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INTRINSIC THEORY OF Cv-REDUCIBILITY

IN FINSLER GEOMETRY

Salah Gomaa Elgendi and Amr Soleiman

Abstract. In the present paper, following the pullback approach to

Finsler geometry, we study intrinsically the Cv-reducible and generalized
Cv-reducible Finsler spaces. Precisely, we introduce a coordinate-free

formulation of these manifolds. Then, we prove that a Finsler mani-
fold is Cv-reducible if and only if it is C-reducible and satisfies the T-
condition. We study the generalized Cv-reducible Finsler manifold with

a scalar π-form A. We show that a Finsler manifold (M,L) is gener-
alized Cv-reducible with A if and only if it is C-reducible and T = A.
Moreover, we prove that a Landsberg generalized Cv-reducible Finsler

manifold with a scalar π-form A is Berwaldian. Finally, we consider a
special Cv-reducible Finsler manifold and conclude that a Finsler mani-

fold is a special Cv-reducible if and only if it is special semi-C-reducible

with vanishing T-tensor.

Introduction

Special Finsler manifolds arise not only by imposing extra conditions on the
curvature and torsion tensors available in the space but also by considering
special formulation of the Finsler structure. The most ideal case of a Finsler
metric is that the metric tensor is positive definite on the whole slit tangent
bundle. However, we have to pay attention to the recent rapid progress of
Finsler geometry; various applications of Finsler geometry to different fields
of science [1]. Consequently, the positive-defineteness is too restrictive for the
applications and we have to consider weaker cases, for example, pseudo or conic
Finsler metrics. As an example, in [2], G. S. Asanov obtained examples of conic
Finsler metrics, arising from Finslerian general relativity, of non-Berwaldian
Landsberg spaces, of dimension at least 3. In Asanov’s examples, the Finsler
functions are not defined for all values of the fiber coordinates.

In addition, there is yet no geometric theory that gives a complete charac-
terization of the special Finsler spaces. Moreover, most of these studies are
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obtained from a purely local perspective. Special Finsler spaces are investi-
gated locally by many authors, we refer for example to [8,10–12]. On the other
hand, the global or intrinsic investigation of such spaces is rare in the literature.
Some contributions in this direction can be found in [18,20,22,25].

In [16] T. N. Pandey et al. and in [21] B. Tiwari introduced locally a spe-
cial Finsler space, called special Cv-reducible, in which the Cartan v-covariant
derivative of the Cartan tensor is written in a special form. Moreover, a neces-
sary and sufficient condition for a special semi-C-reducible Finsler space to be
special Cv-reducible is given. Also, the three dimensional special Cv-reducible
Finsler space was considered to illustrate the developed theory. On the other
hand, in [15], T. N. Pandey et al. introduced locally a generalization of Cv-
reducible Finsler space and called it a generalized Cv-reducible Finsler space.
Then they studied some geometric consequences of the Cv-reducible Finsler
space and focused on the two and three dimensional Finsler spaces.

In the present paper, following the pullback approach to Finsler geometry,
we treat intrinsically the Cv-reducible and generalized Cv-reducible Finsler
spaces. Precisely, we introduce the coordinate-free formulation of these Finsler
spaces. Then, we prove that a Finsler manifold is Cv-reducible if and only if it
is C-reducible and satisfies the T-condition. Hence, by using the observation
of Z. Szabo [19], which states that a positive definite Finsler metric satisfying
the T-condition is Riemannian, a positive definite Cv-reducible is Riemannian.

Further, we define the generalized Cv-reducible Finsler manifold with scalar
form A by writing the Cartan torsion T in a special formula. Also, we show
that a Finsler manifold (M,L) is generalized Cv-reducible with A if and only if
it is C-reducible and T = A. Moreover, we prove that a Landsberg generalized
Cv-reducible Finsler manifold with a scalar π-form A is Berwaldian. Finally,
we consider a special Cv-reducible Finsler manifold. We conclude that a Finsler
manifold is a special Cv-reducible if and only if it is special semi-C-reducible
with vanishing T-tensor.

1. Notation and preliminaries

In this section, we go over some of the basics of the pullback approach
to intrinsic Finsler geometry that are required for this study. We refer to
[14,17,23,24] for further information. Also, we follow the notations of [23].

Let M be a smooth manifold of dimension n, and assume that the tangent
bundle π : TM −→ M and its differential dπ : TTM −→ TM . The vertical
bundle V (TM) of TM is defined by ker(dπ). We denote the pullback bundle
of the tangent bundle by π−1(TM). Also, F(TM) denotes the algebra of C∞

functions on TM and X(π(M)) the F(TM)-module of differentiable sections
of the pullback bundle π−1(TM). The elements of X(π(M)) are called the
π-vector fields and denoted by barred letters X.

By [5], we recall the short exact sequence of vector bundle morphisms

0 −→ π−1(TM)
γ−→ T (T M)

ρ−→ π−1(TM) −→ 0,
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where T M is the slit tangent bundle, γ is the natural injection and ρ :=
(πTM , π).

The almost tangent structure of TM or the vertical endomorphism is the
endomorphism J : TT M 7→ TT M defined by J = γ ◦ ρ. The Liouville vector
field is the vector field given by C := γ ◦η, where η(u) = (u, u) for all u ∈ T M .

For a linear connection D on π−1(TM), we associate the connection map
K : TT M −→ π−1(TM) : X 7−→ DXη, and the horizontal space to M at u,
Hu(T M) := {X ∈ Tu(T M) : K(X) = 0}. The connection D is said to be
regular if

Tu(T M) = Vu(T M)⊕Hu(T M) ∀u ∈ T M.

For a regular connection D on M , the vector bundle maps γ, ρ|H(T M) and

K|V (T M) are isomorphisms. In this case, the map β := (ρ|H(T M))
−1 is called

the horizontal map of D.
Let D be a regular connection on π−1(TM) with the horizontal map β and

the corresponding classical torsion (resp. curvature) tensor field T (resp. K).
Then, we have:

• For a π-tensor field A of type (0, p), the h- and v-covariant derivatives
h

D and
v

D:

(
h

D A)(øX,X1, . . . , Xp) := (DβøXA)(X1, . . . , Xp),

(
v

D A)(øX,X1, . . . , Xp) := (DγøXA)(X1, . . . , Xp).

• The (h)h-, (h)hv- and (h)v-torsion tensors of D:

Q(X,Y ) := T(βX, βY ), T (X,Y ) := T(γX, βY ), V (X,Y ) := T(γX, γY ).

• The horizontal, mixed and vertical curvature tensors of D:

R(X,Y )Z := K(βX, βY )Z, P (X,Y )Z := K(βX, γY )Z,

S(X,Y )Z := K(γX, γY )Z.

• The (v)h-, (v)hv- and (v)v-torsion tensors of D:

R̂(X,Y ) := R(X,Y )η, P̂ (X,Y ) := P (X,Y )η, Ŝ(X,Y ) := S(X,Y )η.

Definition 1.1. A Finsler structure or function on M is a map L : TM −→
[0,∞) such that:

(a) L is C∞ on T M , C0 on TM .
(b) L is positively homogeneous of degree 1 in the directional argument y,

that is LCL = L, where LX is the Lie derivative in the direction of X.
(c) The Hilbert 2-form Ω := 1

2 ddJL
2 has a maximal rank.

The Finsler metric g induced by L on π−1(TM) is defined as follows:

g(ρX, ρY ) := Ω(JX, Y ) ∀X,Y ∈ X(TM).
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In this case, the pair (M,L) is called a Finsler manifold or regular Finsler
metric. When the metric tensor g is non-degenerate at each point of T M , the
pair (M,L) is called a pseudo-Finsler manifold. When L satisfies the conditions
(a)-(c) but only on an open conic subset U of TM (for every v ∈ U and
µ > 0, µv ∈ U), the pair (U , L) is called a conic Finsler manifold. If, moreover,
the metric tensor g is non-degenerate at each point of U , then the pair (U , L)
is called a conic pseudo-Finsler manifold. However, throughout, we use the
concept pseudo-Finsler manifold to refer to either pseudo-Finsler manifold or
conic Finsler manifold.

2. Cv-reducibility

Let (M,L) be a Finsler or a pseudo-Finsler manifold of dimension n and
g is the Finsler metric associated with L. Denote ℓ := L−1iη g, ϕ := I −
L−1ℓ ⊗ η and ℏ(X,Y ) := g(ϕ(X), Y ) = (g − ℓ ⊗ ℓ)(X,Y ), the angular metric

tensor, also T , P̂ are the (h)hv-torsion, (v)hv-torsion tensor and the horizontal

map associated with Cartan connection ∇, respectively. Moreover,
h

∇ and
v

∇
will denote, respectively, the horizontal covariant derivative and the vertical
covariant derivative associated with Cartan connection ∇.

We begin with the following definition.

Definition 2.1. Let ∇ be the Cartan connection associated with (M,L). The
torsion tensor field T of the connection ∇ induces a π-tensor field of type (0, 3),
called the Cartan torsion and denoted T, defined by:

T(X,Y , Z) := g(T (X,Y ), Z).

It also induces a π-form C, called the contracted torsion form, defined by:

C(X) := Tr{Y 7−→ T (X,Y )} = Contracting Y with Z for T(X,Y , Z).

Lemma 2.2. For a Finsler manifold (M,L) we have the following properties:

(1) T,
v

∇ T and ℏ are totally symmetric.
(2) iη T = 0 = iη ℏ, iη ℓ = L.
(3) ∇γηT = −T.

(4) ∇γX L = ℓ(X), (∇γX ℓ)(Y ) = L−1ℏ(X,Y ).

(5) (∇γX ℏ)(Y , Z) = −L−1ℏ(X,Y )ℓ(Z)− L−1ℏ(X,Z)ℓ(Y ).

Proof. The proof is clear and we omit it. □

Proposition 2.3. Let A ̸= λT be a symmetric π-tensor field of type (0, 3) and
B is a scalar one π-form. If the vertical covariant derivative of the Cartan

torsion T (i.e.,
v

∇ T) of non-Riemannian Finsler manifold is written as1

(2.1) L (∇γWT)(X,Y , Z) = SX,Y ,Z,W {A(X,Y , Z)B(W )},
then iη A ̸= 0 and iη iη A = 0 = iη B.

1SX,Y ,Z means the cyclic sum over X,Y , Z.
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Proof. Suppose that the vertical covariant derivative
v

∇ T of non-Riemannian
Finsler manifold satisfies the relation (2.1). Hence, by setting W = η taking
into account Lemma 2.2, we obtain

−LT(X,Y , Z) = A(X,Y , Z)B(η) +A(Y , Z, η)B(X)

+A(Z, η,X)B(Y ) +A(η,X, Y )B(Z).(2.2)

From which by setting Z = η and using Lemma 2.2 again, we get

(2.3) 2A(X,Y , η)B(η) +A(Y , η, η)B(X) +A(η, η,X)B(Y ) = 0.

Again putting Y = η and X = η, respectively, we have

(2.4) 3A(X, η, η)B(η) +A(η, η, η)B(X) = 0,

(2.5) 4A(η, η, η)B(η) = 0.

Now, if B(η) ̸= 0, then using the above equations, we conclude that

A(X,Y , Z) = − L

B(η)
T(X,Y , Z),

which contradicts with the given assumption A ̸= λT. Therefore, B(η) = 0
and hence A(η, η, η) = 0 and

A(Y , η, η)B(X)B(Z) = −A(η, η,X)B(Y )B(Z),

A(η, η, Z)B(X)B(Y ) = −A(X, η, η)B(Z)B(Y ),

and hence, we obtain

−2A(X, η, η)B(Z)B(Y ) = 0.

Consequently, if B vanishes, then using Eq. (2.2) we conclude that T = 0,
which contradicts with the given assumption that (M,L) is non-Riemannian.
Hence, A(X, η, η) vanishes identically. Again, as B(η) = 0, using Eq. (2.2), we
get

−LT(X,Y , Z) = A(Y ,Z, η)B(X) +A(Z, η,X)B(Y ) +A(η,X, Y )B(Z).

From which, if iηA = 0, then T vanishes which contradicts with non-Riemann-
ian property. Therefore iηA ̸= 0. This completes the proof. □

For a Finsler manifold (M,L), we define the following π-tensor field

(2.6) H(X,Y , Z) := −L2 ∇γX∇γY ∇γZ L.

Lemma 2.4. The π-tensor field H, defined above by (2.6), satisfies the follow-
ing properties:

(1) H(X,Y , Z) = SX,Y ,Z {ℏ(X,Y )ℓ(Z)}.
(2) iη H = Lℏ ̸= 0.
(3) iη iη H = 0.
(4) H is totally symmetric.

Proof. The proof follows from (2.6) together with Lemma 2.2. □
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Proposition 2.5. If the π-tensor field A = H in (2.1), then the π-scalar form
B = −1

(n+1) C.

Proof. Suppose that A = H in (2.1), and setting W = η taking into account
Lemmas 2.2, 2.4 and the fact that B(η) = 0, we get

−T(X,Y , Z) = SX,Y ,Z {ℏ(X,Y )B(Z)}.(2.7)

Acting the contracting Y with respect to Z on both sides of the above relation
and using again Lemmas 2.2 and 2.4. Hence, the result follows. □

In view of the above results, we have the following definition.

Definition 2.6. A Finsler manifold (M,L) is called

(1) C-reducible if the Cartan torsion T has the form

T(X,Y , Z) =
1

n+ 1
SX,Y ,Z {ℏ(X,Y )C(Z)}.

(2) Cv-reducible if the Cartan torsion T has the form

(2.8) L(∇γWT)(X,Y , Z) =
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}.

We know that the T-tensor for a Finsler manifold (M,L) is defined by

(2.9) T(X,Y , Z,W ) := L(∇γWT)(X,Y , Z) +SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}.

If the T-tensor vanishes identically, then we say that (M,L) satisfies the T-
condition.

In view of the definition of C-reducible and Cv-reducible Finsler manifolds,
taking into account Proposition 2.5 and (2.7), we have:

Proposition 2.7. Every Cv-reducible Finsler manifold is C-reducible.

It is clear that the converse of the above proposition is not true, however we
have:

Theorem 2.8. A Finsler manifold (M,L) is Cv-reducible if and only if it is
C-reducible with the vanishing T-tensor.

Proof. Firstly, suppose that (M,L) is a Cv-reducible Finsler manifold, then by
the above proposition we conclude that it is C-reducible. By the definition of
C- and Cv-reducibility, taking into account Lemma 2.4, we obtain

T(X,Y , Z,W )

= L(∇γWT)(X,Y , Z) +SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}+SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )ℓ(Z)}C(W )}
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+
1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )C(Z)}ℓ(W )}.

After some calculations we deduce that the T-tensor vanishes identically.
Conversely, assume that (M,L) is C-reducible with the vanishing T-tensor.

Now, using the definition of C- and Cv-reducibility and taking into account
the expression of the T-tensor, we obtain

L(∇γWT)(X,Y , Z) = −SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )C(Z)}ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )ℓ(Z)}C(W )}

=
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}.

This means that (M,L) is Cv-reducible. Hence, the proof completes. □

By using the observation of Z. Szabo [19], which states that a positive definite
Finsler metric satisfying the T-condition is Riemannian, we have the following
corollary.

Corollary 2.9. A positive definite Cv-reducible Finsler manifold is Riemann-
ian.

Remark 2.10. Although positive definite Finsler metrics that satisfies the T-
condition is Riemannian there exists non-Riemannian pseudo Finsler metrics
with vanishing T -tensor, for example, see [3].

By [13], a non-Riemannian Finsler space (M,F ) is C-reducible if and only
if it is of a Randers type or of a Kropina type. Also, by [3], a necessary and
sufficient condition for (α, β)-metrics to satisfy the T -condition is given. Pre-
cisely, an (α, β)-metric satisfies the T -condition if and only if it is Riemannian
or ϕ(s) has the following form

F = αϕ(s), ϕ(s) = s
cb2−1

cb2 (cb2 − cs2)
1

2cb2 ,

where c is a constant, α is a Riemannian (or pseudo Riemannian) metric,

β = bi(x)y
i is a one form, and s = β

α , β = bi(x)y
i, b2 = bib

i. The function ϕ(s)
of a Randers metric and Kropina metric is given, respectively, by

ϕ(s) = 1 + s, ϕ(s) =
1

s
.

Then, it is clear that Randers metric and Kropina metric do not satisfy the
T -condition. Therefore, we confirm the following theorem.

Theorem 2.11. A pseudo Cv-reducible Finsler space is a Riemannian space.
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3. Generalized Cv-reducibility with Scalar form A

This section is devoted to consider the so-called generalized Cv-reducible
Finsler manifold which is defined as follows.

Definition 3.1. A Finsler manifold (M,L) is called generalized Cv-reducible
with A, if the Cartan torsion T has the form
(3.1)

L(∇γWT)(X,Y , Z) =
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}+ A(X,Y , Z,W ),

where A is a totally symmetric π-scalar form (π-tensor field of type (0, 4)) with
iη A = 0.

Theorem 3.2. A Finsler manifold (M,L) is generalized Cv-reducible with A
if and only if it is C-reducible and T = A.

Proof. Firstly, if (M,L) is a generalized Cv-reducible Finsler manifold with
A, then by setting W = η into (3.1), and taking into account the fact that
iη A = 0 = iη C together with Lemma 2.4, we obtain

T(X,Y , Z) =
1

n+ 1
SX,Y ,Z {ℏ(X,Y )C(Z)}.(3.2)

This means that (M,L) is a C-reducible Finsler manifold. Hence, one can show
that

T(X,Y , Z,W )

= L(∇γWT)(X,Y , Z) +SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}+ A(X,Y , Z,W )

+SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )ℓ(Z)}C(W )}+ A(X,Y , Z,W )

+
1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )C(Z)}ℓ(W )}

= A(X,Y , Z,W ).

On the other hand, if (M,L) is C-reducible with the T-tensor (T = A), then,
we get

L(∇γWT)(X,Y , Z)

= −SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}+ A(X,Y , Z,W )

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )C(Z)}ℓ(W )}+ A(X,Y , Z,W )

=
−1

n+ 1
SX,Y ,Z,W {SX,Y ,Z {ℏ(X,Y )ℓ(Z)}C(W )}+ A(X,Y , Z,W )
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=
−1

n+ 1
SX,Y ,Z,W {H(X,Y , Z)C(W )}+ A(X,Y , Z,W ).

Hence, (M,L) is generalized Cv-reducible with scalar π-form A. This completes
the proof. □

From the above result together with [4], we conclude that:

Theorem 3.3. A Landsberg generalized Cv-reducible Finsler manifold with a
scalar π-form A is Berwaldian.

Proof. Let (M,L) be a Landsberg generalized Cv-reducible Finsler metric.
Then by Theorem 3.2 the space (M,L) is C-reducible. Now, the space (M,L)
is Landsberg and C-reducible. Consequently, by [4], (M,L) is Berwaldian. □

4. Special Cv-reducibility

For a Finsler manifold (M,L) of dimension n ≥ 3, we define the following
π-tensor fields

A(X,Y ) :=
1

(n− 2)
{ℏ(X,Y )− 1

C2
[C(X)C(Y )]},(4.1)

H(X,Y , Z) = SX,Y ,Z {A(X,Y )ℓ(Z)},(4.2)

where C(X) =: g(X,C) and C2 := g(C,C) = C(C).

Lemma 4.1. The π-tensor field H, defined above by (4.2), satisfies the follow-
ing properties:

(1) H is totally symmetric.
(2) iη H = L

(n−2){ℏ− 1
C2 [C ⊗ C]} ≠ 0.

(3) iη iη H = 0.

This result ensure that the π-tensor field H satisfies the properties mention
in Proposition 2.5.

Proposition 4.2. Let (M,L) be an n-dimensional Finsler manifold with n ≥ 3.

If the vertical covariant derivative of the Cartan torsion T (i.e.,
v

∇ T) of non-
Riemannian Finsler manifold has the form

(4.3) L (∇γWT)(X,Y , Z) = SX,Y ,Z,W {H(X,Y , Z)B(W )},
then B = −C.

Proof. Assume that the vertical covariant derivative of the Cartan torsion T
satisfies Relation (4.3). By setting W = η into Eq. (4.3), using Lemma 4.1 and
the fact that B(η) = 0, we obtain

−T(X,Y , Z) = A(Y ,Z)B(X) +A(X,Y )B(Z) +A(Z,X)B(Y ).

Applying contracting Y with Z on both sides, the above equation reduces to

−C(X) = B(X) +
2

(n− 2)
[B(X) + C(X)].
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Hence, the result follows provided that n ≥ 3. □

Definition 4.3. Let (M,L) be a Finsler manifold of dimension n ≥ 3. Then,
(M,L) is called

(1) semi-C-reducible if

T(X,Y , Z)=
µ

(n+ 1)
SX,Y ,Z {ℏ(X,Y )C(Z)}+ τ

C2
C(X)C(Y )C(Z); µ+τ=1,

(2) special semi-C-reducible if
(4.4)

T(X,Y , Z) =
1

(n− 2)
SX,Y ,Z {ℏ(X,Y )C(Z)} − 3

(n− 2)C2
C(X)C(Y )C(Z),

(3) special Cv-reducible if

(4.5) L(∇γWT)(X,Y , Z) = −SX,Y ,Z,W {H(X,Y , Z)C(W )},

where H is the π-tensor field defined by (4.2).

Remark 4.4. It is clear that a special semi-C-reducible Finsler manifold is

semi-C-reducible with constant coefficients, µ = (n+1)
(n−2) , τ = −3

(n−2) satisfying

µ + τ = 1. Moreover, Ikeda investigated an (α, β) metric (L4 = α2β4), which
satisfies the condition of special semi-C-reducibility (cf. [6, 7]).

According to the above definition, we obtain:

Proposition 4.5. Every a special Cv-reducible Finsler manifold is special
semi-C-reducible.

Proof. The proof follows from the above definition, by setting W = η, taking
into account Lemma 4.1. □

It is clear that the converse of the above proposition is not true, however we
have:

Theorem 4.6. A Finsler manifold (M,L) is special Cv-reducible if and only
if it is special semi-C-reducible with vanishing T-tensor.

Proof. Suppose that (M,L) is a special Cv-reducible Finsler manifold. Hence,
according to Proposition 4.5, it follows that (M,L) is special semi-C-reducible.
Also, from Eqs. (4.1), (4.2), (4.4) and (4.5), one can show that

T(X,Y , Z,W )

= L(∇γWT)(X,Y , Z) +SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

= −SX,Y ,Z,W {H(X,Y , Z)C(W )}+SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

= − 1

(n− 2)
SX,Y ,Z,W {SX,Y ,Z {{ℏ(X,Y )− 1

C2
[C(X)C(Y )]}ℓ(Z)}C(W )}

+
1

(n− 2)
SX,Y ,Z,W {SX,Y ,Z {{ℏ(X,Y )− 1

C2
[C(X)C(Y )]}C(Z}ℓ(W )}.
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From which, we deduce that T = 0.
On the other hand, assume that (M,L) is a special semi-C-reducible Finsler

manifold with T = 0. Hence, we get

L(∇γWT)(X,Y , Z)

= −SX,Y ,Z,W {T(X,Y , Z)ℓ(W )}

= − 1

(n− 2)
SX,Y ,Z,W {SX,Y ,Z {{ℏ(X,Y )− 1

C2
[C(X)C(Y )]}C(Z)}ℓ(W )}

− 1

(n− 2)
SX,Y ,Z,W {SX,Y ,Z {{ℏ(X,Y )− 1

C2
[C(X)C(Y )]} ℓ(Z)}C(W )}

= −SX,Y ,Z,W {SX,Y ,Z {A(X,Y )ℓ(Z)}C(W )}

= −SX,Y ,Z,W {H(X,Y , Z)C(W )}.

This means that (M,L) is a special Cv-reducible Finsler manifold. Hence, the
result completes. □

Remark 4.7. (1) Ikeda demonstrated, in [7], that the Finsler metric of a special
semi-C-reducible Finsler manifold with T = 0 has the form L4 = α2 β2, where
α is a pseudo-Riemannian metric and β is a 1-form.

(2) According to Kikuchi’s condition for the conformal flatness of a Finsler
manifold [9], a non-vanishing T-tensor is a necessary condition for a Finsler
space to satisfy Kikuchi’s condition.

Corollary 4.8. In view of the above remark, we have

(1) The Finsler metric of a special Cv-reducible Finsler manifold is of the
form L4 = α2 β2, where α is a pseudo-Riemannian metric and β is a
1-form.

(2) Kikuchi’s condition for conformal flatness is never satisfied by a special
Cv-reducible Finsler manifold.
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