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SOME CHARACTERIZATIONS OF CONICS AND

HYPERSURFACES WITH CENTRALLY SYMMETRIC

HYPERPLANE SECTIONS

Shin-Ok Bang, Dong Seo Kim, Dong-Soo Kim, and Wonyong Kim

Abstract. Parallel conics have interesting area and chord properties. In
this paper, we study such properties of conics and conic hypersurfaces.

First of all, we characterize conics in the plane with respect to the above

mentioned properties. Finally, we establish some characterizations of
hypersurfaces with centrally symmetric hyperplane sections.

1. Introduction

The following properties of parallel conics are well-known.

Proposition 1. If P1 and P2 are the parallel parabolas y = a2x2 + k1 and
y = a2x2 + k2, k2 > k1 > 0, then for a point P ∈ P2 the tangent line to P2

at P meets P1 at A and B such that the area enclosed between P1 and the
chord AB does not depend on P and the point P of tangency is the midpoint
of the chord AB. The same holds for parallel ellipses x2/a2 + y2/b2 = k21
and x2/a2 + y2/b2 = k22 and for parallel hyperbolas x2/a2 − y2/b2 = k1 and
x2/a2 − y2/b2 = k2.

Conversely, in [3] using Clairaut’s first order differential equation, it was
shown that the above property characterizes parabolas as follows. For a proof,
see Theorem 1 of [3]. The same characterization holds for parallel ellipses and
for parallel hyperbolas ([3]).

Proposition 2. Let f ∈ C(2)(R) be such that f(x) > ax2 for all x ∈ R. If
the tangent line to the curve y = f(x) at each one of its points cuts off from
the parabola P(y = ax2) a segment of constant area, then f(x) = ax2 + k for a
positive constant k ∈ R.
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Dualizing Proposition 2, first of all in this paper we prove the following
characterization theorems for conics. See Section 3.

Theorem 3. For a positive constant a ∈ R we consider the parabola P : y =
ax2 and the convex differentiable curve X : y = f(x) such that f(x) < ax2 for
all x ∈ R. Suppose that every tangent line to the parabola P at a point P ∈ P
meets the curve X at two points A and B. Then the following are equivalent.

(1) The tangent line to the parabola P at each P ∈ P cuts off the curve X
a segment of constant area, which is independent of the point P .

(2) The point P is always the midpoint of the chord AB of the curve X .
(3) The curve X is given by f(x) = ax2 − k with k > 0.

For ellipses, we prove:

Theorem 4. For two positive constants a, b ∈ R, we consider the ellipse E :
x2/a2 + y2/b2 = 1 and a convex differentiable curve X outside of E. Suppose
that every tangent line to the ellipse E at a point P ∈ E meets the curve X at
two points A and B. Then the following are equivalent.

(1) The tangent line to the ellipse E at each P ∈ E cuts off the curve X a
segment of constant area, which is independent of the point P .

(2) The point P is always the midpoint of the chord AB of the curve X .
(3) The curve X is the ellipse given by X : x2/a2 + y2/b2 = k with k > 1.

In order to establish the same characterization for hyperbolas, we need some
additional conditions as follows.

Theorem 5. For two positive constants a, b ∈ R, we consider a branch of the
hyperbola H : x2/a2 − y2/b2 = 1, x > 0 and a convex differentiable curve X
in the concave side of H. Suppose that every tangent line to the hyperbola H
at a point P ∈ H meets the curve X at two points A and B. In addition, we
suppose that for each point of X , two tangent lines to H pass through the point.
Then the following are equivalent.

(1) The tangent line to the hyperbola H at each P ∈ H cuts off the curve
X a segment of constant area, which is independent of the point P .

(2) The point P is always the midpoint of the chord AB of the curve X .
(3) The curve X is the hyperbola given by X : x2/a2−y2/b2 = k with x > 0

and 0 < k < 1.

Finally, in Section 4 we use Theorems 3, 4 and 5 in order to characterize
conic hypersurfaces in the Euclidean space Rn+1 as follows. See Section 4.

For elliptic paraboloids, we prove:

Theorem 6. For an elliptic paraboloid P : y = a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n with

ai > 0, i = 1, 2, . . . , n and a convex continuous function f(x), x = (x1, . . . , xn)
on Rn with f(x) < a1x

2
1 + a2x

2
2 + · · · + anx

2
n, we suppose that every tangent

hyperplane to the paraboloid P at a point P ∈ P intersects the hypersurface
X : y = f(x) in the boundary of a bounded region D(P ) in the hyperplane.
Then the following are equivalent.
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(1) The region D(P ) is centrally symmetric with respect to the point P .
(2) f(x) = a1x

2
1 + a2x

2
2 + · · ·+ anx

2
n − k with k > 0.

For ellipsoids, we prove:

Theorem 7. For an ellipsoid E : x2
1/a

2
1+x2

2/a
2
2+ · · ·+x2

n/a
2
n+y2/b2 = 1 with

ai, b > 0, i = 1, 2, . . . , n and a convex hypersurface X outside of E, we suppose
that every tangent hyperplane to the ellipsoid E at a point P ∈ E intersects the
hypersurface X in the boundary of a bounded region D(P ) in the hyperplane.
Then the following are equivalent.

(1) The region D(P ) is centrally symmetric with respect to the point P .
(2) X : x2

1/a
2
1 + x2

2/a
2
2 + · · ·+ x2

n/a
2
n + y2/b2 = k with k > 1.

In order to establish the similar characterization for elliptic hyperboloids,
we need some additional conditions as follows.

Theorem 8. For an elliptic hyperboloid H : x2
1/a

2
1 + x2

2/a
2
2 + · · · + x2

n/a
2
n −

y2/b2 = −1 with y > 0 and ai, b > 0, i = 1, 2, . . . , n and a convex hypersurface
X in the concave side of E, we suppose that every tangent hyperplane to the
hyperboloid H at a point P ∈ H intersects the hypersurface X in the boundary
of a bounded region D(P ) in the hyperplane. In addition, we suppose that the
convex hypersurface X lies in the convex open cone x2

1/a
2
1+x2

2/a
2
2+· · ·+x2

n/a
2
n−

y2/b2 < 0 with y > 0. Then the following are equivalent.

(1) The region D(P ) is centrally symmetric with respect to the point P .
(2) X : x2

1/a
2
1+x2

2/a
2
2+· · ·+x2

n/a
2
n−y2/b2 = −k with y > 0 and 0 < k < 1.

Various properties of conics (especially, parabolas) have been proved to be
characteristic ones ([1–3, 5, 6, 10, 12–14, 16, 17]). Some characterization theo-
rems for hyperplanes, circular hypercylinders, hyperspheres, ellipsoids, elliptic
paraboloids and elliptic hyperboloids in the Euclidean space En+1 were estab-
lished in [3, 4, 7–9,11,15].

2. Some lemmas

In this section, we prove two lemmas which are crucial in the proof of our
theorems.

Lemma 9. Suppose that a positive continuous function g : R → R+ satisfies

(2.1) g(x+ g(x)) = g(x)

for all x ∈ R, where R+ denotes the set of positive real numbers. Then g is a
constant function.

Proof. We give a proof using several steps as follows. Each step can be shown
easily. Otherwise, we give a brief proof.

Step 1. The function h defined by h(x) = x + g(x) is an injective function
satisfying

(2.2) g(h(x)) = g(x).
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Step 2. We put g(0) = a > 0. Then we have

(2.3) g(na) = a, and h(na) = (n+ 1)a, n = 1, 2, . . . .

Together with the continuity of h, Steps 1 and 2 show that the function h
is strictly increasing. Hence we have

Step 3. For every x1 ∈ I0 := [0, a], we put x2 = h(x1), . . . , xn+1 = h(xn).
Then we have for all n ∈ N , xn ∈ In−1 := [(n − 1)a, na] and g(xn) = g(x1).
Furthermore, for all n ∈ N we have h(In−1) = In.

Step 4. For every x1 ∈ [0, a], we have g(x1) ≤ a.

Proof of Step 4. Suppose that ϵ := g(x1) − a > 0 for some x1 ∈ (0, a). Then
we have

(2.4)

x2 = h(x1) = x1 + g(x1) = x1 + a+ ϵ,

x3 = h(x2) = x2 + g(x2) = x1 + 2(a+ ϵ), . . . ,

xn+1 = h(xn) = x1 + n(a+ ϵ), n = 1, 2, . . . .

This shows that for a sufficiently large n, xn+1 − (n + 1)a = x1 + nϵ − a > 0,
which contradicts to Step 3. This completes the proof of Step 4.

In a similar manner as in the proof of Step 4, we may prove

Step 5. For every x1 ∈ [0, a], we have g(x1) ≥ a.
Hence we have g(x) = a for all x ∈ [0, a]. Together with Step 3, this shows

that g(x) = a for all x ∈ [0,∞).

Step 6. For every x ∈ R, we have g(x) = a.

Proof of Step 6. Suppose that x0 := glb{b ∈ R | g(x) = a for all x ∈ [b,∞)} >
−∞. Then we have x0 ≤ 0. On [x0,∞), we have g(x) = a, and hence h(x) =
x + a. Since h(x0) = x0 + a > x0, the continuity of h shows that there exists
a positive ϵ such that h((x0 − ϵ, x0]) ⊂ [x0,∞). Hence it follows from (2.2)
that for all x ∈ (x0 − ϵ, x0], g(x) = g(h(x)) = a, which is a contradiction. This
completes the proof of Step 6. □

Lemma 10. Suppose that a positive continuous function g : R+ → R+ satisfies

(2.5)
g(x+ g(x))

x+ g(x)
=

g(x)

x

for all x ∈ R+. Then k(x) = g(x)/x is a constant function.

Proof. As in the proof of Lemma 9, we can prove Lemma 10 using following
steps. We omit the proof of each step.

We put h(x) = x + g(x) and k(x) = g(x)/x. Then the functions h and k
satisfy

(2.6) h(x) = x+ g(x) = x(1 + k(x)),

(2.7) k(h(x)) = k(x).

Step 1. The function h is an injective function.
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Step 2. We put g(1) = a > 0. Then we have k(1) = a, h(1) = b(:= 1+ a) > 1,
and k(b) = a, h(b) = b2. Hence h(x) is a strictly increasing function on R+.
The functions satisfy

(2.8) k(bn) = a, h(bn) = bn+1, g(bn) = abn, n = 1, 2, . . . .

Step 3. Since h(x) is strictly increasing, we see that h([bn−1, bn]) = [bn, bn+1]
for all n ∈ N . For every x1 ∈ [1, b], we put x2 = h(x1), . . . , xn+1 = h(xn).
Then we have xn+1 ∈ [bn, bn+1], and k(xn) = k(x1) for all n ∈ N .
Step 4. For every x1 ∈ [1, b], we have k(x1) ≤ a.
Step 5. For every x1 ∈ [1, b], we have k(x1) ≥ a.

It follows from Steps 4 and 5 that k(x) = a for all x ∈ [1, b]. Hence Step 3
implies k(x) = a for all x ∈ [1,∞).
Step 6. The assumption that x0 := glb{c ∈ R+ | k(x) = a for all x ∈ [c,∞)} >
0 leads a contradiction. Thus we see that x0 = 0, that is, k(x) = a for all
x ∈ R+. □

3. Proofs of Theorems 3, 4 and 5

In this section, we prove Theorems 3, 4 and 5 as follows.

Proof of Theorem 3. Using the linear transformation L = diag(
√
a, 1), it suf-

fices to prove when the parabola is given by P : y = x2.
(1) ⇒ (2). The tangent line at P (u, u2) meets the convex differentiable curve

X : y = f(x) at A(u− g(u), f(u− g(u))) and B(u+ h(u), f(u+ h(u))), where
g(u) and h(u) are some positive functions. Hence the tangent line ℓ is given by
y = 2ux− u2. Since ℓ passes through A and B, we have

(3.1) f(u− g(u)) = u(u− 2g(u)), f(u+ h(u)) = u(u+ 2h(u)).

The area S(u) of the segment is given by

(3.2) S(u) =

∫ u+h(u)

u−g(u)

ϕ(x)dx, ϕ(x) = 2ux− u2 − f(x).

Together with (3.1), differentiating S(u) with respect to u gives

(3.3) S′(u) = (h(u) + g(u))(h(u)− g(u)).

Since h(u)+ g(u) > 0, the assumption implies h(u)− g(u) = 0. This completes
the proof.

(2) ⇒ (3). For an arbitrary point A(u, f(u)) of the convex curve X : y =
f(x), there exists a tangent line ℓ to the parabola P at P (u+g(u), (u+g(u))2)
which passes through the point A(u, f(u)), where g(u) is a positive function.
The assumption implies that the tangent line ℓ meets the curve X at B(u +
2g(u), f(u + 2g(u))). Hence the tangent line ℓ is given by y = 2(u + g(u))x −
(u+ g(u))2. Since ℓ passes through A and B, we have

(3.4) f(u) = (u− g(u))(u+ g(u)),

(3.5) f(u+ 2g(u)) = (u+ g(u))(u+ 3g(u)).
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We put w = u+ 2g(u), then (3.5) becomes

(3.6) f(w) = (w − g(u))(w + g(u)).

Let us replace u in (3.4) with w. Then we get

(3.7) f(w) = (w − g(w))(w + g(w)).

It follows from (3.6) and (3.7) that g(u)2 = g(w)2, which shows g(u) = g(w) =
g(u+ 2g(u)) for all u ∈ R.

Finally, Lemma 9 implies 2g(u) is a constant function, and hence g(u) = a
for a constant a. Thus (3.4) shows that f(u) = u2 − k with k = a2 > 0. This
completes the proof.

(3) ⇒ (1). Proposition 1 completes the proof. □

Proof of Theorem 4. Using the linear transformation L = diag(1/a, 1/b), it
suffices to prove when the ellipse is given by E : x2 + y2 = 1.

(1) ⇒ (2). The tangent line ℓ at P ∈ E meets the convex differentiable curve
X at A and B. By a suitable rotation around the origin if necessary, we may

assume that a neighborhood of the arc
⌢

AB of the curve X is given by the graph
of a convex differentiable function f satisfying

(3.8)

P = (u,−
√
1− u2),

A = (u− g(u), f(u− g(u))),

B = (u+ h(u), f(u+ h(u))),

where g(u) and h(u) are two positive functions. Hence the tangent line ℓ is
given by

(3.9) y = j(u)(ux− 1), j(u) = (1− u2)−1/2.

Since ℓ passes through A and B, we have

f(u− g(u)) = j(u)[−ug(u) + u2 − 1],(3.10)

f(u+ h(u)) = j(u)[uh(u) + u2 − 1].(3.11)

The area S(u) of the segment is given by

(3.12) S(u) =

∫ u+h(u)

u−g(u)

ϕ(x)dx, ϕ(x) = j(u)(ux− 1)− f(x).

Now, we differentiate S(u) with respect to u. Then (3.10) and (3.11) show

(3.13) S′(u) =
1

2(1− u2)3/2
(h(u) + g(u))(h(u)− g(u)).

Since h(u)+ g(u) > 0, the assumption implies h(u)− g(u) = 0. This completes
the proof.
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(2) ⇒ (3). For an arbitrary point P (cosu, sinu) of the ellipse E , the tangent
line ℓ to E at P meets the convex curve X at

(3.14)
A = r(u)(cos(u− g(u)), sin(u− g(u))), and

B = r(u)(cos(u+ g(u)), sin(u+ g(u))),

where g(u) ∈ (0, π/2), s(u) = PA = PB and r(u) = OA = OB =
√
1 + s(u)2.

Obviously, we have s(u) = tan g(u) and r(u) = sec g(u).
Another tangent line ℓ′ to E at Q passes through the point B. Since

∠POB = ∠QOB, the point Q of tangency is given by Q(cos(u+2g(u)), sin(u+
2g(u))) and s(u+ 2g(u)) = QB. Since QB = PB, we see that s(u+ 2g(u)) =
s(u), and hence g(u+ 2g(u)) = g(u) for all u ∈ R.

Finally, Lemma 9 implies 2g(u) is a constant function, and hence r(u) is a
constant a. Thus the curve is given by X : x2 + y2 = a2. This completes the
proof.

(3) ⇒ (1). Proposition 1 completes the proof. □

Proof of Theorem 5. Using the linear transformation L defined by

(3.15) L =

(
1 −1
1 1

)(
1/a 0
0 1/b

)
,

it suffices to prove when the hyperbola is given by H : y = 1/x, x > 0.
(1) ⇒ (2). The tangent line ℓ at P (u, 1/u) ∈ H meets the convex differen-

tiable curve X : y = f(x) atA(u−g(u), f(u−g(u))) andB(u+h(u), f(u+h(u))),
where g(u) and h(u) are positive functions. The tangent line ℓ is given by

(3.16) y = − 1

u2
(x− 2u).

Since ℓ passes through A and B, we have

(3.17) f(u− g(u)) =
u+ g(u)

u2
and f(u+ h(u)) =

u− h(u)

u2
.

The area S(u) of the segment is given by

(3.18) S(u) =

∫ u+h(u)

u−g(u)

ϕ(x)dx, ϕ(x) = − 1

u2
(x− 2u)− f(x).

Now, we differentiate S(u) with respect to u. Then using (3.17), a lengthy
calculation implies

(3.19) S′(u) =
1

u3
(h(u) + g(u))(h(u)− g(u)).

Since h(u)+ g(u) > 0, the assumption implies h(u)− g(u) = 0. This completes
the proof.

(2) ⇒ (3). The additional assumption shows that the curve X : y = f(x)
lies in the first quadrant, that is, f(x) is defined for x > 0 and 0 < f(x) < 1/x.
For an arbitrary point A(u, f(u)) with u > 0 of the convex curve X : y = f(x),
there exists a tangent line ℓ to the hyperbola H at P (u + g(u), (u + g(u))−1)
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which passes through the point A(u, f(u)), where g(u) is a positive function
defined on (0,∞). The assumption implies that the tangent line ℓ meets the
curve X at B(u+ 2g(u), f(u+ 2g(u))). Hence the tangent line ℓ is given by

(3.20) y = a(u)x+ b(u), a(u) = −(u+ g(u))−2, b(u) = 2(u+ g(u))−1.

Since ℓ passes through A and B, we have

(3.21) f(u) = a(u)u+ b(u) = w(u)(u+ g(u))−2

and

(3.22) f(w(u)) = a(u)w(u) + b(u) = u(u+ g(u))−2,

where we put w(u) = u+ 2g(u).
Now, let us replace u in (3.21) with w(u). Then we get

(3.23) f(w(u)) = [w(u) + 2g(w(u))][w(u) + g(w(u))]−2.

It follows from (3.22) and (3.23) that

(3.24) u[w(u) + g(w(u))]2 = [w(u) + 2g(w(u))](u+ g(u))2,

which can be rewritten as

(3.25) {ug(w(u))− g(u)w(u)}{g(w(u)) + g(u)} = 0.

Since g(u) > 0 for all u ∈ R+, we see that ug(w(u)) = g(u)w(u), that is,

(3.26)
g(u+ 2g(u))

u+ 2g(u)
=

g(u)

u

for all u ∈ R+.
Finally, Lemma 10 implies g(u) = bu for a positive constant b. Hence it

follows from (3.21) that f(x) = a/x, where a = (1+ 2b)/(1 + b)2 ∈ (0, 1). This
completes the proof.

(3) ⇒ (1). Proposition 1 completes the proof. □

Remark. In the proof of (2) ⇒ (3) of each proof of Theorems 3, 4 and 5, we do
not assume the differentiability of the curve X .

4. Hypersurfaces with centrally symmetric hyperplane sections

In this section, we prove Theorems 6, 7 and 8 as follows. Note that in the
proof of (2) ⇒ (3) of Theorems 3, 4 and 5, we do not assume the differentiability
of the curve X .

Proof of Theorem 6. Using the linear transformation L = diag(
√
a1, . . . ,

√
an,

1), it suffices to prove when the elliptic paraboloid is given by P : y = x2
1 +

x2
2 + · · ·+ x2

n.
(1) ⇒ (2). For every tangent unit vector v = (v1, . . . , vn, 0) to P at the

origin, we consider the intersection Pv = P ∩ vy-plane. Then Pv : y = t2

is a parabola. We put g(t) = f(tv). Then the parabola Pv and the convex
curve X : y = g(t) satisfy the assumptions in Theorem 3. Hence we see that
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f(tv) = g(t) = t2 + k, k < 0. Since k = f(0), the constant k is independent of
the unit tangent vector v. For any x = (x1, . . . , xn, 0) ̸= 0, we put t = |x| and
v = x/t, then we have

(4.1) f(x) = f(tv) = t2 + k = x2
1 + x2

2 + · · ·+ x2
n + k.

This completes the proof.
(2) ⇒ (1). It is straightforward to complete the proof. □

Proof of Theorem 7. Using the linear transformation L = diag(1/a1, . . . , 1/an,
1/b), it suffices to prove when the ellipsoid is given by E : x2

1+x2
2+· · ·+x2

n+y2 =
1.

(1) ⇒ (2). For every tangent unit vector v = (v1, . . . , vn, 0) to Rn at the
origin, we consider the intersection Ev = E ∩vy-plane. Then Ev is a great circle.
We put Xv = X ∩ vy-plane. Then the circle Ev and the convex curve Xv satisfy
the assumptions in Theorem 4. Hence we see that Xv is a circle of radius r > 1.
Note that (0, . . . , 0, r) is the intersection point X ∩ y-axis. Hence the radius r
is independent of the unit tangent vector v. Thus, the hypersurface X is an
n-dimensional sphere. This completes the proof.

(2) ⇒ (1). It is straightforward to complete the proof. □

Proof of Theorem 8. Using the linear transformation L = diag(1/a1, . . . , 1/an,
1/b), it suffices to prove when the elliptic hyperboloid is given by H : x2

1+x2
2+

· · ·+ x2
n − y2 = −1 with y > 0.

(1) ⇒ (2). For every tangent unit vector v = (v1, . . . , vn, 0) to Rn at the
origin, we consider the intersection Hv = H ∩ vy-plane. Then Hv = {sv +
yen+1 | s2 − y2 = −1} is a hyperbola. We put Xv = X ∩ vy-plane. Then the
hyperbola Hv and the convex curve Xv satisfy the assumptions in Theorem 5.
Furthermore, Xv satisfies the additional assumption in Theorem 5. Hence we
see that

(4.2) Xv = {sv + yen+1 | s2 − y2 = −k, y > 0}, 0 < k < 1.

Since (0, . . . , 0,
√
k) = X ∩ y-axis, the constant k is independent of the unit

tangent vector v. For any x = (x1, . . . , xn, 0) ̸= 0, we put s = |x| and v = x/s,
then we have

(4.3) y2 = s2 + k = x2
1 + x2

2 + · · ·+ x2
n + k, y > 0.

This completes the proof.
(2) ⇒ (1). It is straightforward to complete the proof. □
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[2] Á. Bényi, P. Szeptycki, and F. Van Vleck, A generalized Archimedean property, Real
Anal. Exchange 29 (2003/04), no. 2, 881–889.
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