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SPACETIMES ADMITTING DIVERGENCE FREE

m-PROJECTIVE CURVATURE TENSOR

Uday Chand De and Dipankar Hazra

Abstract. This paper is concerned with the study of spacetimes satis-

fying divM = 0, where “div” denotes the divergence and M is the m-
projective curvature tensor. We establish that a perfect fluid spacetime

with divM = 0 is a generalized Robertson-Walker spacetime and vor-
ticity free; whereas a four-dimensional perfect fluid spacetime becomes a

Robertson-Walker spacetime. Moreover, we establish that a Ricci recur-

rent spacetime with divM = 0 represents a generalized Robertson-Walker
spacetime.

1. Introduction

Lorentzian manifold is the subclass of a semi-Riemannian manifold. The
index of the Lorentzian metric g is 1. A spacetime is a Lorentzian manifoldMn

(n ≥ 4) which admits a globally timelike vector. Various types of spacetimes
have been investigated in several ways, such as [2,3,6,7,11,12,14,21,23,24] and
also numerous others.

Lorentzian manifolds with the Ricci tensor

(1.1) S (U1,V1) = γg (U1,V1) + δΠ(U1)Π (V1) ,

where γ, δ are scalars and µ is a unit timelike vector field corresponding to the
non-vanishing one-form Π, that is, Π (µ) = g (µ, µ) = −1, are called perfect
fluid spacetimes. If in particular γ and δ are constants, then the geometers
called quasi-Einstein spacetimes.

The energy momentum tensor T recounts the matter content of the space-
times in general relativity theory. In general relativity theory, the fluid is
termed perfect fluid since it does not have the heat conduction terms [13]. The
energy momentum tensor for a perfect fluid spacetime resembles the shape [18]

(1.2) T (U1,V1) = pg (U1,V1) + (p+ σ)Π (U1)Π (V1) ,
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where σ stands for energy density and p stands for isotropic pressure. The
velocity vector field µ is the metrically analogous unit timelike vector field to
the non-vanishing one-form Π.

The Einstein’s field equations is as follows:

(1.3) S (U1,V1)−
ρ

2
g (U1,V1) = κT (U1,V1) ,

where S stands for the Ricci tensor and ρ stands for the scalar curvature,
κ is the gravitational constant. According to Einstein’s field equations, the
geometry of spacetime is determined by matter, whereas the non-flat metric
of spacetime governs the motion of matter. The above form (1.1) of the Ricci
tensor is determined from Einstein’s field equations using (1.2).

Using (1.1) and (1.2) from (1.3) we infer that

(1.4) γ = κ

(
p− σ

2− n

)
and δ = κ (p+ σ) .

An n-dimensional (n > 2) Lorentzian manifold is referred to be a generalized
Robertson-Walker spacetime if the metric adopts the following local structure:

(1.5) ds2 = − (dζ)
2
+ q2 (ζ) g∗u1u2

dxu1dxu2 ,

where q is a ζ-dependent function and g∗u1u2
= g∗u1u2

(xu3) are only functions
of xu3 (u1, u2, u3 = 2, 3, . . . , n). Thus a generalized Robertson-Walker space-
time can be represented as −I × q2M̄ , where M̄ is a Riemannian manifold of
dimension (n− 1). If the dimension of M̄ is three and of constant sectional
curvature, then the spacetime becomes a Robertson-Walker spacetime.

In a Lorentzian manifold (Mn, g) (n ≥ 4), the conformal curvature tensor C
is stated as

C (U1,V1)W1 = R (U1,V1)W1 −
1

(n− 2)
[g (V1,W1)QU1 − g (U1,W1)QV1

+S (V1,W1)U1 − S (U1,W1)V1]

+
ρ

(n− 1) (n− 2)
[g (V1,W1)U1 − g (U1,W1)V1] ,(1.6)

where Q is the Ricci operator satisfying the relation S (U1,V1) = g (QU1,V1)
and ρ being the scalar curvature.

From the above definition, it can be seen that

(div C) (U1,V1)W1 =

(
n− 3

n− 2

)[
{(∇U1S) (V1,W1)− (∇V1S) (U1,W1)}

− 1

2 (n− 1)
{g (V1,W1) dρ (U1)− g (U1,W1) dρ (V1)}

]
.(1.7)

The m-projective curvature tensor M in a semi-Riemannian manifold (Mn, g)
(n ≥ 2) is defined as [20]

M (U1,V1)W1 = R (U1,V1)W1 −
1

2 (n− 1)
[S (V1,W1)U1 − S (U1,W1)V1
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+g (V1,W1)QU1 − g (U1,W1)QV1] ,(1.8)

where R stands for the curvature tensor. In [20], the authors obtained the
relativistic significance of m-projective curvature tensor. The following is the
outline of the paper: After preliminaries in Section 3, we investigate a perfect
fluid spacetime admitting divM = 0. The analysis of Ricci recurrent space-
times with divM = 0 is presented in the last section.

2. Preliminaries

At any point on the manifold, considering an orthonormal frame field and
contracting U1 and V1 in (1.1) yields

(2.1) ρ = nγ − δ.

Differentiating (1.8) covariantly we obtain that

(∇ZM) (U1,V1)W1 = (∇ZR) (U1,V1)W1 −
1

2 (n− 1)
[(∇ZS) (V1,W1)U1

− (∇ZS) (U1,W1)V1 + g (V1,W1) (∇ZQ)U1

−g (U1,W1) (∇ZQ)V1] .(2.2)

It follows that

(divM) (U1,V1)W1 = (divR) (U1,V1)W1 −
1

2 (n− 1)
[(∇U1

S) (V1,W1)

− (∇V1
S) (U1,W1)]

− 1

4 (n− 1)
[g (V1,W1) dρ (U1)− g (U1,W1) dρ (V1)] .

Making use of (divR) (U1,V1)W1 = (∇U1
S) (V1,W1) − (∇V1

S) (U1,W1), the
above equation implies

(divM) (U1,V1)W1 =
2n− 3

2 (n− 1)
[(∇U1

S) (V1,W1)− (∇V1
S) (U1,W1)]

− 1

4 (n− 1)
[g (V1,W1) dρ (U1)− g (U1,W1) dρ (V1)] .(2.3)

Proposition 2.1. On a spacetime, the divergence of the m-projective curvature
tensor vanishes if and only if the Ricci tensor is of Codazzi type.

Proof. Assume that the spacetime obeys divM = 0. Then the equation (2.3)
takes the form:

2n− 3

2 (n− 1)
[(∇U1S) (V1,W1)− (∇V1S) (U1,W1)]

− 1

4 (n− 1)
[g (V1,W1) dρ (U1)− g (U1,W1) dρ (V1)] = 0.(2.4)

Contracting V1 and W1 in (2.4) yields

(2.5) dρ (U1) = 0.
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Utilizing the equations (2.4) and (2.5), we find that

(2.6) (∇U1
S) (V1,W1)− (∇V1

S) (U1,W1) = 0.

Thus the Ricci tensor is of Codazzi type.
Conversely, suppose that the Ricci tensor S is of Codazzi type. Then the

scalar curvature ρ is constant. Hence from (2.3), we get divM = 0. □

Remark 2.2. In a semi-Riemannian manifold, the Ricci tensor is of Codazzi
type, that is, (∇U1

S) (V1,W1) = (∇V1
S) (U1,W1) implies constant scalar cur-

vature. These manifolds generalize the locally symmetric and Einstein man-
ifolds and on the other hand, the critical points of the functional Ê (g) =
1
2

∫
M
∥R∇∥2dVg are their metrics, where the curvature tensor of the Levi-Civita

connection of g is R∇ and whenever the total volume
∫
M
dVg is normalized.

The Levi-Civita connection ∇ of such metrics is a Yang-Mills connection if the
metric on M is unchanged and (divR) (U1,V1)W1 = 0. Derdziński [8] estab-
lished conformally flat metrics on S1 ×N for every N containing the Einstein
metric with positive scalar curvature, with the Ricci tensor is not parallel. Ac-
cording to Bourguignon [4], any metric with harmonic curvature on a compact
orientable 4-dimensional manifold with non-vanishing signature is Einstein.

Remark 2.3. If divM vanishes, then from Proposition 2.1, it follows that the
Ricci tensor is of Codazzi type and consequently the scalar curvature is con-
stant. Hence from (1.7) we deduce that div C = 0. Thus, we conclude that
divM = 0 implies div C = 0, but in general the converse does not hold.

3. Divergence free m-projective curvature tensor on perfect fluid
spacetimes

Here we characterize perfect fluid spacetimes with divM = 0. If divM = 0,
then from Proposition 2.1, we find

(3.1) (∇U1
S) (V1,W1) = (∇V1

S) (U1,W1) .

By virtue of (1.1) and (3.1) we acquire

dγ (U1) g (V1,W1) + dδ (U1)Π (V1)Π (W1)

+ δ [(∇U1
Π) (V1)Π (W1) + Π (V1) (∇U1

Π) (W1)]

− dγ (V1) g (U1,W1)− dδ (V1)Π (U1)Π (W1)

− δ [(∇V1Π) (U1)Π (W1) + Π (U1) (∇V1Π) (W1)] = 0.(3.2)

Now, contraction of (3.2) gives

(3.3) (1− n) dγ (V1)+dδ (µ)Π (V1)+dδ (V1)+δ [(∇µΠ) (V1) + Π (V1) ΩΠ] = 0,

where ΩΠ =
∑n

i=1 εi (∇eiΠ) (ei).
Setting U1 = W1 = µ in (3.2), we arrive at

(3.4) δ (∇µΠ) (V1) = dγ (µ)Π (V1)− dδ (µ)Π (V1) + dγ (V1)− dδ (V1) .
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Now the scalar curvature ρ is constant as the Ricci tensor is of Codazzi type.
Hence from (2.1), we have

(3.5) ndγ (U1) = dδ (U1) .

Using (3.5) in (3.4) we reach

(3.6) δ (∇µΠ) (V1) = (1− n) [dγ (µ)Π (V1) + dγ (V1)] .

In light of (3.3), (3.5) and (3.6) we obtain

(3.7) (1− n) dγ (V1) + dγ (µ)Π (V1) + dγ (V1) + δΠ(V1) ΩΠ = 0.

Replacing V1 by µ in (3.7) reveals that

(3.8) δΩΠ = (1− n) dγ (µ) .

Equations (3.7) and (3.8) implies

(3.9) dγ (V1) = −dγ (µ)Π (V1) .

Using (3.9) in (3.5) infers

(3.10) dδ (V1) = −ndγ (µ)Π (V1) .

Substituting W1 = µ in (3.2), we reveal

dγ (U1)Π (V1)− dδ (U1)Π (V1)− δ (∇U1
Π) (V1)

− dγ (V1)Π (U1) + dδ (V1)Π (U1) + δ (∇V1Π) (U1) = 0.(3.11)

In view of (3.9), (3.10) and (3.11) we arrive

(3.12) δ [(∇U1
Π) (V1)− (∇V1

Π) (U1)] = 0.

Since in a perfect fluid spacetime δ ̸= 0, therefore from (3.12) we obtain the
one-form Π is closed and Π is closed entails that the velocity vector field µ is
irrotational. Thus the perfect fluid spacetime has zero vorticity.

Setting V1 = µ in (3.12) we reach

(∇µΠ) (U1) = 0, that is, g (U1,∇µµ) = 0

for all U1. Hence we write:

Theorem 3.1. A perfect fluid spacetime admitting divergence free m-projective
curvature tensor is vorticity free and the integral curves of the velocity vector
field are geodesics.

Mantica and Molinari [15] proved the following theorem:

Theorem A. A Lorentzian manifold of dimension n ≥ 3 is a generalized
Robertson-Walker spacetime if and only if it admits a unit timelike torse-
forming vector field µ: (∇U1

Π) (V1) = ψ [g (U1,V1) + Π (U1)Π (V1)], that is also
an eigenvector of the Ricci tensor.
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The equations (3.9), (3.10) and (3.2) together yield

− dγ (µ)Π (U1) g (V1,W1)

+ δ [(∇U1
Π) (V1)Π (W1) + Π (V1) (∇U1

Π) (W1)]

+ dγ (µ)Π (V1) g (U1,W1)

− δ [(∇V1
Π) (U1)Π (W1) + Π (U1) (∇V1

Π) (W1)] = 0.(3.13)

Replacing U1 by µ in (3.13) entails that

dγ (µ) [g (V1,W1) + Π (V1)Π (W1)] + δ (∇V1Π) (W1)

+ δ [(∇µΠ) (V1)Π (W1) + Π (V1) (∇µΠ) (W1)] = 0.(3.14)

Utilizing the equations (3.6) and (3.14), we find that

(1− n) [2dγ (µ)Π (V1)Π (W1) + dγ (V1)Π (W1) + dγ (W1)Π (V1)]

+ dγ (µ) [g (V1,W1) + Π (V1)Π (W1)] + δ (∇V1
Π) (W1) = 0.(3.15)

From (3.9) and (3.15), we have

(3.16) (∇V1
Π) (W1) = −dγ (µ)

δ
[g (V1,W1) + Π (V1)Π (W1)] ,

which shows that the unit timelike vector field µ is a torse-forming vector field.
Putting V1 = µ in (1.1), we acquire

(3.17) S (U1, µ) = (γ − δ)Π (U1) .

After adopting (2.1) and (3.17) we get the form

(3.18) S (U1, µ) = [ρ+ (1− n) γ] g (U1, µ) .

Since γ ̸= δ in general, ρ + (1− n) γ ̸= 0. This shows that the unit timelike
torse-forming vector field µ is an eigenvector of the Ricci tensor S corresponding
to the eigenvalue ρ+ (1− n) γ.

In view of this observation and Theorem A, we conclude the following:

Theorem 3.2. A perfect fluid spacetime with divM = 0 is a generalized
Robertson-Walker spacetime.

Remark 3.3. Mantica et al. [16] proved that a perfect fluid spacetime with
div C = 0 is a generalized Robertson-Walker spacetime, provided the velocity
vector field is irrotational. In the above theorem, we establish that a perfect
fluid spacetime with divM = 0 is a generalized Robertson-Walker spacetime
without assuming the velocity vector field is irrotational.

A 4-dimensional Lorentzian manifold is named a Yang pure space [10] whose
metric satisfies the Yang’s equation:

(∇U1
S) (V1,W1) = (∇V1

S) (U1,W1) .

Guilfoyle and Nolan [10] established the following result:

Proposition 3.4. A four-dimensional perfect fluid spacetime with p + σ ̸= 0
is a Yang pure space if and only if it is a Robertson-Walker spacetime.
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Since in a perfect fluid spacetime δ ̸= 0, therefore from (1.4) we get p+ σ ̸= 0.
Thus we have the following result from Proposition 3.4.

Corollary 3.5. A four-dimensional perfect fluid spacetime satisfying divM =
0 is a Robertson-Walker spacetime.

Also the equations (1.3) and (3.1) reflect that the energy momentum tensor is
of Codazzi type, that is,

(3.19) (∇U1
T ) (V1,W1) = (∇V1

T ) (U1,W1)

for all U1,V1,W1.
However, it has been established [9] that if the energy momentum tensor is

of Codazzi type in a perfect fluid spacetime, then the fluid is of vanishing shear
and vorticity, and its velocity vector field becomes hypersurface orthogonal.

Barnes [1] observed that the probable local cosmological structures of the per-
fect fluid spacetimes are of Petrov types I, D, or O if the perfect fluid spacetime
is of vanishing shear and vorticity, the velocity vector field µ is hypersurface
orthogonal and the constant energy density over a hypersurface orthogonal to
µ.

As a result of the foregoing facts, we arrive:

Theorem 3.6. For a perfect fluid spacetime with divM = 0, the probable local
cosmological structures of the spacetime are of Petrov types I, D, or O.

By virtue of (1.2) and (1.3) we acquire

(3.20) S (U1,V1)−
ρ

2
g (U1,V1) = κpg (U1,V1) + κ (p+ σ)Π (U1)Π (V1) .

Contracting the foregoing equation, we can derive

(3.21) ρ = κ (σ − 3p) .

The scalar curvature ρ is constant as the Ricci tensor is of Codazzi type. Hence
from (3.21), we have

(3.22) σ = 3p+ constant.

Theorem 3.7. For a 4-dimensional perfect fluid spacetime obeys divM = 0
the equation of state is σ = 3p+ constant.

Remark 3.8. If the scalar curvature vanishes, then a 4-dimensional perfect fluid
spacetime satisfying divM = 0 represents a radiation era [5].

4. Ricci recurrent spacetimes admitting divergence free
m-projective curvature tensor

A semi-Riemannian manifold (Mn, g) (n > 2) is called a Ricci recurrent
manifold [19] if the Ricci tensor S satisfies

(4.1) (∇U1
S) (V1,W1) = Π (U1)S (V1,W1) ,
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where Π is a non-vanishing one-form associated with the vector field µ, as
Π (U1) = g (U1, µ). If the Ricci tensor fulfills the condition (4.1), a Lorentzian
manifold is referred to as Ricci recurrent spacetime. In this case, suppose the
vector field µ related to the one-form Π is treated as a unit timelike vector
field, that is, Π (µ) = −1.

If divM = 0, then from Proposition 2.1, we find

(4.2) (∇U1S) (V1,W1) = (∇V1S) (U1,W1) .

Using (4.1) in (4.2) reveals that

(4.3) Π (U1)S (V1,W1) = Π (V1)S (U1,W1) .

Setting U1 = µ in (4.3), we infer that

(4.4) S (V1,W1) = −Π(V1)S (W1, µ) .

Contracting (4.3), we can derive

(4.5) ρΠ(U1) = S (U1, µ) .

Using (4.5) in (4.4) we deduce that

(4.6) S (V1,W1) = −ρΠ(V1)Π (W1) ,

which implies the spacetime is Ricci simple [17].

Proposition 4.1. A Ricci recurrent spacetime admitting divM = 0 is Ricci
simple.

Remark 4.2. The physical interpretation of a Ricci simple spacetime is explored
in the paper [17]. The authors proved that a Ricci simple spacetime becomes
a stiff matter fluid [22]. Thus we conclude that a Ricci recurrent spacetime
admitting divergence free m-projective curvature tensor becomes a stiff matter
fluid.

Mantica, Suh and De [17] proved the following theorem:

Theorem B. If an n-dimensional (n > 3) Lorentzian manifold (Mn, g) with
the Ricci tensor of the form S (U1,V1) = −ρΠ(U1)Π (V1) satisfies the curvature
condition div C = 0, then (Mn, g) is a generalized Robertson-Walker spacetime.

In virtue of Remark 2.3, Proposition 4.1 and Theorem B, we can say:

Theorem 4.3. A Ricci recurrent spacetime admitting divM = 0 is a general-
ized Robertson-Walker spacetime.

5. Conclusion

The physical motivation for studying Lorentzian manifolds is the assumption
that a gravitational field can be effectively modeled by some Lorentzian metric
defined on a suitable four-dimensional manifold, since the matter content of
the universe is assumed to behave like a perfect fluid in standard cosmolog-
ical models. The Einstein’s field equations are crucial in the development of
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cosmological models because they imply that matter influences the geometry
of spacetime and that matter’s velocity is determined by the non-flat metric
tensor of space. Relativistic fluid models are of great interest in astrophysics,
plasma physics, and nuclear physics, among other fields.

In general relativity and cosmology, the physical motivation for studying
different forms of spacetime models is to learn about distinct phases in the
evolution of the universe, that can be split into three phases, namely,

I. Viscous fluid phase admitting heat flux,
II. Non-viscous fluid phase admitting heat flux and
III. Perfect fluid phase with thermal equilibrium.
In this work, the last phase is chosen and it has been revealed that under the

condition divM = 0, perfect fluid spacetime becomes a generalized Robertson-
Walker spacetime. Utilizing divM = 0, it is shown that the Ricci recurrent
spacetime is a generalized Robertson-Walker spacetime. Furthermore, we dis-
cuss their physical relevance.
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