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GENERALIZED 7n-RICCI SOLITONS ON PARA-KENMOTSU
MANIFOLDS ASSOCIATED TO THE ZAMKOVOY
CONNECTION

SHAHROUD AZAMI

ABSTRACT. In this paper, we study para-Kenmotsu manifolds admitting
generalized n-Ricci solitons associated to the Zamkovoy connection. We
provide an example of generalized n-Ricci soliton on a para-Kenmotsu
manifold to prove our results.

1. Introduction

The almost para contact Riemannian manifold was introduced by Sato [33]
in 1976. Then, the notion of a para-Sasakian manifold has been defined and
studied by Adati and Matsumoto [1] as a class of almost contact Riemannian
manifolds. The Kenmotsu manifold was introduced by Kenmotsu [16] in 1972
as a new class of almost contact metric manifolds. Kenmotsu manifolds are very
closely related to the warped product manifolds. Sinha and Prasad [37] studied
para-Kenmotsu manifolds as a class of almost para contact metric manifolds.
For further reading on Kenmotsu manifolds and their generalizations, see [12,
19,21, 32].

In 1982, Hamilton [14] introduced the notion of Ricci soliton as a special so-
lution to Ricci flow and as a generalization of Einstein metrics on a Riemannian
manifold. A Ricci soliton [6] is a triplet (g, V, \) on a pseudo-Riemannian man-
ifold M such that

(1.1) Lyg+25+2\g =0,

where Ly is the Lie derivative along the potential vector field V', S is the Ricci
tensor, and A is a real constant. The Ricci soliton is said to be shrinking,
steady and expanding according as A < 0, A = 0 and A > 0, respectively. If
the vector field V is the gradient of a potential function 1, then g is called a
gradient Ricci soliton.
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In 2016, Nurowski and Randall [28] introduced the notion of generalized
Ricci soliton as follows

(1.2) Lyvg+2uV> @V’ —2a8 —2Xg =0,

where V? is the canonical 1-form associated to V. Also, as a generalization of
Ricci soliton, the notion of n-Ricci soliton was introduced by Cho and Kimura
[10] which it is a 4-tuple (g, V, A, p), where V is a vector field on M, X and p
are constants, and ¢ is a pseudo-Riemannian metric satisfying the equation

(1.3) Lyvg+25+2\g+2om@n=0,

where S is the Ricci tensor associated to g. Many authors studied the n-Ricci
solitons [5,11,13,17,22-27,29,30,39]. In particular, if p = 0, then the n-Ricci
soliton equation reduces to the Ricci soliton equation. Motivated by the above
studies M. D. Siddiqi [36] introduced the notion of generalized n-Ricci soliton
as follows

(1.4) Lyvg—+2uV° @V +28+2 g+ 2pn @ n = 0.

Motivated by [3,7,20] and the above works, we study generalized 7n-Ricci
solitons on para-Kenmotsu manifolds associated the Zamkovoy connection. We
give an example of generalized n-Ricci soliton on a para-Kenmotsu manifold
associated the Zamkovoy connection.

The paper is organized as follows. In Section 2, we recall some necessary
and fundamental concepts and formulas on para-Kenmotsu manifolds which be
used throughout the paper. In Section 3, we give the main results and their
proofs. In Section 4, we give an example of a para-Kenmotsu manifold admit
in generalized 7-Ricci soliton with respect to the Zamkovoy connection.

2. Preliminaries

An n-dimensional pseudo-Riemannian manifold (M, g) is said to be an al-
most para-contact manifold [2] with an almost contact structure (¢,¢,n,g) if
there exist a (1, 1)-tensor field ¢, a vector field £ and a 1-form 7 such that

(2.1) ¢*(X) = X —n(X)&n(€) =1,
(2.2) 9(0X,¢Y) = —g(X,Y) +n(X)n(Y)

for all vector fields X,Y on M. In this case, we have ¢£ = 0, no ¢ = 0, and
n(X) = g(X, ). From (2.2) it can be easily deduce that

for all vector fields X,Y on M. An almost para-contact manifold M is called
a para-Kenmotsu manifold [15] if

(2.3) (Vx9)Y = g(X,9Y)§ —n(Y)pX
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for all vector fields X,Y on M, where V is the Levi-Civita connection with
respect to the metric g. In a para-Kenmotsu manifold, we have

(2.4) Vx&=X—n(X)§,

(2.5) Vxn)Y = g(X,Y) = n(X)n(Y).

(
Using (2.4) and (2.5), we find

(2.6) R(X,Y)E = n(X)Y —n(Y)X,
(2.7) R(E X)Y = —g(X, V) +n(Y)X,
(2.8) N(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X)

for all vector fields X,Y,Z, where R is the Riemannian curvature tensor.
The Ricci tensor S of a para-Kenmotsu manifold M is defined by S(X,Y) =
S €g(R(ei, X)Y, e;) and we have

(2.9) S5(X,8) = —(n—1)n(X)
for any vector field X on M.
Let M be an almost contact metric manifold and T'M be the tangent bundle

of M. We have two naturally defined distribution on tangent bundle TM [38]
as follows

H = kern, H= span{i},

thus we get TM = H @ P:I . Therefore, by this composition we can define
the Zamkovoy connection V [4,18,31,43] on M with respect to Levi-Civita
connection V as follows

(2.10) VxV = VxY —n(Y)Vx&+ (Vaxn)(Y))E +n(X)o(Y)

for all vector fields X,Y on M. On para-Kenmotsu manifolds, using (2.4),
(2.5), and (2.10) we obtain

(2.11) VxY =VxY —n(Y)X +g(X,Y)E+n(X)o(Y)

for all vector fields X,Y on M. Let R and S be the curvature tensor and the
Ricci tensor of the connection V, respectively, that is,

R(X,Y)Z =VxVyZ - VyVxZ - VixyZ,
S(X,Y) = eg(R(ei, X)Y, e;).
=1

On para-Kenmotsu manifolds, applying (2.11) and the above relation we have

(2.12) R(X,Y)Z = R(X,Y)Z+g(Y,Z)X —g(X, Z)Y

and

(2.13) SX,)Y)=8X,Y)+ (n—-1)9(X,Y)
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for all vector fields X, Y, Z on M, where .S denotes the Ricci tensor of the con-
nection V. Using (2.13), the Ricci operator @) of the connection V is determined
by

(2.14) QX =QX+ (n—1)X.

Let r and 7 be the scalar curvature of the Levi-Civita connection V and the
Zamkovoy connection V. The equation (2.13) yields

(2.15) F=7r+n?—n.

The generalized n-Ricci soliton associated to the Zamkovoy connection is
defined by

(2.16) a5+§zvg+qu®Vb+p77®77+)\g:(),

where S denotes the Ricci tensor of the connection V,
(Lvg)(Y, 2) == g(VyV, 2Z) +g(Y,VzV),

V? is the canonical 1-form associated to V, that is, V*(X) = ¢g(V, X) for any
vector field X, A is a smooth function on M, and «, 3, i1, p are real constants
such that («, 8, 1) # (0,0,0).

The generalized n-Ricci soliton equation reduces to

1) the n-Ricci soliton equation when o =1 and p = 0,

n K
(2) the Ricci soliton equation when o =1, p =0, and p =0,
(3) the generalized Ricci soliton equation when p = 0.

Note that
(2.17) (Lvg)(X,Y)
= g(VxV,Y) 4 g(X,VyV)
= g(VxV — (V)X + g(X, V) +n(X)oVY)
+9(X, VyV =n(V)Y + g(Y, V){+n(Y)eV)
= Lyg(X,Y) —2n(V)g(X,Y) + g(X,V)n(Y) + g(Y, V)n(X)
+n(X)g(oV.Y) +n(Y)g(X, V).

3. Main results and their proofs

A para-Kenmotsu manifold is called n-Einstein with respect to the Zamkovoy
connection if its Ricci tensor S satisfies in the following equation

S =ag+bnemn,
where a and b are smooth functions on manifold. Let M be a para-Kenmotsu
manifold. Now, we consider M satisfies the generalized n-Ricci soliton (2.16)
associated to the Zamkovoy connection and the potential vector field V is a
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pointwise collinear vector field with the structure vector field £, that is, V = f¢
for some function f on M. Using (2.14) we get

Lreg(X,Y) =g(Vx[EY)+g(X, Vy f§)
=X fn) + fg(X—n(X)&Y) + (Y )n(X) + fg(X, Y —n(Y)E)
= (X nY) + Y )nX) +2f(g(X,Y) = n(X)n(Y)),
hence
Lieg(X,Y) = (X nY) + (Y )n(X)
for all vector fields X,Y on M. Also, we obtain
(3.1) €& (X,Y)=n(X)n(Y)

for all vector fields X,Y. Applying V = f¢, (2.13) and (3.1) in the equation
(2.16) we infer

2 XD+ (Y PR+ e +oIm(Xn(Y) +Ag(X, ) =0

for all vector fields X,Y on M. We plug Y = £ in the above equation and
using (2.9) and (2.13) to yield

B g

(3.2) aS(X,Y)+

(33 X s+ 2lemx) + @r + o+ Nu(x) =0
for any vector fields X on M. Taking X = ¢ in (3.3) gives
(3.4) BEf = —(uf* + p+ ).

Inserting (3.4) in (3.3), we conclude

(3.5) BXf=—(uf*+p+Nn(X),

which yields

(3.6) Bdf = —(uf? +p+ M.

Applying (3.6) in (3.2) we obtain

(3.7) aS(X,Y) =0,

which implies that ar = 0.
Therefore, this leads to the following theorem:

Theorem 3.1. Let (M, g,¢,&,m) be a para-Kenmotsu manifold. If M admits
a generalized n-Ricci soliton (g,V, «, B, i, p, \) with respect to the Zamkovoy
connection such that o # 0 and V = f£ for some smooth function f on M,
then M is a flat manifold with respect to the Zamkovoy connection.

Now, let M be an n-Einstein para-Kenmotsu manifold with respect to the
Zamkovoy connection and V' = £. Then we get S = ag + bn ® n for some
constants @ and b on M. From (2.17) we have

Leg(X,Y) =0
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for all vector fields X,Y. Therefore,

aS+§Z§g+u£b®£b+pn®n+)\g
= aag +ban@n+pun@n+ pn@n+ Ag
(ac + Mg + (ba + p+ p)n @ .

From the above equation M admits a generalized n-Ricci soliton (g, &, «, 3, 1,
p, A) with respect to the Zamkovoy connection if A = —aa and p = —ba — p.
Hence, we can state the following theorem:

Theorem 3.2. Suppose that M is an n-Einstein para-Kenmotsu manifold with
respect to the Zamkovoy connection such that S = ag+bn®n for some constants
a and b. Then M satisfies a generalized n-Ricci soliton (g,&,«, B8, b, —ba —
1, —acy) with respect to the Zamkovoy connection.

Definition. Let M be a para-Kenmotsu manifold with the Zamkovoy con-
nection V. The M-projective curvature tensor M [35] with respect to the
Zamkovoy connection on M is defined by

(3.8) M((X,Y)Z

= R(X,Y)Z— S(Y,2)X —5(X, 2)Y +9(X, Z)QY —g(Y, Z)QX)

s (
2(n—1)
for all vector fields X,Y,Z on M. A para-Kenmotsu manifold M is called
quasi-M-projectively flat with respect to the Zamkovoy connection if

g(M (X, Y)Z,6W) = 0
for all vector fields X,Y,Z and W on M.

Now consider a para-Kenmotsu manifold M is quasi-M-projectively flat with
respect to the Zamkovoy connection. From [35] we have

—2n2+4n—2—r

(39) S(X,2) = TS (X, 2)
and
(3.10) S(X,Z) = — +n2f - =" (x,2)

for all vector fields X, Z on M. Therefore, we have the following corollary.

Corollary 3.3. Let M be a quasi-M -projectively flat para-Kenmotsu manifold

with respect to the Zamkovoy connection. Then M satisfies a generalized n-
2

Riccr soliton (g’ 57 a, Bv My — s —M

P «) with respect to the Zamkovoy
connection.

Let M be an M-projectively flat para-Kenmotsu manifold with the Zam-
kovoy connection, that is, M(X,Y)Z = 0 for all vector fields X, Y, Z on M. In
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this case, from [35] we get

(3.11) S(X.2) = ~g(X.2)
for all vector fields X, Z on M. Therefore, we have the following corollary.

Corollary 3.4. Let M be an M -projectively flat para-Kenmotsu manifold with
respect to the Zamkovoy connection. Then M satisfies a generalized n-Ricci
soliton (g,&, o, B, p, — i, —%a) with respect to the Zamkovoy connection.

Suppose that M is a §-M-projectively flat para-Kenmotsu manifold with the
Zamkovoy connection, that is, M(X,Y)¢ = 0 for all vector fields X,Y on M.
In this case, from [35] we obtain

(3.12) S(X,Z2)=0
for all vector fields X, Z on M. Therefore, we have the following corollary.

Corollary 3.5. Let M be a £-M -projectively flat para-Kenmotsu manifold with
respect to the Zamkovoy connection. Then M satisfies a generalized n-Ricci
soliton (g,&, o, B, pt, — i, 0) with respect to the Zamkovoy connection.

Now assume that M is a ¢-M-projectively flat para-Kenmotsu manifold with
the Zamkovoy connection, that is, g(M(¢X, ¢Y)dZ,¢W) = 0 for all vector
fields X,Y,Z,W on M. In this case, from [35] we can write S(X,Y) = —(n —
Dn(X)n(Y) + (n — 1)g(X,Y) for all vector fields X,Y on M. Therefore, we
have the following corollary.

Corollary 3.6. Let M be a ¢-M -projectively flat para-Kenmotsu manifold with
respect to the Zamkovoy connection. Then M satisfies a generalized m-Ricci
soliton (g,&, 0, B, 1, (n — L)oo — p, —(n — 1)) with respect to the Zamkovoy
connection.

Let that M be a para-Kenmotsu manifold with the Zamkovoy connection
satisfying the condition M (&, X) - S = 0 for any vector fields X on M. In this
case, from [35] we have S(X,Y) = 0 for all vector fields X,Y on M. Therefore,
we have the following corollary.

Corollary 3.7. Let M be a para-Kenmotsu manifold with respect to the Zam-
kovoy connection satisfying the condition M(&,X)-S = 0. Then M satisfies
a generalized n-Ricci soliton (g,€, «, B, 1, —p, 0) with respect to the Zamkovoy
connection.

Now assume that M is a para-Kenmotsu manifold with the Zamkovoy con-
nection satisfying the condition M (&, X) - R = 0 for any vector fields X on M.
In this case, from [35] we have S(X,Y) = 3(n — 1)g(X,Y") for all vector fields

X,Y on M. Therefore, we have the following corollary.
Corollary 3.8. Let M be a para-Kenmotsu manifold with respect to the Zam-

kovoy connection satisfying the condition M(¢,X) - R = 0. Then M satisfies
a generalized n-Ricci soliton (g,&, «, B, 1, —p, —%(n — 1)) with respect to the

Zamkovoy connection.
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Definition. A vector field V is said to a conformal Killing vector field if
(3.13) (Lvg)(X.,Y) = 2hg(X,Y)

for all vector fields X, Y, where h is some function on M. The conformal Killing
vector field V' is called

e proper when A is not constant,
e homothetic vector field when h is a constant,
e Killing vector field when h = 0.

Let vector field V' be a conformal Killing vector field with respect to the
Zamkovoy connection and satisfies in (Lyg)(X,Y) = 2hg(X,Y). By (2.13)
and (2.16) we have

(3.14) aS(X,Y) 4 Bhg(X,Y) + uV (X)VP (V) + pn(X)n(Y) + Ag(X,Y) =0
for all vector fields X,Y. By inserting Y = £ in the above equation we get
(3.15) g(=(n —1)ag 4 BhE + un(V)V + p& + X, X) = 0.

Since X is an arbitrary vector field we have the following theorem.

Theorem 3.9. If the metric g of a para-Kenmotsu manifold satisfies the gener-

alized n-Ricci soliton (g9, V, «, B, i, p, ), where V is a Eonformal Killing vector
field with respect to the Zamkovoy connection, that is Ly g = 2hg, then

(3.16) (—(n—=1a+ph+p+ N+ un(V)V =0.

Definition. A nonvanishing vector field V on a pseudo-Riemannian manifold
(M, g) is called torse-forming [41] if

(3.17) VxV = fX +wX)V

for all vector field X, where V is the Levi-Civita connection of g, f is a smooth
function and w is a 1-form. The vector field V is called

e concircular [8,40] whenever in the equation (3.17) the 1-form w vanishes
identically,

e concurrent [34,42] if in equation (3.17) the 1-form w vanishes identically
and f =1,

e parallel vector field if in equation (3.17) f = w =0,

e torqued vector field [9] if in equation (3.17) w(V) = 0.

Let (g,V,«, 3, 1, p, \) be a generalized n-Ricci soliton on a para-Kenmotsu
manifold, where V' is a torse-forming vector filed and satisfied in (3.17). Then

(318)  aS(X,Y)+ 1 [(Lva)(X.Y) — 2m(V)g(X.Y) +g(X, V)n(Y)
T9(¥, V)n(X) +n(X)g(@V.Y) +n(Y)g(X, oV)]
+uV (XOVI(Y) + pn(X)n(Y) + Ag(X,Y) =0

for all vector fields X,Y. On the other hand,

(3.19) (Lvg)(X,Y) =2fg(X,Y) +w(X)g(V,Y) + w(Y)g(Y, X)
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for all vector fields X,Y. Applying (3.19) into (3.18) we arrive at

(320) aS(X,Y)+5 [279(X, ¥)+(X)g(V, ¥ ) +(¥)g(¥ X) ~29(V)g(X. Y)

+9(X, V)n(Y) +g(Y, V)n(X) +0(X)g(eV.Y) +n(Y)g(X, ¢V)]
+pV (X)V(Y) + pn(X)n(Y) + Ag(X,Y) = 0.
We take contraction of the above equation over X and Y to obtain
(3.21) af +n[Bf + N +p+ Bw(V) — (n—1)Bn(V) + plV|* = 0.
Therefore we have the following theorem.

Theorem 3.10. If the metric g of a para-Kenmotsu manifold satisfies the gen-
eralized n-Ricci soliton (g,V, a, B, 1, p, ), where V' is the torse-forming vector
filed and satisfied in (3.17), then

(3.22) A= —% [a(r + 30 = 9n) + p + Bw(V) — (n = 1)Bn(V) + u|V[*] - BF.

4. Example

In this section, we give an example of a para-Kenmotsu manifold with respect
to the Zamkovoy connection.
Example 4.1. Let (z,y,2) be the standard coordinates in R® and M =
{(z,y,2) € R*|z > 0}. We consider the linearly independent vector fields
7] 0 0 0 0
— = — = 2y)— + (2 —+ .
o 2Ty T @A+ Qetyg t o

We define the metric g by

€1 =

1, if i =jandi,je€{1,3},
glei,ej) =< -1, ifi=j=2,
0, otherwise,

and an almost contact structure (¢,&,n) on M by

52637 n(X):g(XveL’»)a d):

o = O
S O =
:>< S O O

for all vector field X. Note the relations ¢?(X) = X — n(
9(dX, dY) = —g(X,Y)+n(X)n(Y) hold. Thus (M, ¢,¢, 1,9
para-contact structure on M. We obtain the following:

)€, n(€) = 1, and

defines an almost

~—

[7] ‘ €1 €9 es3
€1 0 0 e+ 262
e 0 0 2e1 + e

es | —ep —2ey —2e; —eo 0
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The Levi-Civita connection V of M is give by

—E€3 0 €1
Veiej = 0 €3 €9
7262 7261 0

Hence the structure (¢,&,n) satisfies the formula Vx& = X — n(X)¢ and
(Vxo)Y =g(¢X,Y) —n(Y)pX, thus (M, ¢,£,n,g) becomes a para-Kenmotsu
manifold. Now, using (2.12) we get the Zamkovoy connection on M as follows

) 0 0 0
Veej=| 0 0 0
—€9 —eq 0

The all components of curvature tensor with respect to the Zamkovoy connec-
tion are zero, that is, R(e;, ej)er, = 0 for all 1 < i, j, k < 3. Thus, we get S = 0.
If we assume that V = ¢, then Ly g = 0. Thus (g,&,«,8,1,p = —p, A = 0)
is a generalized n-Ricci soliton on manifold M with respect to the Zamkovoy
connection.
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