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ROTATIONALLY SYMMETRIC SOLUTIONS OF THE

PRESCRIBED HIGHER MEAN CURVATURE SPACELIKE

EQUATIONS IN MINKOWSKI SPACETIME

Man Xu

Abstract. In this paper we consider the existence of rotationally sym-
metric entire solutions for the prescribed higher mean curvature spacelike

equations in Minkowski spacetime. As a first step, we study the associ-

ated 0-Dirichlet problems on a ball, and then we prove that all possible
solutions can be extended to +∞. The proof of our main results are

based upon the topological degree methods and the standard prolonga-
bility theorem of ordinary differential equations.

1. Introduction

Let Ln+1 = {(x, t) : x ∈ Rn, t ∈ R} be the (n + 1)-dimensional Minkowski
spacetime endowed with its standard Lorentzian metric

n∑
i=1

(dxi)
2 − dt2.

In this paper we are concerned with the mixed boundary value problem

(1)


(rn−kϕk(v′))′ = nrn−1Hk(r, v), r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

where ϕ(s) = s√
1−s2

, clearly, ϕ : (−1, 1) → R is an increasing diffeomorphism

with ϕ(0) = 0, such an ϕ is called singular, 1 ≤ k ≤ n is an integer, and for each
k, Hk : [0, R]×(−α, α) → R is a continuous function with 0 < α ≤ ∞. The aim
of this paper is to investigate the existence of positive and negative solutions of
problem (1) according to the different growth conditions of the Hk near 0 and
α by using the topological degree methods, and consider the extendibility of
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solutions by using the standard prolongability theorem of ordinary differential
equations.

This consideration is mainly motivated by the study of spacelike submani-
folds of codimension one in Ln+1 with prescribed higher mean curvature. The
general problem of the curvature prescription is, for a given prescription func-
tion Hk, a spacelike hypersurface (i.e., spacelike submanifolds of codimension
one) Σ in Ln+1 which satisfies

(2) Sk(p) = Hk(p) for all p ∈ Σ,

where Sk is the k-th mean curvature of the hypersurface and 1 ≤ k ≤ n is an
integer. (2) is called the prescribed k-th mean curvature spacelike equations in
Ln+1, this type of equations are of interest in special relativity and related as-
pects from Minkowski geometry. The equation with k = 1 is called directly the
prescribed mean curvature spacelike equation, and the equations with k ≥ 2
are called collectively the prescribed higher mean curvature spacelike equa-
tions. Following the method developed in [19], to investigate the rotationally
symmetric solutions of (2), we know it is enough to find the solutions of the
equations

(3) (rn−kϕk(v′))′ = nrn−1Hk(r, v), |v′| < 1, r ∈ (0,+∞)

for a given prescription function Hk : R+ × R → R, especially, |v′| < 1 is the
spacelike condition.

In the recent years, most of the efforts have been directed to the prescribed
mean curvature spacelike equation in Ln+1 (k = 1), perhaps the fact that

the mean curvature operator div
(

∇u√
1−|∇u|2

)
and its radially symmetric form

1
rn−1

(
rn−1 u′

√
1−u′2

)′
are explicit. In this context, we mention the seminal work

of R. Bartnik and L. Simon [1], E. Calabi [8], S.-Y. Cheng and S.-T. Yau
[10] and A. E. Treibergs [32], in these papers, the spacelike hypersurface hav-
ing the property that their mean curvature is zero or constant are considered.
More recently, Dirichlet problems for the prescribed mean curvature spacelike
equation in Ln+1 have been widely concerned by many scholars, and their at-
tention is mainly focused on their positive solutions, we refer the reader to
[3–6, 11–17, 20, 22, 27, 28, 30, 34–37] and the references therein. In particular,
based on the detailed analysis of time map, some exact multiplicity of positive
solutions have been obtained in [22,37], for the radially symmetric solutions on
a ball, some existence, nonexistence and multiplicity results have been estab-
lished in [4, 5], and some bifurcation results have been obtained in [13, 27] via
bifurcation technique, and when the domain is a general domain in Rn, some
existence and bifurcation results have been obtained in the papers [12,14,15,30].
In addition to, these concern discrete problems associated with the prescribed
mean curvature spacelike equation in Ln+1, we refer the reader to [7, 9, 24, 25]
and the references therein.



ROTATIONALLY SYMMETRIC SOLUTIONS 31

In comparison with the study in prescribed mean curvature spacelike equa-
tion in Ln+1, the number of references devoted to the prescribed higher mean
curvature spacelike equations in Ln+1 is appreciably lower. The earliest studies
on Dirichlet problem for prescribed higher mean curvature spacelike equations
in Ln+1 can be seen in [23], N. M. Ivochkina proved the existence of solutions
by using the implicit function theorem, Leary-Schauder principle and some ba-
sic theories of second-order elliptic equations. Bayard [2] proved the existence
of prescribed scalar curvature entire spacelike hypersurfaces in Ln+1. On the
Gauss-Kronecker curvature, we emphasize the work of Li [26] on constant Gauss
curvature and Delanoë [18], in which the existence of entire spacelike hyper-
surfaces asymptotic to a lightcone with prescribed Gauss-Kronecker curvature
function is proved. For the rotationally symmetric solutions of this equations,
only in the recent years, de la Fuente, Romero and Torres [19] have got an
existence and multiplicity results by using the Schauder fixed point theorem,
see [1, Propositions 3.1-3.3] for the detail, Ma and Xu [29] have provided a geo-
metric interpretation about the occurrence of the above solutions and got the
existence of rotationally symmetric entire solutions via the global bifurcation
theory.

Motivated by the interesting studies of [19] and some works in radially sym-
metric solutions of the prescribed mean curvature spacelike equations on a ball
[4,5,13,27], here we continue the investigations on the existence of solutions of
problem (3). As a first step, we consider the associated 0-Dirichlet problems on
the ball BR(0) = {x ∈ Rn : |x| < R}, by using the topological degree methods,
we prove that when k is odd, the Dirichlet problem has at least one strictly
decreasing positive solution, when k is even, it has at least two solutions, one
is strictly decreasing and positive the other is strictly increasing and negative,
provided that Hk is superlinear at 0 with respect to ϕk, that is

(4) lim
s→0

Hk(r, s)

ϕk(s)
= ∞ uniformly for r ∈ [0, R]

and R < α. When R = α = 1, (4) is satisfied and Hk is sublinear at 1 with
respect to ϕk, that is

(5) lim
|s|→1−

Hk(r, s)

ϕk(s)
= 0 uniformly for r ∈ [0, 1],

we prove the same conclusion (Theorem 2.6). Next, we prove that all possible
solutions can also be extended to +∞ based upon the standard prolongability
theorem of ordinary differential equations (Theorems 3.1, 3.2). It is worth point
out that, when R < α, Hk can be singular at α, but condition (4) is sufficient
to ensure the existence of solutions. The conditions (4) has been considered
by many authors, we refer the readers to [21, 33] for the semilinear elliptic
equations, and for the classical p-Laplacian case, for which ϕp(s) = |s|p−2s, to
obtain the existence of positive solutions, (4) is considered together with the
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sublinear condition of Hk at infinity with respect to ϕp:

(6) lim
s→∞

Hk(r, s)

sp−1
= 0 uniformly for r ∈ [0, R],

we refer the reader to see [4]. In our case, (6) naturally is replaced by (5).
The rest of the paper is arranged as follows. In Section 2, we analyze the

associated 0-Dirichlet problem on a ball. In Section 3, we show that all possible
solutions can be extended to +∞.

2. Positive solutions and negative solutions: a topological degree
approach

In this section, we show the existence of positive solutions and negative
solutions of the mixed boundary value problem

(7)


(rn−kϕk(v′))′ = nrn−1Hk(r, v), r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

where 1 ≤ k ≤ n, Hk : [0, R] × (−α, α) → R are continuous functions and
0 < α ≤ ∞.

First, we should realize that (7) has no solution if k is even and Hk < 0.
Therefore, if k is even, we will assume Hk is non-negative, and by this reason,
for a more general prescription function of the curvature we need to distinguish
two cases: k is odd or even.

We make the following main hypotheses:

(A1) For each k, Hk(r, s) : [0, R] × (−α, α) → R is continuous with 0 <
α ≤ ∞, and (−1)kHk(r, s) ≥ 0 for all (r, s) ∈ [0, R] × (−α, α) and
(−1)kHk(r, s) > 0 for all (r, s) ∈ (0, R]× (−α, 0) ∪ (0, α).

In the sequel, the space C := C[0, R] will be endowed with the usual supre-
mum norm ∥ · ∥∞ and the corresponding open ball of center 0 and radius ρ > 0
will be denoted by Bρ. A solution of (7) we mean a function v ∈ C1[0, R] with
∥v′∥∞ < 1 such that rn−kϕk(v′) is differentiable and (7) is satisfied.

We need the following elementary result.

Proposition 2.1. Assume that (A1). Let v be a nontrivial solution of (7).
Then

(i) if k is odd, then v > 0 on [0, R) and v is strictly decreasing;
(ii) if k is even, then either v > 0 on [0, R) and v is strictly decreasing

or v < 0 on [0, R) and v is strictly increasing, and these two solutions
must come in pairs.

Proof. From (7), we have that

(8) ϕk(v′) =
n

rn−k

∫ r

0

τn−1Hk(τ, v(τ))dτ,
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notice that (8) is well-defined thanks to condition (A1).
If k is odd, then from

(9) ϕ(v′) =
[ n

rn−k

∫ r

0

τn−1Hk(τ, v(τ))dτ
] 1

k

,

it follows that v′ ≤ 0 because the definition of ϕ and the fact (−1)kHk(r, s) ≥ 0
for each 1 ≤ k ≤ n and all (r, s) ∈ [0, R] × (−α, α), so v is decreasing. Since
v(R) = 0, we have that v ≥ 0 on [0, R]. As v is not identically zero, one has
that v(0) > 0 and, from (9) we deduce that v′ < 0 on (0, R], which ensures
that actually v is strictly decreasing and v > 0 on [0, R).

If k is even, from (8), we have that

(10) ϕ(v′) = ±
[ n

rn−k

∫ r

0

τn−1Hk(τ, v(τ))dτ
] 1

k

,

this fact together with hypothesis (A1) and use the same way as above, we can
conclude the conclusion. □

Now we construct a fixed point operator A such that its fixed points are
solutions of (7). Let us define

S : C → C,

S(v)(r) =
n

rn−k

∫ r

0

τn−1v(τ)dτ (r ∈ (0, R]), S(v)(0) = 0;

K : C → C,

K(v)(r) = −
∫ R

r

v(τ)dτ (r ∈ (0, R]).

An easy computation shows that, for any h ∈ C (h is nonnegative if k is even),
the mixed problem

(rn−kϕk(v′))′ = nrn−1h, |v′| < 1, v′(0) = v(R) = 0

has a unique solution v given by

v = K ◦ (ϕ−1)
1
k ◦ S ◦ h,

where (ϕ−1)
1
k (y) := ϕ−1(y

1
k ). Moreover, from the compactness of S and K it

follows that K ◦ (ϕ−1)
1
k ◦ S : C → C is compact. Consider now the Nemytskii

type operator associated to Hk,

NHk
: Bα → C, NHk

(v) = Hk(·, v(·)).
Clearly, NHk

is continuous and NHk
(B̄ρ) is a bounded subset of C for any

ρ < α. So, we have the following fixed point reformulation of (7).

Proposition 2.2. A function v ∈ C is a solution of (7) if and only if it is a
fixed point of the continuous nonlinear operator

A : Bα → C, A = K ◦ (ϕ−1)
1
k ◦ S ◦NHk

.

Moreover, A is compact on B̄ρ for all ρ ∈ (0, α).
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Next we assume that Hk is superlinear with respect to ϕk at 0 for each
1 ≤ k ≤ n, and we prove that the Leray-Schauder degree dLS [I − A, Bρ, 0] is
zero for all sufficiently small ρ.

Proposition 2.3. Assume that (A1). If for each 1 ≤ k ≤ n,

(11) lim
s→0

Hk(r, s)

ϕk(s)
= ∞ uniformly for r ∈ [0, R],

then there exists 0 < ρ0 < α such that

dLS [I −A, Bρ, 0] = 0 for all 0 < ρ ≤ ρ0.

Proof. From the definition of ϕ, we have that

(12) lim
s→0

ϕk(τs)

ϕk(s)
= τk < +∞ for all τ > 0,

therefore, if we let τ = 3
R in (12), then there exists m > 0 such that

(13) lim
s→0

ϕk(3s/R)

sk
<

m(R/3)n

(2R/3)n−k
.

Case 1: k is odd.
In this case, we denote ψ = ϕk, then ψ : (−1, 1) → R is also an odd,

increasing diffeomorphism and such that ψ(0) = 0. First, we show that there
exists ρ0 ∈ (0, α) such that the perturbed problem

(14)


(rn−kψ(v′))′ = nrn−1[Hk(r, v)−M ], r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0

has at most the trivial solution in B̄ρ0 , for anyM ≥ 0 and k. By contradiction,
assume that there exist sequences {Mj} ⊂ [0,∞) and {vj} ⊂ C\{0} with
∥vj∥∞ → 0, such that vj is a solution of (14) with M = Mj , for all j ∈ N.
By virtue of Proposition 2.1 one has that vj > 0 on [0, R) and vj is strictly
decreasing.

For the same m > 0 in (13) and use (A1) and (11), we can find j0 ∈ N such
that

(15) −Hk(r, vj(r)) ≥ m(vj(r))
k for all r ∈ [0, R] and j ≥ j0.

Integrating (14) with M = Mj and v = vj over [0, r] and taking into account
(15), we get that

−ψ(v′j) ≥ mS[(vj)
k].

By the oddness and monotonicity of ψ, we infer that

−v′j ≥ ψ−1(mS[(vj)
k]).
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Integrating the above inequality on [R3 ,
2R
3 ] one obtains that

vj

(R
3

)
− vj

(2R
3

)
≥

∫ 2R
3

R
3

ψ−1
( mn

rn−k

∫ r

0

τn−1(vj(τ))
kdτ

)
dr,

and, using that vj is strictly decreasing on [0, R] and vj > 0 on [0, R), it follows
that

vj

(R
3

)
≥

∫ 2R
3

R
3

ψ−1
( mn

(2R/3)n−k

∫ R
3

0

τn−1(vj(τ))
kdτ

)
dr

≥ R

3
ψ−1

(m(R/3)n(vj(R/3))
k

(2R/3)n−k

)
for all j ≥ j0. This implies that

ψ(vj(R/3)3/R)

(vj(R/3))k
≥ m(R/3)n

(2R/3)n−k
,

which together with vj(
R
3 ) → 0 contradict (13).

Therefore, (14) has no solution in B̄ρ0
, for any M > 0.

Now, let 0 < ρ ≤ ρ0 and consider the family of problems

(16)


(rn−kψ(v′))′ = nrn−1[Hk(r, v)− λ], r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

where λ ∈ [0, 1]. Let H(λ, ·) : Bα → C be the fixed point operator associated
to (16). Note that H(0, ·) = A and H : [0, 1]× B̄ρ → C is a compact homotopy.
Also the Leray-Schauder condition on the boundary

v ̸= H(λ, v) for all (λ, v) ∈ [0, 1]× ∂Bρ

is fulfilled. This implies that

dLS [I −H(0, ·), Bρ, 0] = dLS [I −H(1, ·), Bρ, 0].

From the previous arguments one has that

v ̸= H(1, v) for all v ∈ B̄ρ,

this implies that

dLS [I −H(1, ·), Bρ, 0] = 0.

Consequently,

dLS [I −A, Bρ, 0] = dLS [I −H(0, ·), Bρ, 0] = dLS [I −H(1, ·), Bρ, 0] = 0.

Case 2: k is even
In this case, let M ≥ 0, and we consider the perturbed problem

(17)


(rn−kϕk(v′))′ = nrn−1[Hk(r, v) +M ], r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.
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According to the previous proof, the key is to prove that there exists ρ0 ∈ (0, α)
such that (17) has no solution in B̄ρ0

, for any M > 0. To do this, we show that
there exists ρ0 ∈ (0, α) such that the perturbed problem (17) has at most the
trivial solution in B̄ρ0 , for any M ≥ 0 and k.

By contradiction, assume that there exist sequences {Mj} ⊂ [0,∞) and
{vj} ⊂ C\{0} with ∥vj∥∞ → 0, such that vj is a solution of (17) withM =Mj ,
for all j ∈ N. By virtue of Proposition 2.1 one has that either vj > 0 on [0, R)
and vj is strictly decreasing or vj < 0 on [0, R) and vj is strictly increasing.

For the same m > 0 in (13), and use (A1) and (11) again, we can find j0 ∈ N
such that

(18) Hk(r, vj(r)) ≥ m(vj(r))
k for all r ∈ [0, R] and j ≥ j0.

Integrating (17) with M = Mj and v = vj over [0, r] and taking into account
(18), we get that

ϕk(v′j) ≥ mS[(vj)
k].

Since k is even, therefore by the oddness and monotonicity of ϕ, we have that

(19) v′j ≥ ϕ−1
[(
mS[(vj)

k]
) 1

k
]
> 0

or

(20) −v′j ≥ ϕ−1
[(
mS[(vj)

k]
) 1

k
]
> 0.

It is easy to see that the vj in (19) denote the strictly increasing negative
solutions in [0, R), and the vj in (20) denote the strictly decreasing positive
solutions in [0, R).

Integrating (19) on [R3 ,
2R
3 ], notice that vj is strictly increasing on [0, R] and

vj < 0 on [0, R), and using the oddness and monotonicity of ϕ again, we get
that

−vj
(R
3

)
≥

∫ 2R
3

R
3

ϕ−1
[( mn

rn−k

∫ r

0

τn−1(vj(τ))
kdτ

) 1
k
]
dr

≥
∫ 2R

3

R
3

ϕ−1
[( mn

(2R/3)n−k

∫ R
3

0

τn−1(vj(R/3))
kdτ

) 1
k
]
dr

=
R

3
ϕ−1

(m(R/3)n(vj(R/3))
k

(2R/3)n−k

) 1
k

for all j ≥ j0. This implies that

ϕk(vj(R/3)3/R)

(vj(R/3))k
≥ m(R/3)n

(2R/3)n−k
,

which together with vj(
R
3 ) → 0 contradict (13).

Similarly, let us integrate (20) on [R3 ,
2R
3 ], we can obtain the same contra-

diction.
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Finally, let 0 < ρ ≤ ρ0 and we consider the family of problems

(21)


(rn−kϕk(v′))′ = nrn−1[Hk(r, v) + λ], r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

where λ ∈ [0, 1], using the same way to (16), we can get the desired result. We
complete the proof. □

Proposition 2.4. If R < α, then one has that

dLS [I −A, BR, 0] = 1.

Proof. Consider the compact homotopy

H : [0, 1]× B̄R → C, H(λ, v) = λA(v).

Notice that H(0, ·) = 0 and H(1, ·) = A. Let (λ, v) ∈ [0, 1] × B̄R be such that
H(λ, v) = v. It follows immediately that ∥v′∥∞ < 1, implying that ∥v∥∞ < R.
So,

v ̸= H(λ, v) for all (λ, v) ∈ [0, 1]× ∂BR,

which implies that

dLS [I −H(0, ·), BR, 0] = dLS [I −H(1, ·), BR, 0].

Consequently,
dLS [I −A, BR, 0] = dLS [I,BR, 0] = 1,

and the proof is completed. □

Note that in Proposition 2.4, if α = 1, then R < 1. In this case, Hk can
be singular at ±1. We consider now the case R = α = 1, and assume Hk is
sublinear with respect to ϕk at 1 and −1.

Proposition 2.5. Assume that R = α = 1. If for each 1 ≤ k ≤ n,

(22) lim
|s|→1−

Hk(r, s)

ϕk(s)
= 0 uniformly for r ∈ [0, 1],

then there exists 0 < δ1 < 1 such that

dLS [I −A, Bδ, 0] = 1 for all δ1 ≤ δ < 1.

Proof. Consider the family of problems

(23)


(rn−kϕk(v′))′ = λnrn−1Hk(r, v), r ∈ (0, 1),

|v′| < 1, r ∈ (0, 1),

v′(0) = 0 = v(1),

where λ ∈ [0, 1]. Let H(λ, ·) : B1 → C be the fixed point operator associated to
(23). Notice that H(1, ·) = A and H : [0, 1]× B̄ρ → C is a compact homotopy
for all 0 < ρ < 1. We show that there exists 0 < δ1 < 1 such that

(24) v ̸= H(λ, v) for all (λ, v) ∈ [0, 1]× (B1\Bδ1).
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By contradiction, assume that there exist sequences {λj} ⊂ [0, 1] and {vj} ⊂
C\{0} such that 1 > ∥vj∥∞ → 1 and vj = H(λj , vj). Clearly, λj > 0 for all
j ∈ N and, from Proposition 2.1 one has that: if k is odd, then vj > 0 on [0, 1)
and vj is strictly decreasing, if k is even, then either vj > 0 on [0, 1) and vj is
strictly decreasing or vj < 0 on [0, 1) and vj is strictly increasing.

Case 1: k is odd
Let {εj} ⊂ (0,∞) be such that εj → 0. From (A1) and (22), we have that

for each k,

lim
s→1−

−Hk(r, s)

ϕk(s)
= 0 uniformly for r ∈ [0, 1],

and subsequently, there exists {cj} ⊂ (0,∞) such that

(25) −Hk(r, s) ≤ εjϕ
k(s) + cj for all (r, s) ∈ [0, 1]× [0, 1).

As ∥vj∥∞ → 1, we can find a subsequence {vjs} of {vj} satisfying

(26) εjϕ
k(∥vjs∥∞) ≥ cj for all j ∈ N.

Using the oddness, monotonicity of ϕ−1 and vj = H(λj , vj), we obtain that

vj(0) ≤
∫ 1

0

ϕ−1
[( n

rn−k

∫ r

0

τn−1(−Hk(τ, vj(τ)))dτ
) 1

k
]
dr,

this together with (25) and (26), we have that

(27) ∥vjs∥∞ ≤ ϕ−1[(2 εjsϕ
k(∥vjs∥∞))

1
k ],

and then

(28) εjs ≥ 1

2
for all j ∈ N.

This contradicts εjs → 0 as j → ∞.

Case 2: k is even and vj > 0 on [0, 1)
We also let {εj} ⊂ (0,∞) be such that εj → 0. From (A1) and (22), we

know that for each k,

lim
s→1−

Hk(r, s)

ϕk(s)
= 0 uniformly for r ∈ [0, 1],

and subsequently, there exists {cj} ⊂ (0,∞) such that

(29) Hk(r, s) ≤ εjϕ
k(s) + cj for all (r, s) ∈ [0, 1]× [0, 1).

As ∥vj∥∞ → 1, we can find a subsequence {vjs} of {vj} satisfying

(30) εjϕ
k(∥vjs∥∞) ≥ cj for all j ∈ N.

From vj = H(λj , vj), we have that

v′j(r) = ϕ−1
[
−
( n

rn−k

∫ r

0

λjτ
n−1Hk(τ, vj(τ))dτ

) 1
k
]
.
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Integrating it on [0, 1] and using the oddness, monotonicity of ϕ−1, (29) and
(30), we can also obtain that (27) and (28). But we have already known this
is a contradiction.

Case 3: k is even and vj < 0 on [0, 1)
Similarly, let {εj} ⊂ (0,∞) be such that εj → 0. From (A1) and (22), we

know that for each k,

lim
s→−1+

Hk(r, s)

ϕk(s)
= 0 uniformly for r ∈ [0, R],

and subsequently, there exists {cj} ⊂ (0,∞) such that

(31) Hk(r, s) ≤ εjϕ
k(s) + cj for all (r, s) ∈ [0, 1]× [0, 1).

As ∥vj∥∞ → 1, we can find a subsequence {vjs} of {vj} satisfying

(32) εjϕ
k(∥vjs∥∞) ≥ cj for all j ∈ N.

From vj = H(λj , vj) we have that

v′j(r) = ϕ−1
[( n

rn−k

∫ r

0

λjτ
n−1Hk(τ, vj(τ))dτ

) 1
k
]
,

and using the monotonicity of ϕ−1 we get that

−vj(0) ≤
∫ 1

0

ϕ−1
[( n

rn−k

∫ r

0

τn−1Hk(τ, vj(τ))dτ
) 1

k
]
dr.

Similar to Case 1, and here using (31) and (32), we can also obtain the same
contradiction.

Summarize the conclusions of above, we know that (24) is true. It follows
that, for any δ1 ≤ δ < 1, one has that

dLS [I −H(0, ·), Bδ, 0] = dLS [I −H(1, ·), Bδ, 0].

Consequently,
dLS [I −A, Bδ, 0] = dLS [I,Bδ, 0] = 1,

and the proof is completed. □

Theorem 2.6. Assume that (A1) and (11) are fulfilled. Moreover,
(i) Assume R < α. Then if k is odd, (7) has at least one strictly decreasing

positive solution; if k is even, (7) has at least two solutions, one is strictly
decreasing and positive the other is strictly increasing and negative.

(ii) Assume R = α = 1 and (22) is fulfilled. Then if k is odd, (7) has at
least one strictly decreasing positive solution; if k is even, (7) has at least two
solutions, one is strictly decreasing and positive the other is strictly increasing
and negative.

Proof. (i) Assume that R < α and let ρ0 be given in Proposition 2.3. We pick
ρ ∈ (0,min{ρ0, R}). From Propositions 2.3, 2.4 it follows that

dLS [I −A, BR\B̄ρ, 0] = dLS [I −A, BR, 0]− dLS [I −A, Bρ, 0] = 1,
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which ensures the existence of some v ∈ BR\B̄ρ, with v = A(v). Consequently,
v is a nontrivial solution of (7). This together with Proposition 2.1, we have
the result (i).

(ii) If α = R = 1 and (22) is satisfied, then the proof follows exactly as
above but with Proposition 2.5 instead of Proposition 2.4. □

Remark 2.7. The literature [19] does not provide the information about the
sign of the solutions of (7) when k is odd. If Hk(r, 0) = 0 for r ∈ [0, R], then
v = 0 is a solution of (7), and the result of [19] is invalid. However, our Theorem
2.6 get a positive solution in this case.

Remark 2.8. It is worth to point out that the existence result established when
k is odd is consistent with the result of [4], but they only considered the case
of k = 1. On the other hand, the existence result when k is even is completely
different from the case of k is odd.

3. Existence of entire solutions

In this section, we provide some conditions to guarantee that every solution
v given by Theorem 2.6, once R is fixed, can be continued until +∞ as a
solution of (3). The ideas of this section comes from the work of de la Fuente,
Romero and Torres [19].

For each k : 1 ≤ k ≤ n, we shall make the following assumptions:

(A2) (−1)kHk(r, s) ≥ 0 for all (r, s) ∈ R+ × (−α, α) with 0 < α ≤ ∞;
(A3) (−1)kHk(r, s) > 0 for all (r, s) ∈ (0,+∞) × (−α, 0) ∪ (0, α) with 0 <

α ≤ ∞;

(A4) lim
s→0

Hk(r,s)
ϕk(s)

= ∞ uniformly for r ∈ R+;

(A5) lim
|s|→1−

Hk(r,s)
ϕk(s)

= 0 uniformly for r ∈ R+.

And we have the following results.

Theorem 3.1. Assume that (A2)-(A4) (or (A2)-(A5)) hold and k is odd. Then
for each 0 < R < α (or R = α = 1), (3) has at least one entire solution whose
k-th mean curvature equals to Hk, and the profile curve is decreasing.

Theorem 3.2. Assume that (A2)-(A4) (or (A2)-(A5)) hold and k is even.
Then for each 0 < R < α (or R = α = 1), (3) has at least two entire solutions
whose k-th mean curvature equal to Hk and the profile curve of one of them is
decreasing and the other one is increasing.

We first give the following result.

Proposition 3.3. Let (A2) and (A3) hold. Let ρ ∈ (0,∞) be fixed. Assume
that v is a nontrivial solution of

(33)


(rn−kϕk(v′))′ = nrn−1Hk(r, v), r ∈ (0, ρ),

|v′| < 1, r ∈ (0, ρ),

v′(0) = 0 = v(ρ).
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Then there exists a constant σ ∈ (0, 1) such that

(34) |v′(r)| < 1− σ, r ∈ [0, ρ].

Proof. (33) is equivalent to

|v′(r)| =
∣∣∣ϕ−1

([ n

rn−k

∫ r

0

τn−1 Hk(τ, v(τ))dτ
] 1

k
) ∣∣∣ for r ∈ (0, ρ].

This together with the definition of ϕ and the fact

max
{ n

rn−k

∫ r

0

τn−1 Hk(τ, v(τ))dτ : r ∈ (0, ρ]
}
<∞

imply that there exists σ ∈ (0, 1) such that (34) is valid. □

And, next we give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let v be a nontrivial solution of equation (3), and let
[0, b) be the maximal interval of definition of v. Suppose on the contrary that
b < +∞. We can rewrite equation (3) as a system of two ordinary differential
equations of first order v′(r) = ϕ−1

[( z(r)
rn−k

) 1
k
]
,

z′(r) = nrn−1Hk(r, v(r)),

to abbreviate, we denote (
v′

z′

)
= F(r, v, z),

where F : R+ × R× R → R2.
By the standard prolongability theorem of ordinary differential equations

[31], we have that the graph {(r, v(r), z(r)) : r ∈ [0, b)} goes out of any compact
subset of R+ × R× R.

However, by Proposition 3.3, |v′(r)| < 1− σ for r ∈ [0, b), then

|v(r)| < b(1− σ), r ∈ [0, b).

Therefore, the graph can not go out of the compact subset [0, b] × [−b(1 −
σ), b(1− σ)]× [−bn−kϕk(1− σ), bn−kϕk(1− σ)] contained in the domain of F .
This is a contradiction. Therefore, b = +∞. □

Similarly, we have the proof of Theorem 3.2.

Proof of Theorem 3.2. We rewrite equation of (3) as the first order differential
system v′(r) = ϕ−1

[
±
( z(r)
rn−k

) 1
k
]
,

z′(r) = nrn−1Hk(r, v(r)),
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use the prolongability theorem of ordinary differential equations [31], Proposi-
tion 3.3, and argue similarly to the proof of Theorem 3.1, we can obtain the
conclusion. □
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