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TERMINAL SPACES OF MONOIDS

AMARTYA GOSWAMI

ABSTRACT. The purpose of this note is a wide generalization of the topo-
logical results of various classes of ideals of rings, semirings, and modules,
endowed with Zariski topologies, to r-strongly irreducible r-ideals (en-
dowed with Zariski topologies) of monoids, called terminal spaces. We
show that terminal spaces are Ty, quasi-compact, and every nonempty
irreducible closed subset has a unique generic point. We characterize -
arithmetic monoids in terms of terminal spaces. Finally, we provide nec-
essary and sufficient conditions for the subspaces of r-maximal r-ideals
and r-prime r-ideals to be dense in the corresponding terminal spaces.

1. Introduction and preliminaries

Under the name primitive ideals, in [7], the notion of strongly irreducible
ideals was introduced for commutative rings. In [6, p. 301, Exercise 34], the
ideals of the same spectrum are called quasi-prime ideals. The term “strongly
irreducible” was first used for noncommutative rings in [5]. Since then, several
algebraic and topological studies have been done on these types of ideals of rings
(see [3,13,18]). The notion of strongly irreducible ideals has been generalized
to semirings (see [2,14]) and modules (see [15,17]).

The aim of this note is to study the topological properties of the space
of r-strongly irreducible r-ideals of a monoid endowed with a Zariski topology.
This is a wide generalization of Zariski spaces. Moreover, r-strongly irreducible
r-ideals are the “largest” class of r-ideals on which one can impose a Zariski
topology. Therefore, we not only generalize some of the topological results from
the above-mentioned works on strongly irreducible ideals of rings, semirings,
and semimodules to monoids, but also generalize topological results on maxi-
mal, prime, minimal prime, and primary ideals of those structures to r-strongly
irreducible r-ideals of monoids. We highlight the results that have been gen-
eralized here. Although our setup is on monoids, many of the results still hold
for (commutative) semigroups.
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Let us recall some elementary definitions from [9] (see also [10]). A monoid
M = (M,-) consists of a set M # (), together with an associative and com-
mutative binary operation x: M x M — M such that M possesses an identity
element 1 € M satisfying 1 xm = m for all m € M, and a zero element 0 € M
satisfying m x 0 = 0 for all m € M. The identity element and the zero element
are uniquely determined, and we shall always assume that 0 # 1. We shall
write xy for x * y and we shall assume all our monoids are commutative. For
a set X, we denote by P(X) the set of all subsets of X. If M is a monoid,
S, T € P(M), and m € M, we set

SxT=8T={st|seS, teT}, mT ={m}T ={mt|teT}.

An ideal system on a monoid M is a map r: P(M) — P(M) defined by
X — X, such that the following conditions are satisfied for all subsets X,Y C
M and all elements m € M:

X u{o} C X,,

X CY, implies that X, C Y,
mM C {m},, and

mX, = (mX),.

Let r be an ideal system. A subset I C M is called an r-ideal if I = I,..
By Z.(M), we shall denote the set of nonempty r-ideals of M. An r-ideal I
is called proper if I # M. Let r be an ideal system. A monoid M is called
r-Noetherian if (Z,.(M),C) satisfies the ascending chain condition. If X is a
nonempty subset of a monoid M, then the following equality

X, = N J

JET,. (M), JDX

holds, and thus X, is the smallest r-ideal containing X. For r-ideals I,J €
(M), we call I %, J = (IJ), € Z,(M), the r-product of I and J. For all
I,J € T.(M), it is easy to show that I x,. J C I NJ (see [9, §2.3, Proposition
(iii)]). An r-ideal P is called r-prime if P # M, and i, € M, 4’ € P implies
i€ Pori € P.If Iis an r-ideal of M, the r-radical of I is defined by

VI={meM|m"elforsomek € Z*}.

An r-ideal L of a monoid M is called r-irreducible if L # M, and for all r-ideals
I,J € Z,(M), L = INJ implies that L = I or L = J. An r-ideal K of a monoid
M is called r-strongly irreducible if K # M and, for all r-ideals I, J € Z,.(M),
INnJ C K implies that I C K or J C K. An r-ideal I € Z,.(M) is called
r-mazimal if M # I and there is no r-ideal J € Z,,(M) such that I C J C M.

2. Terminal spaces

Let M be a monoid and let S.(M) be the set of all r-strongly irreducible
r-ideals of M. We impose a Zariski topology (in the sense of [8, §1.1.1]) on
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S,-(M) by defining closed sets by

{J €S (M) J2KEX)}, X #0;
0, X =0,

where X C S,.(M) and K(X) = [;cx I. The following theorem shows that
HK is a Kuratowski closure operator on S, (M), and hence indeed induces a
closed-set topology on S,.(M).

Theorem 2.1. Let M be a monoid and let HK be defined as in (2.1).
(1) HED) =0.
(2) Forall X C S, (M), X CHK(X).

(3) Forall X C S, (M), HK(HK(X)) = HK(X).

(4) For all X, X' C S, (M), HK(X UX') = HK(X) UHK(X").

Proof. (1)—(2) Follows from (2.1).

(3) By (2), X € HK(X) and hence HK(HK(X)) 2 HK(X) by increasing
property of HIXC. The other inclusion follows from (2.1).

(4) By (2) and by the increasing property of H/C, we have HIX(X U X') D
HE(X) UHK(X'). Suppose J € HK(X UX'). Then K(X)NK(X') C J.
Since J is strongly irreducible, K(X) C J or K(X’) C J, and hence J €
HE(X) UHK(X). O

(2.1) HI(X) = {

From Theorem 2.1(4), it is clear that the class of r-strongly irreducible 7-
ideals is the “largest” class of r-ideals of a monoid on which we can endow a hull-
kernel topology (= Zariski topology). The set S,.(M) endowed with the above-
mentioned hull-kernel topology will be called a terminal space. The following
proposition characterizes strongly irreducible ideals as terminal spaces, and it
generalizes the ring-theoretic result [16, §2.2, p. 11].

Proposition 2.2. The operation defined in (2.1) is a Kuratowski closure op-
erator on a class F of r-ideals of M if and only if

JNK CI implies JCI or KCI
forall J K € T.(M) and for all I € F.

Before we discuss topological properties of terminal spaces, let us note down
a few more elementary results about the closure operator H/C, which will be
used in the sequel.

Lemma 2.3. Let M be a monoid and let X, X', {Xx}rea be nonempty subsets
of §(M). Then the following hold.

).

mc( )=0.

) HE(X) = X.

) HE(X)UHK(X') =HK(X NnX").
) Maea HE(X)) = HIC(ﬂAeAXA).
) H

(1
(2
(3
(4
(5) HE(X) C HE((X)) € HE(V/ (X))

5



262 A. GOSWAMI

Proof. (1) Follows from the definition of a r-strongly irreducible r-ideal of M.

(2) From Theorem 2.1(2), we have X C HK(X) = HK(X). Let HK(Y) be
an arbitrary closed subset of S,.(M) containing X. Then
HEY) = HIC(HKE(Y)) 2 HK(X).

Since HI(X) is the smallest closed set containing X by Theorem 2.1(2), we
have the claim.
(3)-(5) Straightforward. O

The next result generalizes Theorem 4.1 and Theorem 3.1 in [12], Theorem
9 in [14], Theorem 4.1(v)—(vi) in [3], and Proposition 2.4 in [20].

Theorem 2.4. Suppose that r is finitary. Then every terminal space S.(M)
is quasi-compact and a Ty-space.

Proof. Let {Cx}xea be a family of closed sets of S,.(M) and let (o, Cx = 0.
Then Cy = HK (X)) for some subsets X of S,(M), and by Lemma 2.3(4), we

have
ﬂHK@QzHKOﬂX&zW

AEA AEA
Let K be the r-closure of ({Jyc, K(X))). We claim that K = M. If not, then
by [9, §6.4, Theorem (ii)], there exists a r-maximal r-ideal J of M such that

(NIcKCT
IeX)

for all A € A. Therefore, J € H(Cy) = C) for all A € A, a contradiction.
Since 1 € K, we have 1 € (JI, K(X),) for a finite subset {\,,...,\,} of
A. Hence, ﬂ?:l Cy, = 0, and by the finite intersection property, we have the
quasi-compactness of S, (M).

To show the T} separation property, let I, I’ € S, (M) such that HK({I}) =
HK({I'}). It suffices to show I = I'. Since I’ € HK({I}), we have I C I'.
Similarly, we obtain I’ C I. Hence I = I. O

The following result characterizes 717 terminal spaces, and generalizes The-
orem 3.2 in [12], Theorem 3.7 in [11], and Theorem 3 in [19].

Theorem 2.5. Let M be a monoid. A terminal space S,.(M) is a T-space
if and only if every r-strongly irreducible r-ideal of M does not contain other
r-strongly irreducible r-ideals of M.

Proof. If S.(M) is a Ti-space, then for every I € S,.(M) we have I = {I}.
By Lemma 2.3(2), [ = HK({I}) = H(I), and so, {I} = H(I), implying that
the only r-strongly irreducible r-ideal of M containing [ is [ itself. For the
converse, let I be the unique r-strongly irreducible r-ideal of M that contains
I. Then by Lemma 2.3(2),

{I} = HK({1}) = H(I) = {I}.
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Thus {7} is a closed set, proving that S.(M) is a Tj-space. O

Our next goal is to study generic points of irreducible closed sets of terminal
spaces. Recall that a subset Y of a topological space X is called irreducible if for
any closed subsets Y7 and Y5 in X, Y C Y1UY5 impliesthat Y CY; or Y C Y5.
A maximal irreducible subset Y of X is called an irreducible component. An
element y of a closed subset Y of X is called a generic point of Y if Y = @

The following result characterizes irreducible closed subsets of a terminal
space. Moreover, this result generalizes Theorem 3.3 in [12], Proposition 3 in
[19], Theorem 2.6(1) in [20], and Corollary 3.1 in [12].

Theorem 2.6. Every terminal space Sp(M) is sober.

Proof. We prove more, namely, a nonempty closed subset X of a terminal space
Sr(M) is irreducible if and only if £(X) is a r-strongly irreducible r-ideal of
M. Tt is clear that K(X) is a proper ideal of M. Let I NJ C K(X) for some
I,J €Z,(M). Then for any L € X, we have I C L or J C L since L € S,.(M).
Hence X C H(I) UH(J). Since X is irreducible, X C H(I) or X C H(J),
which implies that I C KC(X) or J C K(X). Therefore, K(X) is r-strongly
irreducible.

For the converse, let (X)) be a r-strongly irreducible r-ideal of M. Since
K(X) # M, K(X) is nonempty. Let X = X; U X5 for some nonempty closed
subsets of the terminal space S,.(M). Then K(X) D K(X;) N K(Xz). Since
K(X) is r-strongly irreducible, K(X) € H(K(X1) NK(X3)). By Lemma 2.3(3),
this implies K(X) € HIK(X1) UHK(X?). If K(X) € HIK(X1), then

X CX =HK(X) CHK(X)) = X1 = X1,
where the first and the second equalities follow from Lemma 2.3(2). Similarly,
it K(X) € HK(X3), then X C X5. This proves that X is irreducible.

Let H(I) be a nonempty irreducible subset of S,.(M). Then by the above, I
is r-strongly irreducible. Hence {I} = HK(I) = H(I), where the first equality
follows from Lemma 2.3(2). Thus I is a generic point of #(I). The uniqueness

of this point follows from the fact that S.(M) is a Tp-space (see Theorem
2.4). O

The following one-to-one correspondence generalizes Theorem 3.4 in [1].

Theorem 2.7. Let M be a monoid. Then there is a bijection between the set
of irreducible components of the terminal space S.(M) and the set of minimal
r-strongly irreducible r-ideals of M.

Proof. If X is an irreducible component of the terminal space S, (M), then by

Theorem 2.6, X = H(I) for some I € §,(M). If J € S,(M) such that I D J,

then H(I) C H(J) so that I = J. Conversely, let I be a minimal r-strongly

irreducible r-ideal of M and let H(I) C H(J) for some J € S,.(M). Then
{I} = H{I) S H(J) = {T},

implying that I = J. Hence, H(I) is an irreducible component of S,.(M). O
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It is well-known that the prime spectrum of a Noetherian (commutative) ring
endowed with Zariski topology is a Noetherian space. The following proposi-
tion generalizes this to r-strongly irreducible r-ideals of monoids, and it also
generalizes Proposition 4.2(i) in [3]. The proof is easy, and so will be omitted.

Proposition 2.8. If M is a Noetherian monoid, then S,.(M) is a Noetherian
terminal space.

A monoid M is called r-arithmetic if Z,.(M) is a distributive lattice. The
following theorem characterizes r-arithmetic monoids in terms of r-strongly
irreducible r-ideals. This result is a generalization of Theorem 10 in [14]. The
half of the implications uses the Zariski topology on S,.(M).

Theorem 2.9. A monoid M is r-arithmetic if and only if each r-ideal is the
intersection of all r-strongly irreducible r-ideals containing it.

Proof. Let I € Z,(M) and let I = (\;c,{J | J € S§,(M)}. To show Z.(M)
is distributive, it suffices to show that the lattice Z,.(M) is isomorphic to the
lattice of some closed sets of the terminal space S, (M), because following [14,
Theorem 10], we can show that Z,. (M) is distributive if and only if each ideal
is the intersection of all strongly irreducible ideals containing it. Note that the
map I — {J €S.(M) | J DI} =H(I) is a bijection and since H(I) is a closed
set, this map is also an lattice isomorphism.

For the converse, we first observe that by [4], in a distributive lattice, r-
irreducible ideals and r-strongly irreducible r-ideals coincide. The rest of the
proof now follows from Theorem 6 and Theorem 7 in [14]. O

Finally, we wish to see relations between a terminal space and its subspaces
of r-maximal r-ideals Max, (M) and r-prime r-ideals Spec,(M). To do so,
we first talk about radicals induced by r-maximal, r-prime, and r-strongly
irreducible r-ideals of a monoid M. The m,-radical /M (respectively, p,-
radical /M and s,.-radical v/M) of M is the intersection of all r-maximal
r-ideals (respectively, r-prime r-ideals and r-strongly irreducible r-ideals) of
M.

Proposition 2.10. Let M be a monoid.

(1) The subspace Max,.(M) is dense in the terminal space S,.(M) if and
only if /M = /M.

(2) The subspace Spec, (M) is dense in the terminal space S(M) if and
only if /M = /M.

Proof. (1) Although the claim essentially follows from the fact that if X C
Sy (M), then

X:{JEST(M)JD ﬂf},

IeX



TERMINAL SPACES OF MONOIDS 265

however, we provide some details. Let Spec,.(M) = S, (M). Then {J € S, (M) |
Npespec, (i P € J} = Sp(M). This implies that /M C /M. Furthermore,
Max, (M) C S, (M) implies /M C /M. Hence, we have the desired equality.
To obtain the converse, let S,.(M)\ Spec, (M) # 0. This implies J ¢ Spec,.(M),
but J € S,(M). Therefore, there exists a neighbourhood N; of J such that
NjNSpec(M) =0, and M - {/M. In other words, we have v/M # {/M.
(2) Follows from (1). O
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