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TERMINAL SPACES OF MONOIDS

Amartya Goswami

Abstract. The purpose of this note is a wide generalization of the topo-

logical results of various classes of ideals of rings, semirings, and modules,

endowed with Zariski topologies, to r-strongly irreducible r-ideals (en-
dowed with Zariski topologies) of monoids, called terminal spaces. We

show that terminal spaces are T0, quasi-compact, and every nonempty
irreducible closed subset has a unique generic point. We characterize r-

arithmetic monoids in terms of terminal spaces. Finally, we provide nec-

essary and sufficient conditions for the subspaces of r-maximal r-ideals
and r-prime r-ideals to be dense in the corresponding terminal spaces.

1. Introduction and preliminaries

Under the name primitive ideals, in [7], the notion of strongly irreducible
ideals was introduced for commutative rings. In [6, p. 301, Exercise 34], the
ideals of the same spectrum are called quasi-prime ideals. The term “strongly
irreducible” was first used for noncommutative rings in [5]. Since then, several
algebraic and topological studies have been done on these types of ideals of rings
(see [3, 13, 18]). The notion of strongly irreducible ideals has been generalized
to semirings (see [2, 14]) and modules (see [15,17]).

The aim of this note is to study the topological properties of the space
of r-strongly irreducible r-ideals of a monoid endowed with a Zariski topology.
This is a wide generalization of Zariski spaces. Moreover, r-strongly irreducible
r-ideals are the “largest” class of r-ideals on which one can impose a Zariski
topology. Therefore, we not only generalize some of the topological results from
the above-mentioned works on strongly irreducible ideals of rings, semirings,
and semimodules to monoids, but also generalize topological results on maxi-
mal, prime, minimal prime, and primary ideals of those structures to r-strongly
irreducible r-ideals of monoids. We highlight the results that have been gen-
eralized here. Although our setup is on monoids, many of the results still hold
for (commutative) semigroups.
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Let us recall some elementary definitions from [9] (see also [10]). A monoid
M = (M, ·) consists of a set M ̸= ∅, together with an associative and com-
mutative binary operation ∗ : M ×M → M such that M possesses an identity
element 1 ∈ M satisfying 1 ∗m = m for all m ∈ M , and a zero element 0 ∈ M
satisfying m ∗ 0 = 0 for all m ∈ M . The identity element and the zero element
are uniquely determined, and we shall always assume that 0 ̸= 1. We shall
write xy for x ∗ y and we shall assume all our monoids are commutative. For
a set X, we denote by P(X) the set of all subsets of X. If M is a monoid,
S, T ∈ P(M), and m ∈ M , we set

S ∗ T = ST = {st | s ∈ S, t ∈ T}, mT = {m}T = {mt | t ∈ T}.

An ideal system on a monoid M is a map r : P(M) → P(M) defined by
X 7→ Xr such that the following conditions are satisfied for all subsets X,Y ⊆
M and all elements m ∈ M :

• X ∪ {0} ⊆ Xr,
• X ⊆ Yr implies that Xr ⊆ Yr,
• mM ⊆ {m}r, and
• mXr = (mX)r.

Let r be an ideal system. A subset I ⊆ M is called an r-ideal if I = Ir.
By Ir(M), we shall denote the set of nonempty r-ideals of M . An r-ideal I
is called proper if I ̸= M . Let r be an ideal system. A monoid M is called
r-Noetherian if (Ir(M),⊆) satisfies the ascending chain condition. If X is a
nonempty subset of a monoid M , then the following equality

Xr =
⋂

J∈Ir(M), J⊇X

J

holds, and thus Xr is the smallest r-ideal containing X. For r-ideals I, J ∈
Ir(M), we call I ∗r J = (IJ)r ∈ Ir(M), the r-product of I and J . For all
I, J ∈ Ir(M), it is easy to show that I ∗r J ⊆ I ∩ J (see [9, §2.3, Proposition
(iii)]). An r-ideal P is called r-prime if P ̸= M , and i, i′ ∈ M , ii′ ∈ P implies
i ∈ P or i′ ∈ P . If I is an r-ideal of M , the r-radical of I is defined by

√
I = {m ∈ M | mk ∈ I for some k ∈ Z+}.

An r-ideal L of a monoid M is called r-irreducible if L ̸= M , and for all r-ideals
I, J ∈ Ir(M), L = I∩J implies that L = I or L = J . An r-ideal K of a monoid
M is called r-strongly irreducible if K ̸= M and, for all r-ideals I, J ∈ Ir(M),
I ∩ J ⊆ K implies that I ⊆ K or J ⊆ K. An r-ideal I ∈ Ir(M) is called
r-maximal if M ̸= I and there is no r-ideal J ∈ Ir(M) such that I ⊊ J ⊊ M .

2. Terminal spaces

Let M be a monoid and let Sr(M) be the set of all r-strongly irreducible
r-ideals of M . We impose a Zariski topology (in the sense of [8, §1.1.1]) on
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Sr(M) by defining closed sets by

(2.1) HK(X) =

{
{J ∈ Sr(M) | J ⊇ K(X)}, X ̸= ∅;
∅, X = ∅,

where X ⊆ Sr(M) and K(X) =
⋂

I∈X I. The following theorem shows that
HK is a Kuratowski closure operator on Sr(M), and hence indeed induces a
closed-set topology on Sr(M).

Theorem 2.1. Let M be a monoid and let HK be defined as in (2.1).

(1) HK(∅) = ∅.
(2) For all X ⊆ Sr(M), X ⊆ HK(X).
(3) For all X ⊆ Sr(M), HK(HK(X)) = HK(X).
(4) For all X,X ′ ⊆ Sr(M), HK(X ∪X ′) = HK(X) ∪HK(X ′).

Proof. (1)–(2) Follows from (2.1).
(3) By (2), X ⊆ HK(X) and hence HK(HK(X)) ⊇ HK(X) by increasing

property of HK. The other inclusion follows from (2.1).
(4) By (2) and by the increasing property of HK, we have HK(X ∪X ′) ⊇

HK(X) ∪ HK(X ′). Suppose J ∈ HK(X ∪ X ′). Then K(X) ∩ K(X ′) ⊆ J .
Since J is strongly irreducible, K(X) ⊆ J or K(X ′) ⊆ J , and hence J ∈
HK(X) ∪HK(X ′). □

From Theorem 2.1(4), it is clear that the class of r-strongly irreducible r-
ideals is the “largest” class of r-ideals of a monoid on which we can endow a hull-
kernel topology (= Zariski topology). The set Sr(M) endowed with the above-
mentioned hull-kernel topology will be called a terminal space. The following
proposition characterizes strongly irreducible ideals as terminal spaces, and it
generalizes the ring-theoretic result [16, §2.2, p. 11].

Proposition 2.2. The operation defined in (2.1) is a Kuratowski closure op-
erator on a class F of r-ideals of M if and only if

J ∩K ⊆ I implies J ⊆ I or K ⊆ I

for all J,K ∈ Ir(M) and for all I ∈ F .

Before we discuss topological properties of terminal spaces, let us note down
a few more elementary results about the closure operator HK, which will be
used in the sequel.

Lemma 2.3. Let M be a monoid and let X, X ′, {Xλ}λ∈Λ be nonempty subsets
of Sr(M). Then the following hold.

(1) HK(M) = ∅.
(2) HK(X) = X.
(3) HK(X) ∪HK(X ′) = HK(X ∩X ′).
(4)

⋂
λ∈Λ HK(Xλ) = HK

(⋂
λ∈Λ Xλ

)
.

(5) HK(X) ⊆ HK(⟨X⟩) ⊆ HK(
√
⟨X⟩).
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Proof. (1) Follows from the definition of a r-strongly irreducible r-ideal of M .

(2) From Theorem 2.1(2), we have X ⊆ HK(X) = HK(X). Let HK(Y ) be
an arbitrary closed subset of Sr(M) containing X. Then

HK(Y ) = HK(HK(Y )) ⊇ HK(X).

Since HK(X) is the smallest closed set containing X by Theorem 2.1(2), we
have the claim.

(3)–(5) Straightforward. □

The next result generalizes Theorem 4.1 and Theorem 3.1 in [12], Theorem
9 in [14], Theorem 4.1(v)–(vi) in [3], and Proposition 2.4 in [20].

Theorem 2.4. Suppose that r is finitary. Then every terminal space Sr(M)
is quasi-compact and a T0-space.

Proof. Let {Cλ}λ∈Λ be a family of closed sets of Sr(M) and let
⋂

λ∈Λ Cλ = ∅.
Then Cλ = HK(Xλ) for some subsets Xλ of Sr(M), and by Lemma 2.3(4), we
have ⋂

λ∈Λ

HK(Xλ) = HK

(⋂
λ∈Λ

Xλ

)
= ∅.

Let K be the r-closure of
〈⋃

λ∈Λ K(Xλ)
〉
. We claim that K = M . If not, then

by [9, §6.4, Theorem (ii)], there exists a r-maximal r-ideal J of M such that⋂
I∈Xλ

I ⊆ K ⊆ J

for all λ ∈ Λ. Therefore, J ∈ H(Cλ) = Cλ for all λ ∈ Λ, a contradiction.
Since 1 ∈ K, we have 1 ∈

⋃n
i=1 K(Xλi

) for a finite subset {λ1, . . . , λn} of
Λ. Hence,

⋂n
i=1 Cλi

= ∅, and by the finite intersection property, we have the
quasi-compactness of Sr(M).

To show the T0 separation property, let I, I ′ ∈ Sr(M) such that HK({I}) =
HK({I ′}). It suffices to show I = I ′. Since I ′ ∈ HK({I}), we have I ⊆ I ′.
Similarly, we obtain I ′ ⊆ I. Hence I = I ′. □

The following result characterizes T1 terminal spaces, and generalizes The-
orem 3.2 in [12], Theorem 3.7 in [11], and Theorem 3 in [19].

Theorem 2.5. Let M be a monoid. A terminal space Sr(M) is a T1-space
if and only if every r-strongly irreducible r-ideal of M does not contain other
r-strongly irreducible r-ideals of M .

Proof. If Sr(M) is a T1-space, then for every I ∈ Sr(M) we have Ī = {I}.
By Lemma 2.3(2), Ī = HK({I}) = H(I), and so, {I} = H(I), implying that
the only r-strongly irreducible r-ideal of M containing I is I itself. For the
converse, let I be the unique r-strongly irreducible r-ideal of M that contains
I. Then by Lemma 2.3(2),

{I} = HK({I}) = H(I) = {I}.
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Thus {I} is a closed set, proving that Sr(M) is a T1-space. □

Our next goal is to study generic points of irreducible closed sets of terminal
spaces. Recall that a subset Y of a topological spaceX is called irreducible if for
any closed subsets Y1 and Y2 in X, Y ⊆ Y1∪Y2 implies that Y ⊆ Y1 or Y ⊆ Y2.
A maximal irreducible subset Y of X is called an irreducible component. An
element y of a closed subset Y of X is called a generic point of Y if Y = {y}.

The following result characterizes irreducible closed subsets of a terminal
space. Moreover, this result generalizes Theorem 3.3 in [12], Proposition 3 in
[19], Theorem 2.6(1) in [20], and Corollary 3.1 in [12].

Theorem 2.6. Every terminal space Sr(M) is sober.

Proof. We prove more, namely, a nonempty closed subset X of a terminal space
Sr(M) is irreducible if and only if K(X) is a r-strongly irreducible r-ideal of
M . It is clear that K(X) is a proper ideal of M . Let I ∩ J ⊆ K(X) for some
I, J ∈ Ir(M). Then for any L ∈ X, we have I ⊆ L or J ⊆ L since L ∈ Sr(M).
Hence X ⊆ H(I) ∪ H(J). Since X is irreducible, X ⊆ H(I) or X ⊆ H(J),
which implies that I ⊆ K(X) or J ⊆ K(X). Therefore, K(X) is r-strongly
irreducible.

For the converse, let K(X) be a r-strongly irreducible r-ideal of M . Since
K(X) ̸= M , K(X) is nonempty. Let X = X1 ∪X2 for some nonempty closed
subsets of the terminal space Sr(M). Then K(X) ⊇ K(X1) ∩ K(X2). Since
K(X) is r-strongly irreducible, K(X) ∈ H(K(X1)∩K(X2)). By Lemma 2.3(3),
this implies K(X) ∈ HK(X1) ∪HK(X2). If K(X) ∈ HK(X1), then

X ⊆ X = HK(X) ⊆ HK(X1) = X1 = X1,

where the first and the second equalities follow from Lemma 2.3(2). Similarly,
if K(X) ∈ HK(X2), then X ⊆ X2. This proves that X is irreducible.

Let H(I) be a nonempty irreducible subset of Sr(M). Then by the above, I

is r-strongly irreducible. Hence {I} = HK(I) = H(I), where the first equality
follows from Lemma 2.3(2). Thus I is a generic point of H(I). The uniqueness
of this point follows from the fact that Sr(M) is a T0-space (see Theorem
2.4). □

The following one-to-one correspondence generalizes Theorem 3.4 in [1].

Theorem 2.7. Let M be a monoid. Then there is a bijection between the set
of irreducible components of the terminal space Sr(M) and the set of minimal
r-strongly irreducible r-ideals of M .

Proof. If X is an irreducible component of the terminal space Sr(M), then by
Theorem 2.6, X = H(I) for some I ∈ Sr(M). If J ∈ Sr(M) such that I ⊇ J ,
then H(I) ⊆ H(J) so that I = J . Conversely, let I be a minimal r-strongly
irreducible r-ideal of M and let H(I) ⊆ H(J) for some J ∈ Sr(M). Then

{I} = H(I) ⊆ H(J) = {J},
implying that I = J . Hence, H(I) is an irreducible component of Sr(M). □
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It is well-known that the prime spectrum of a Noetherian (commutative) ring
endowed with Zariski topology is a Noetherian space. The following proposi-
tion generalizes this to r-strongly irreducible r-ideals of monoids, and it also
generalizes Proposition 4.2(i) in [3]. The proof is easy, and so will be omitted.

Proposition 2.8. If M is a Noetherian monoid, then Sr(M) is a Noetherian
terminal space.

A monoid M is called r-arithmetic if Ir(M) is a distributive lattice. The
following theorem characterizes r-arithmetic monoids in terms of r-strongly
irreducible r-ideals. This result is a generalization of Theorem 10 in [14]. The
half of the implications uses the Zariski topology on Sr(M).

Theorem 2.9. A monoid M is r-arithmetic if and only if each r-ideal is the
intersection of all r-strongly irreducible r-ideals containing it.

Proof. Let I ∈ Ir(M) and let I =
⋂

I⊆J{J | J ∈ Sr(M)}. To show Ir(M)

is distributive, it suffices to show that the lattice Ir(M) is isomorphic to the
lattice of some closed sets of the terminal space Sr(M), because following [14,
Theorem 10], we can show that Ir(M) is distributive if and only if each ideal
is the intersection of all strongly irreducible ideals containing it. Note that the
map I 7→ {J ∈ Sr(M) | J ⊇ I} = H(I) is a bijection and since H(I) is a closed
set, this map is also an lattice isomorphism.

For the converse, we first observe that by [4], in a distributive lattice, r-
irreducible ideals and r-strongly irreducible r-ideals coincide. The rest of the
proof now follows from Theorem 6 and Theorem 7 in [14]. □

Finally, we wish to see relations between a terminal space and its subspaces
of r-maximal r-ideals Maxr(M) and r-prime r-ideals Specr(M). To do so,
we first talk about radicals induced by r-maximal, r-prime, and r-strongly
irreducible r-ideals of a monoid M . The mr-radical

m
√
M (respectively, pr-

radical p
√
M and sr-radical

s
√
M) of M is the intersection of all r-maximal

r-ideals (respectively, r-prime r-ideals and r-strongly irreducible r-ideals) of
M .

Proposition 2.10. Let M be a monoid.

(1) The subspace Maxr(M) is dense in the terminal space Sr(M) if and

only if p
√
M = s

√
M .

(2) The subspace Specr(M) is dense in the terminal space Sr(M) if and

only if m
√
M = s

√
M .

Proof. (1) Although the claim essentially follows from the fact that if X ⊆
Sr(M), then

X =

{
J ∈ Sr(M) | J ⊇

⋂
I∈X

I

}
,
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however, we provide some details. Let Specr(M) = Sr(M). Then {J ∈ Sr(M) |⋂
P∈Specr(M) P ⊆ J} = Sr(M). This implies that p

√
M ⊆ s

√
M . Furthermore,

Maxr(M) ⊆ Sr(M) implies s
√
M ⊆ p

√
M . Hence, we have the desired equality.

To obtain the converse, let Sr(M)\Specr(M) ̸= ∅. This implies J /∈ Specr(M),
but J ∈ Sr(M). Therefore, there exists a neighbourhood NJ of J such that

NJ ∩ Spec(M) = ∅, and s
√
M ⊊ p

√
M . In other words, we have s

√
M ̸= p

√
M .

(2) Follows from (1). □

Acknowledgement. The author would like to express sincere gratitude to the
anonymous referee for their meticulous review and invaluable feedback, which
made a significant contribution to improving the presentation of the paper.

References

[1] H. Ansari-Toroghy and D. Hassanzadeh-Lelekaami, On the prime spectrum of top mod-
ules, Algebra Discrete Math. 11 (2011), no. 1, 1–16.

[2] R. E. Atani and S. E. Atani, Ideal theory in commutative semirings, Bul. Acad. Ştiinţe
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