{e_{3}} e_{3}=-e_{4}, \quad \stackrel{\star}{\nabla}_{e_{3}} e_{4}=-e_{3}, \\
& \stackrel{\star}{\nabla}_{e_{4}} e_{1}=-e_{2}, \quad \stackrel{\star}{\nabla}_{e_{4}} e_{2}=-e_{1}, \quad \stackrel{\star}{\nabla}_{e_{4}} e_{3}=-e_{4}, \\
& \stackrel{\star}{\nabla}_{e_{4}} e_{4}=-e_{3}, \quad \stackrel{\star}{\nabla} e_{5} e_{1}=-e_{2}-e_{3}, \quad \stackrel{\star}{\nabla}_{e_{5}} e_{2}=-\beta e_{1}-e_{4}, \\
& \stackrel{\star}{\nabla}_{e_{5}} e_{3}=-e_{1}-e_{4}, \quad \stackrel{\star}{\nabla} e_{5} e_{4}=-e_{2}-e_{3} .
\end{aligned}
$$

Now using (18), we can calculate the non-zero components of its curvature tensor with respect to the Schouten-van Kampen connection as follows:

$$
\begin{array}{ll}
\stackrel{\star}{R}\left(e_{1}, e_{3}\right) e_{1}=-2 e_{3}, & \stackrel{\star}{R}\left(e_{1}, e_{3}\right) e_{2}=-2 e_{4}, \\
\stackrel{\star}{R}\left(e_{1}, e_{3}\right) e_{3}=-2 e_{1}, & \stackrel{\star}{R}\left(e_{1}, e_{3}\right) e_{4}=-2 e_{2}, \\
\stackrel{\star}{R}\left(e_{1}, e_{4}\right) e_{1}=2 e_{2}, & \stackrel{\star}{R}\left(e_{1}, e_{4}\right) e_{2}=2 e_{1}, \\
\stackrel{\star}{R}\left(e_{1}, e_{4}\right) e_{3}=2 e_{4}, & \stackrel{\star}{R}\left(e_{1}, e_{4}\right) e_{4}=2 e_{3}, \\
\stackrel{\star}{R}\left(e_{2}, e_{3}\right) e_{1}=-2 e_{2}, & \stackrel{\star}{R}\left(e_{2}, e_{3}\right) e_{2}=-2 e_{1}, \\
\stackrel{\star}{R}\left(e_{2}, e_{3}\right) e_{3}=-2 e_{4}, & \stackrel{\star}{R}\left(e_{2}, e_{3}\right) e_{4}=-2 e_{3}, \\
\stackrel{\star}{R}\left(e_{2}, e_{4}\right) e_{1}=2 e_{3}, & \stackrel{\star}{R}\left(e_{2}, e_{4}\right) e_{2}=2 e_{4}, \\
\stackrel{\star}{R}\left(e_{2}, e_{4}\right) e_{3}=2 e_{1}, & \stackrel{\star}{R}\left(e_{2}, e_{4}\right) e_{4}=2 e_{2} .
\end{array}
$$

Thus the non-zero components of its Ricci tensor with respect to the Schoutenvan Kampen connection as follows:

$$
\begin{equation*}
\stackrel{\star}{S}\left(e_{1}, e_{1}\right)=\stackrel{\star}{S}\left(e_{4}, e_{4}\right)=2, \stackrel{\star}{S}\left(e_{2}, e_{2}\right)=\stackrel{\star}{S}\left(e_{3}, e_{3}\right)=-2 \tag{53}
\end{equation*}
$$

From (35), (53) one can see that manifold is Ricci flat with respect to Schoutenvan Kampen connection or η-Einstein manifold with respect to the Levi-Civita connection on such a 5 -dimensional paracontact metric (κ, μ)-manifold with $\kappa=-2$.

References

[1] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), no. 1, 15-21.
[2] A. E. Fischer, An introduction to conformal Ricci flow, Classical Quantum Gravity 21 (2004), no. 3, S171-S218. https://doi.org/10.1088/0264-9381/21/3/011
[3] R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
[4] S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187. https://doi.org/10.1017/ S0027763000021565
[5] A. Kazan and H. B. Karadag, Trans-Sasakian manifolds with Schouten-van Kampen connection, Ilirias J. Math. 7 (2018), 1-12.
[6] M. Manev, Pair of associated Schouten-van Kampen connections adapted to an almost contact B-metric structure, Filomat 29 (2015), no. 10, 2437-2446. https://doi.org/ 10.2298/FIL1510437M
[7] B. C. Montano, I. Küpeli Erken, and C. Murathan, Nullity conditions in paracontact geometry, Differential Geom. Appl. 30 (2012), no. 6, 665-693. https://doi.org/10. 1016/j.difgeo.2012.09.006
[8] H. G. Nagaraja and D. L. Kiran Kumar, Kenmotsu manifolds admitting Schouten-van Kampen connection, Facta Univ. Ser. Math. Inform. 34 (2019), no. 1, 23-34.
[9] Z. Olszak, The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31-42. https://doi.org/10.2298/PIM13080310
[10] S. Y. Perktaş, U. C. De, and A. Yıldız, Some results on paracontact metric $(k, \mu)-$ manifolds with respect to the Schouten-van Kampen connection, Hacet. J. Math. Stat. 51 (2022), no. 2, 466-482. https://doi.org/10.15672/hujms. 941744
[11] S. Y. Perktaş and A. Yıldız, On quasi-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection, Int. Electron. J. Geom. 13 (2020), no. 2, 62-74. https://doi.org/10.36890/iejg. 742073
[12] J. A. Schouten and E. R. van Kampen, Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde, Math. Ann. 103 (1930), no. 1, 752-783. https://doi.org/ 10.1007/BF01455718
[13] A. F. Solov'ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geometricheskii Sbornik 19 (1978), 12-23.
[14] A. F. Solov'ev, The bending of hyperdistributions, Geometricheskii Sbornik 20 (1979), 101-112.
[15] A. F. Solov'ev, Second fundamental form of a distribution, Mat. Zametki 35 (1982), 139-146.
[16] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2017), 93-105. https://doi.org/10.2298/ pim1716093y
[17] A. Yildiz and U. C. De, Certain semisymmetric curvature conitions on paracontact metric (k, μ)-manifolds, Math. Sci. App. E-Notes 8 (2020), 1-10.
[18] A. Yıldız and S. Y. Perktaş, Some curvature properties on paracontact metric (k, μ) manifolds with respect to the Schouten-van Kampen connection, Facta Univ. Ser. Math. Inform. 36 (2021), no. 2, 395-408.
[19] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009), no. 1, 37-60. https://doi.org/10.1007/s10455-008-9147-3

Pardip Mandal
School of Applied Science and Humanities
Haldia Institute of Technology
Haldia, 721657, India
Email address: pm2621994@gmail.com
Mohammad Hasan Shahid
Department of Mathematics
Jamia Millia Islamia
New Delhi, 110025, India
Email address: mhshahid@jmi.ac.in
Sarvesh Kumar Yadav
Department of Mathematics
Jamia Millia Islamia
New Delhi, 110025, India
Email address: yadavsarvesh74@gmail.com

[^0]: Received April 10, 2022; Revised May 28, 2023; Accepted November 8, 2023.
 2020 Mathematics Subject Classification. Primary 53B30, 53C15, 53C25; Secondary 53D10.

 Key words and phrases. Ricci soliton, concircular curvature tensor, Schouten-van Kampen connection.

