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THE KERNELS OF THE LINEAR MAPS OF
FINITE GROUP ALGEBRAS

DAN YAN

ABSTRACT. Let G be a finite group, K a split field for G, and L a linear
map from K[G] to K. In our paper, we first give sufficient and necessary
conditions for Ker L and Ker L N Z(K|[G]), respectively, to be Mathieu-
Zhao spaces for some linear maps L. Then we give equivalent conditions
for Ker L to be Mathieu-Zhao spaces of K[G] in term of the degrees of
irreducible representations of G over K if G is a finite Abelian group or
G has a normal Sylow p-subgroup H and L are class functions of G/H.
In particular, we classify all Mathieu-Zhao spaces of the finite Abelian
group algebras if K is a split field for G.

1. Introduction

Throughout this paper, we will write K for a field without specific note and
K|[G] for the group algebra of G over K. Vg is the K-subspace of the group
algebra K[G] consisting of all the elements of K[G] whose coefficient of the
identity element 15 of G is equal to zero. It is easy to see that Vi is a subspace
of K[G] with codimension one. Let L be a linear map from K[G] to K and
L|g means restricting L to H, where H is a subgroup of G. We call H a
p’-subgroup of G if p{ |H|. Let

7:K[H = K

such that 7(>  azz) = > a,. Then w(K[H]) := Kerr, which is called the
augmentation ideal of K[H]. Tt’s equal to >, .z (h;—1)K[H] for any subgroup
H of G and w(K[H])K[G] is >, cp(hi — 1)K[G].

The Mathieu-Zhao space was introduced by W. Zhao in [7], which is a natural
generalization of ideals, motivated by a conjecture of O. Mathieu. The term
Mathieu-Zhao space was suggested and used by A. van den Essen. We recall
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the definitions of Mathieu-Zhao spaces of K[G] and the radical of a subspace
of K[G]. We say that a K-subspace M of K[G] is called a Mathieu-Zhao space
of K[G] if for any a,b € K[G] with a™ € M for all m > 1, we have ba™ € M
when m > 0. Let S be a K-subspace of K[G]. The radical of S is the set of
all elements a € K[G] such that ™ € S when m > 0. We say that a subspace
of K[G] has MZ-property if it is a Mathieu-Zhao space of K[G]. In [1], J. J.
Duistermaat and W. van der Kallen proved the Mathieu conjecture for the case
of tori, which can be re-stated as follows.

Theorem 1.1. Let z = (21,22, ...,2m) be m commutative free variables and
V' the subspace of the Laurent polynomial algebra C[z=1,2] consisting of the
Laurent polynomials with no constant term. Then V is a Mathieu-Zhao space
of C[z71, 2].

Let G be the free Abelian group Z™ (m > 1). Then the Laurent polynomial
algebra C[27!,2] can be identified with the group algebra C[G]. Under this
identification, the subspace of V in the theorem is V. In [9], W. Zhao and R.
Willems proved that Vi is a Mathieu-Zhao space of K[G] if G is a finite group
and char K = 0 or char K = p > |G|. For finite Abelian group, they proved
that if K contains a primitive d-th root of unity and char K = p, then Vg is a
Mathieu-Zhao space of K[G] if and only if char K = p > d, where |G| = p°d,
p1d. In [10], W. Zhao and the author give a sufficient and necessary condition
for Vi to be a Mathieu-Zhao space of K[G] if G is a finite group and K is a
split field for G. Since Vg is just one subspace of K[G] with codimension one,
we first want to consider all subspaces of K[G] with codimension one. Then we
want to consider all subspaces of K[G]. Hence it is natural to ask the following
question.

Problem 1.2. Let G be a finite group with |G| =n, L = (L1, La, ..., L,) and
L; be a linear map from K|[G] to K such that L;(g;) = {;; forall 1 < <,
1 < j <n. Suppose that Lq, Lo, ..., L, are linearly independent over K. Then
under what conditions on L and K, Ker L forms a Mathieu-Zhao space of the
group algebra K[G]?

It’s easy to see that if r > n, then Ker L = 0. If r < n—1, then dimg Ker L =
n —r and every codimension r subspace of K[G] is Ker L for some linear map
L. Hence Ker L are all the codimension r subspaces of K[G].

In our paper, we first prove some properties of Ker L and Ker L N Z(K|[G])
in Section 2. In Section 3, we give sufficient and necessary conditions for Ker L
and Ker L N Z(K|[G]), respectively, to be Mathieu-Zhao spaces for some linear
maps L. Then we classify all Mathieu-Zhao spaces of K[G] if G is a finite
Abelian group and K a split field for G in Section 4. Thus, we solve Problem
1.2 if G is a finite Abelian group. In Section 5, we give equivalent conditions for
Ker L to be Mathieu-Zhao spaces of K[G] in term of the degrees of irreducible
representations of G over K if G has a normal Sylow p-subgroup H and L
are class functions of G/H or Li,...,L,_q are class functions of G/H and



THE KERNELS OF THE LINEAR MAPS OF FINITE GROUP ALGEBRAS 47

Ly(gjha) = Ly(gjhs) = - -+ = Ly(gshy) for all 1 < j < d, where G = UY_,g; H,
H = {1y, ha,... h;}.

2. Some properties of KerL and KerL N Z(K|[G])

Proposition 2.1. Let L = (L1, Lo, ..., L) and L; be a linear map from K|[G|
to K such that L;(g;) = l;j foralll1 <i <r,1<j<n. K, G be as in Problem
1.2 and g1 be the identity 1 of G. Then we have the following statements:
(1) If all the l; ; are equal for all1 < i <7, 1 < j < n, then Ker L is an
ideal of K[G].
(2) If Ker L is a Mathieu-Zhao space of K[G], then there exists ig € {1,2,
...y7} such that l;, 1 # 0.

Proof. (1) Letl:=1;;foralll <i<r,1<j<n. ThenKerL = {Z?Zl ¢jg; €
K[G][1-37%_, ¢j = 0}. Since | # 0, we have that Ker L = {37, ¢;g; € K[G]|

Z?Zl ¢; = 0}. It is easy to check that Ker L is an ideal of K[G].

2)Ifliy =+ =11 =0, then 1¢ € Ker L. If Ker L is a Mathieu-Zhao
space of K[G], then Ker L = K[G]. That is, L = 0, which is a contradiction.
Then the conclusion follows. O

Remark 2.2. We can see from Proposition 2.1 that we can assume [;, 1 7# 0 for
some ig € {1,2,...,7} in the following arguments. If r =1 and 12 = l13 =
o =11, =0,111 #0, then Ker L = Vi, which is discussed in [9] and [10].

Proposition 2.3. Let R be any commutative ring and G any group. Suppose
that L = (L1, La, ..., L;) is a linear map from R|G] to R. IfKer L is a Mathieu-
Zhao space of R[G], then Ker(L|p) is a Mathieu-Zhao space of R[H|, where H
is any subgroup of G.

Proof. Assume otherwise. Then there exist u,v1,ve € R[H] such that u™ €
Ker(L|g) for all m > 1 and viu™vy ¢ Ker(L|y) for infinitely many m > 1.
Since R[H] C R[G], we have u,v1,v2 € R[G] and u™ € Ker L for all m > 1
and viu™wvy ¢ Ker L for infinitely many m > 1. Otherwise, viu™vy € Ker L N
R[H] = Ker(L|g), which is a contradiction. Hence Ker L is not a Mathieu-Zhao
space of R[G], which is a contradiction. Then the conclusion follows. O

Corollary 2.4. Let L, G be as in Problem 1.2 and K a field of characteristic p,
H a normal subgroup of G. If H is a p’-subgroup and Ker L is a Mathieu-Zhao
space of K[G], then Ker(L|g,r) is a Mathieu-Zhao space of K[G/H].

Proof. Let ¢ be the natural surjective homomorphism from K[G] to K[G/H]|
and By = 7 52 hy. Then (1- By )K[G] = Ker p and EgK[G] = K[G/H].
Thus, we have K[G] = (1 — Ey)K|[G] ® K[G/H]. Therefore, K[G/H]| can be
seen as a subalgebra of K[G]. It follows from the arguments of Proposition 2.3
that Ker(L|g/g) is a Mathieu-Zhao space of K[G/H]. O
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Proposition 2.5. Let K and L be as in Problem 1.2 and G a finite group
with G = {91,92,---,9n}, 91 = lg. If there exists 1 € {1,2,...,r} such
that det M. # 0, then Ker L is a Mathieu-Zhao space of K[G| if and only
if all elements of r(Ker L) are nilpotent, where Mr. = (I nxn ond

1 ;7j1,2) T2
Li(g;, 95,) for 1 < j1, j2 <.

Proof. (<) It follows from the definition of Mathieu-Zhao spaces.

(=) Let u € r(Ker L). Replacing u by a positive power of u, if necessary,
we may assume that ™ € Ker L for all m > 1. Since G is finite, by definition
of Mathieu-Zhao space, there exists N > 1 such that g;lum € Ker L for all
g, € Gand m > N. Let ul¥ = 2?2:1 d;,gj,.- Then we have g;lluN € Ker L
for all 1 < j; < n. That is,

dy

da
(2.1) Mp,-| . | =0

dn
for all 1 <4 < r. Since there exists i € {1,2,...,r} such that det My, #0, we
have that d; = --- = d,, = 0. That is, v = 0. Thus, u is nilpotent. O
Remark 2.6. If [;; =1land ;o =---=1;,, = 0 for some i € {1,2,...,7}, then

M, is the identity matrix. Thus, we have det M, = 1 in this case. It is easy
to see that det My, is the group determinant of G up to a sign for 1 <4 <r.

Corollary 2.7. Let K and L be as in Problem 1.2 and G a finite group with
G = {91,92,---s9n}, g1 = lg. If there exists i € {1,2,...,r} such that
det M. # 0, then Ker LNZ(K|G]) is a Mathieu-Zhao space of K[G] if and only

if all elements of r(Ker L N Z(K[G])) are nilpotent, where Myp, = (I; ; ,)nxn
and Iz ;= Lg(gj:lgh) for 1 <ji, ja <n.

;91,2

Proof. The conclusion follows from the arguments of Proposition 2.5 by replac-
ing Ker L with Ker L N Z(K|G]). O

Proposition 2.8. Let K, L and G be as in Problem 1.2. If there exists i €
{1,2,...,7r} such that det Mz. # 0, then Ker L is a Mathieu-Zhao space of
K[G] if and only if Ker L contains no nonzero idempotent of K|[G)].

Proof. (=) Let e € Ker L be an idempotent. Then e™ = e € Ker L for all
integers m > 1, whence e € r(Ker L). It follows from Proposition 2.5 that e is
nilpotent. Thus, we have e = ¢ = 0 for some N € N. Thus, the conclusion
follows.

(<) Since G is finite, we have that K[G] is algebraic over K. In particular,
the radical r(Ker L) is algebraic over K. It follows from Theorem 4.2 in [§]
that Ker L is a Mathieu-Zhao space of K[G]. O

Corollary 2.9. Let K, L and G be as in Problem 1.2. If there exists i €
{1,2,...,7} such that det M. # 0, then Ker L N Z(K|[G]) is a Mathieu-Zhao
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space of K[G] if and only if Ker LN Z(K[G]) contains no nonzero idempotent
of K[G].

Proof. The conclusion follows from the arguments of Proposition 2.8 by replac-
ing Ker L with Ker L N Z(K[G]). d

Remark 2.10. If Ker L (Ker L N Z(K|[G])) contains no nonzero idempotent of
K|[G], then Ker L (Ker L N Z(K|[G])) is a Mathieu-Zhao space of K[G] without
the condition that det My, # 0 for some i € {1,2,...,r} in Proposition 2.8
(Corollary 2.9).

Corollary 2.11. Let K be a field of characteristic p and G a p-group. Then
Ker L is a Mathieu-Zhao space of K[G].

Proof. Note that K[G] is a local K-algebra. Hence K[G] does not contain
nontrivial idempotent. Thus, Ker L contains no nonzero idempotent of K[G].
Then the conclusion follows from Proposition 2.8 and Remark 2.10. (]

Remark 2.12. Corollary 2.11 can also be deduced from Theorem 7.6 in [8].

Lemma 2.13. Let L and G be as in Problem 1.2. Then KerL = {f €
K[G]| Tr Ba; = 0 for all 1 <i <1}, where oy = 377 li,jgj_l foralll <i<r.

Proof. Let 8 =3""_, ¢jg;. Then L;i(8) = 377_, ¢jlij = Trfay for all 1 <i <
r. Hence the conclusion follows. O

Theorem 2.14. Let L and G be as in Problem 1.2 and K a field of charac-
teristic zero or a field of characteristic p and p 1 |G|. If K is a split field for
G, then

Ker L =2 {(4y,...,4;) € A] an Tr(C;;A;) =0 forall 1<i<r},
j=1
where A = My, (K) x --- x M, (K) is the product of matrices and C;; =
pjla;) € My, (K), o be as in Lemma 2.13, p; is an irreducible representation
of G, nj = p;(1) for 1 <j<s,1<i<r and s is the number of distinct (up
to isomorphism) irreducible representations of G.

Proof. Since char K = 0 or char K = p and p { |G|, we have that K[G] is
semi-simple. Since K is a split field for G, we have that

K[G]| 2 M,,(K) x M,,(K) x -+ x M, (K),

where M, (K) is the ring of n; x n; matrices over K for 1 < j < s. Let p be
the regular representation of K[G]. Then Tr(5) = 0 if and only if Tr(5(8)) =0
for all 8 € K[G]. Let p = (p1,p2,-.-,ps). Then p is a ring isomorphism from
K|[G] to A. Let 8 be any element in K[G]. Then

plaiB) = (pr(ciB), p2(if), ..., ps(@iB)) = (p1(ai)p1(B); - -, ps(ai)ps(B))-
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Suppose that

Cia 0 0
0 Cio - 0
plai) = (p1(ai), ..., ps(ai)) = . . . . €A
0 0 Cis
and
A 0 0
0 Ay - 0
P(ﬂ):(P1(5)7,Ps(ﬂ)): . . .. : €A
0 0 A
for all 1 <4 <. Then we have that
Ci,lAl 0 0
0 C»L‘,QAQ 0
pla;8) = : : . : € A.
0 0 e Gy sAs

Thus, we have the following commutative diagram:

K[G] —— My, (K) x My, (K) x -+ x M,_(K)

ﬁ(aiﬁ’)l ¢<p<aiﬁ>)l
M, (K) 0 0

0 0 e M, (K)
where ¢ is the natural isomorphism between the two algebras. Thus, we have
that Tr(p(ce;3)) = 0 if and only if Tr(é(p(a;8))) = 0. Since Tr(¢(p(a;:f))) =
ny Tr(Ci1 A1) + no Tr(Cy 2A2) + - - - + ns Tr(Cy s As), we have that Tr(e,;8) =0
if and only if ny Tr(C;1A41) + ne Tr(Ci 242) + - -+ + ng Tr(C; s As) = 0 for all
1 <4 < r. Thus, we have that Ker L 2 V', where

V:{(Al,AQ,...,AS) €A| anTI'OiJ'Aj =0 for all 1 SZS’I‘}
j=1 Il

Corollary 2.15. Let L and G be as in Problem 1.2 and K a field of char-
acteristic zero or a field of characteristic p and p t |G|. If K is a split field
for G and r = 1, then Ker L is a Mathieu-Zhao space of K[G] if and only if
niAidi + nodeds + - -+ + myMidy # 0 for all non-zero vectors d= (di,...,dt),
d; € {0,1,...,n;} for 1 < j <t, where njA\; = Trpj(a1), o is as in Lemma
2.13, p; is an irreducible representation of G for 1 < j < s and s is the
number of distinct (up to isomorphism) irreducible representations of G and

te{l,2,...,s}.
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Proof. Tt follows from Theorem 2.14 that Ker L 2 V', where V = {(Ay, ..., As)
S AI Zj’:l n; TI‘(CLJ'AJ‘) = O} and Cl,j = pj((l’l) € Mn](K) for 1 < j < s.
Let p be as in Theorem 2.14. Since a; # 0 and p is an isomorphism, we
have that p(aq) # 0. We can assume that Cy 1,...,C1 are not equal to zero
and Cy 441 =+ =C1,s =0 for some t € {1,2,...,s} by reordering the p; for
1 < j <s. It follows from Theorem 5.8.1 in [2] or Theorem 4.4 in [4] that V is a
Mathieu-Zhao space of A if and only if C ; = A;jI,,; and nyAidy+- - -+ngAdy #
0 for all nonzero vectors d = (dy, . ..,d;) and d; € {0,1,...,n;} for 1 < j < t.
Then the conclusion follows. (]

Proposition 2.16. Let L and G be as in Problem 1.2 and K a field of char-
acteristic zero or a field of characteristic p and p1|G|. If K is a split field for
G and r =1, then the following two statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) There exist py,...,us € K such that Ly = X1+ HoX2 o X
and prdy + -+ + wedy # 0 for all nonzero vectors d = (dy,ds,...,d:), d; €
{0,1,...,n,} for 1 < j <t, where x1,X2,...,Xs are the non-isomorphic irre-
ducible characters of G and p; = n~*nj\;, n; = x;(1), njA; = Trpj(aq), aq
is as in Lemma 2.13 and p; is an irreducible representation of G with character
x; for 1 < j <s, s is the number of distinct (up to isomorphism) irreducible
representations of G and t € {1,2,...,s}. In particular, Ly is a class function

of G.

Proof. (1) = (2) Since L1(B) = Tr(anB) for any 8 € K[G], where oy is as in
Lemma 2.13, we have that

nTr(a18) = Trp(a18) = Tr¢(p(cr f))

by following the arguments of Theorem 2.14, where p is as in Theorem 2.14.
Since Ker L is a Mathieu-Zhao space of K[G], it follows from Corollary 2.15
that C1; = Ajln, for A; € K and for all 1 < j < s. We can assume that
A A #0and Ay =--- = A; =0 for some ¢t € {1,2,...,s} by reordering

X1y X2y+++3 Xs-
Thus, it follows from Lemma 2.13 that

Li(8) = Tr(a1 ) = nil(nl)\l TrA; +nodo TrAg + -+ - + N Tr Ay).
Since Tr A; = x;(B) for all 1 < j < s, we have that
L1 = n  Y(nidixa + nadaxe + -+ medexe)-

It follows from Corollary 2.15 that niAidy + - - + ng\edy # 0 for all nonzero
vectors d = (di,day... di),dj €{0,1,...,n;} for 1 < j <t. Let pu; =n"'nj\;
for all 1 < j <'s. Then the conclusion follows.

(2) = (1) Since Ker L = {8 € K[G] | L1(8) = 0} = {8 € K[G] | mx1(8) +
-+ pex¢(B) = 0} and there exists A; € M, (K) such that Tr A; = x;(8) for
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all 1 <5 <t, we have that

t
Ker L ={(A1,..., A) € My, (K) X -+ x My, (K)| > p1; Tr A; = 0}.

j=1
Then the conclusion follows from Theorem 5.8.1 in [2] or Theorem 4.4 in [4]. O

Remark 2.17. To prove that Ker L is a Mathieu-Zhao space of K[G] for r =1
if nyA1dy +nodods + - - - +ngAidy # 0 for all nonzero vectors d= (di,da, ..., dy)
and d; € {0,1,...,n,} for 1 < j < ¢, we don’t need the condition that K is
a split field for G in Corollary 2.15 by following the arguments Theorem 5.8.1
in [2], because an idempotent matrix can be conjugated to a diagonal matrix
with only 0 and 1 on the diagonal over division rings.

If L = pjx; for some j € {1,2,...,t}, u; € K*, then it follows from the
arguments of Proposition 2.16 that the condition niAidy + naieds + -+ +
ngAedy # 0 in Theorem 2.14 is equivalent to n;d; # 0 for all 1 < d; < n;, which
is clearly true if char K = 0. If char K = p, then the condition is equivalent to
p > n;. To see this, we can assume that p | n;d; for some d; € {1,2,...,n,},
then p | nj or p | d;, which contradicts with p > n;. Thus, if p > n;, then
n;d; # 0 mod p for all 1 < d; < n;. Conversely, suppose that p < n;. Then let
d; =pe{l,2,...,n;}, we have that n;p = 0 mod p, which is a contradiction.
Thus, if njd; # 0 mod p for all 1 < d; < nj, then p > n;. Therefore, the
conclusion is the same as Theorem 5.1 in [8] in this situation.

3. The MZ-property of KerL and KerL N Z(K|[G])

Condition 1: Let L and G be as in Problem 1.2 and K a field of characteristic
p, H a normal p-subgroup of G, G = U;’?:lng, H = {hy, ha,..., h;} for t = p"
for some 7 € N and L;(gjho) = --- = Li(gjh;) forall 1 <i <r, 1 <j <k.

Proposition 3.1. Let L, G, K, H be as in Condition 1 and L;(§;h1) =
Li(gjho) for 1 < i <r, 1< j <k. Then KerL is a Mathieu-Zhao space of
K[G] if and only if Ker(L|g/g) is a Mathieu-Zhao space of K[G/H].

Proof. Let ¢ be the natural surjective homomorphism from K[G] to K[G/H].
Since Li(gjh1) = Li(gjhe) = --- = Li(g;jh;) for all 1 < i <r, 1 < j < k, there
exists a linear map L from K[G/H] to K such that L = ¢~ 1(L), where L =

L|g/u- Since ¢ is surjective and Ker p = w(K[H])K[G] = X°,_, (h — 1) K[G],
we have Ker ¢ C Ker L. Then it follows from Theorem 5.2.19 in [2] that Ker L
is a Mathieu-Zhao space of K|[G] if and only if Ker(L|g/g) is a Mathieu-Zhao
space of K[G/H]. O

Corollary 3.2. Let L, G, K, H be as in Condition 1, |G| = p°d, ptd, ¥ = a,
k=d and H a normal Sylow p-subgroup of G. If r =1, then the following two
statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].
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(2) There exist p1,...,pue € K such that L1 = pix1 + paXa + -+ + teXe
and pidy + -+ + pedy # 0 for all nonzero vectors d = (dy,da,...,ds), dj €
{0,1,...,n;} for 1 < j <'t, where x1,X2,...,Xs are the distinct (up to iso-
morphism) irreducible characters of K[G] and p; = d='nj\;, n; = x;(1),
niA; =Trpj(ar), on = Z?Zl lng‘l and p; is an irreducible representation of
K|[G] with character x; for 1 <j<tandte{1,2,...,s}.

Proof. Tt follows from Proposition 3.1 that Ker L is a Mathieu-Zhao space of
K|G] if and only if Ker(L|g/p) is a Mathieu-Zhao space of K[G/H]. Since
p1|G/H]|, the conclusion follows from Proposition 2.16. O

Remark 3.3. Let the notations be the same as Corollary 3.2. Then J(K[G})
w(K[H])K|[G] C Ker L if and only if L;(gjh1) = L;(gjh2) = L;(gjh;) for
al 1 <i<r 1<j<d.

Proposition 3.4. Let L, G, K, H be as in Condition 1 and hy = 1g. Then
we have the following statements:

(1) If there existsi € {1,2,...,r} such thatdet My, ,, # 0 and Ker(L|g,u)
is a Mathieu-Zhao space of K[G/H] then Ker L is a Mathieu-Zhao space of
KI[G], where My, = (lwl,z)ka and l”1 = Lg(gj*llgb) for1 <71, jo <k.

(2) If there exists 1 € {1,2,...,7} such that det My, # 0 and Ker L is
a Mathieu-Zhao space of K[G], then Ker(L|q, ) is a Mathieu-Zhao space of
K[G/H], where My = (l%,jm)an and l%-jl,z = L;(g;llgjz) for 1 <j1, ja < n.

Proof. Let ¢ be the natural surjective homomorphism from K[G] to K[G/H].

(1) Let E be an idempotent of Ker L. Then

E=g1-ai(h)+g2-a2(h) + -+ gr - ar(h),

where a;(h) € K[H], h = (h1,ha,...,h;), gj ¢ Hfor2 <j<kand g = lg/u.
Let b € H and b # 1. Then b is a p-element. Thus, it follows from Lemma
2.7 in [6] that the sum of coefficients in E of the G-conjugacy class of b is
equal to zero. Then @(E) = g1 - a1(1) + G2 - a2(1) + -+ + gi - ax(1). Let
a;(h) = aj1hi+ajoho+-- ‘+a;zh; for 1 < j < k. Then we have that a;(1) = aj;
and L;(g; - aj(h)) = aj1Li(g;) for all 1 < i < r, 1 < j < k. Thus, we
have that Ll(E) = CLllLi(l) + a21Li(§2) R alei(gk) = Ll((p(E)) for all
1 <i < r. Therefore, we have that £ € Ker L if and only if o(E) € Ker(L|g ).
That is, E = ¢(E) is an idempotent of Ker(L|g/y). Since Ker(L|g, ) is a
Mathieu-Zhao space of K[G/H], it follows from Proposition 2.8 that ¢(E) =0
in K[G/H]. That is, E € Kery = w(K[H])K[G]. It follows from Lemma
2.8 in [6] that E is nilpotent. Thus, we have £ = 0. Hence it follows from
Proposition 2.8 and Remark 2.10 that Ker L is a Mathieu-Zhao space of K[G].

(2) Since Kerp = w(K[H])K[G], it follows from Lemma 2.8 in [6] that
w(K[H])K[G] is a nilpotent ideal and K[G/H] = K[G]/Ker ¢. Let @ be any
idempotent of Ker(L|g,pr). Then there exists a u € K[G] such that @ = ¢(u).
It follows from Lemma 3.7(i) of Chapter 2 in [6] that there exists an idempotent
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e = ubu such that ¢(e) = @ for some b € K[G]. We have that e € Ker L by
following the arguments of Proposition 3.4(1). Since Ker L is a Mathieu-Zhao
space of K[G], it follows from Proposition 2.8 that e = 0. Thus, we have
@ = @(e) = 0. Hence it follows from Proposition 2.8 and Remark 2.10 that
Ker(L|g/m) is a Mathieu-Zhao space of K[G/H]. O

Proposition 3.5. Let L, G, K, H be as in Condition 1, |G| = p*d, p t d,
7 =a, k=d and H a normal Sylow p-subgroup of G, hy = 1y and K is a
split field for G/H. If there exist i,1 € {1,2,...,r} such that det My o,y #0
and det M. # 0 and v = 1, then Ker L is a Mathieu-Zhao space of K|G]|

if and only if niA1dy + nodads + -+ + nyAidy # 0 for all nonzero vectors d =
(dv,da,...,d) andd; € {0,1,...,n;} forl < j <t, wheren;\; = Trp;(ay) for

1<j<sanda; = Z?Zl l17j§;1, P1y-- - ps are distinct (up to isomorphism)
irreducible representations of K|G] and t € {1,2,...,s}, Mr,,, = (Z:l:7j1 ,)dxd
and L ;= Li(35,'95,) for 1 < ju,jo < d, M, = (L5, Jnxn and b 5 =

Ly(35,'G5) for 1 < ji,ja < .

Proof. 1t follows from Proposition 3.4 that Ker L is a Mathieu-Zhao space of
K[G] if and only if Ker(L|g,g) is a Mathieu-Zhao space of K[G/H]. Since
p1|G/H]|, the conclusion follows from Corollary 2.15. O

Theorem 3.6. Let L and G be as in Problem 1.2 and K a field of characteristic
zero or a field of characteristic p, p 1 |G|. Suppose that G = {g1,...,9n}
with g1 = 1g and x1,...,xs are the distinct (up to isomorphism) irreducible
characters of K|G]. Then we have the following statements:

(1) If there exists q;,....;,€{1,2,...,r} such that 2?21(23:1 xi, (1)xi, (g7 1))
l%,---,n»i #0 foralll < iy <idg < - <4 <s,1 € {1,2,...,s}, then
Ker LN Z(K[G]) is a Mathieu-Zhao space of K[G].

(2) If there existsi € {1,2,...,7} such that det Mrp. # 0 and Ker LNZ(K[G])
is a Mathieu-Zhao space of K[G], then there exists ¢;, .. i €{1,2,...,r} such

that 30 (31 Xa, (U)X, (97 Nlasy i 0 forall 1 < iy <ip <+ <iy < s.

Proof. (1) Let ej = %dec Xz(Dxz(g7Y)g for 1 < k < s. Then it follows
from Theorem 2.12 in [3] that ej,eq, ..., es are the primitive orthogonal idem-
potents of Z(K[G]). It follows from Theorem 3.11 in [5] that every idem-
potent of Z(K[G]) is some sum of ej,ez,...,e5. Since 2?21(2221 xi; (1) -
Xi; (gi_l))l%l,...,a‘,l ) # 0, we have that L(Iil,...,q‘,l (eil Ty Tt eil) 7£ 0 for all
1<ii<ig <+ <ip<s,1e€{l,2,...,s}. That is, any nonzero idempotent
of Z(K|G]) is not in Ker L. Thus, Ker L N Z(K|[G]) has no nonzero idempo-
tent. It follows from Corollary 2.9 and Remark 2.10 that Ker LN Z(K[G]) is a
Mathieu-Zhao space of K[G].

(2) Tt follows from Corollary 2.9 that Ker LN Z (K [G]) has no nonzero idem-
potent. Hence there exists ¢;,,...; € {1,2,...,7} such that Ly, ., (e;, +ei, +
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otey) FO0foralll <ip <idg <o < <s,1€{1,2,...,s} That is,
Z?:l(Zé‘:l Xij(l)Xij (g7,_1)) : ZQil ,,,,, it 7é 0 for all 1 < il < i2 < e < il < S,
le{l,2,...,s}. O

Proposition 3.7. Let L, G, K, H be as in Condition 1 and hy = 1. If there
existsi € {1,2,...,7} such that det Mp.\on # 0 and Ker(L|g g)NZ(K[G/H])
is a Mathieu-Zhao space of K|G/H], then Ker LN Z(K|[G]) is a Mathieu-Zhao
space of K[G], where My, , = (li,jl,z)ka and l; ;, , = L;(gj—llgjz) for1 <
Ji, J2 < k.

Proof. Let ¢ be the natural surjective homomorphism from K[G] to K[G/H].
Then it’s easy to check that if E € Z(K|[G]), then ¢(E) € Z(K|G/H]). Thus,
the conclusion follows by following the arguments of Proposition 3.4(1). O

Corollary 3.8. Let L, G, K, H be as in Condition 1, |G| = p°d, ptd, 7 = a,
k=d and H a normal Sylow p-subgroup of G and hy = 1g. If there exists i €
{1,2,...,7} such that det My, # 0 and there exists g, ,...;, € {1,2,...,r}

such that 2521(22':1 Xis (1) X (g;l)) ~lqi1 i #0 foralll <i3 <ig<---<

ip<s,1€{1,2,...,s}, then Ker LNZ(K|G]) is a Mathieu-Zhao space of K[G),
where X1, ..., Xs are the distinct (up to z'somgrphism) irredzfcible characters of
K[G) and G/H = {g1,. -, da}, My, 1o, = (G, )axa and ;5 = L;(35," 35)
for 1 <j1, jo <d.

Proof. The conclusion follows from Theorem 3.6(1) and Proposition 3.7. O

4. Mathieu-Zhao spaces of finite Abelian group algebras
Proposition 4.1. Let B= K x --- X K be a K-algebra and

V ={(a1,as,...,a,) € B] Z’y@ja]’ =0 foralll <i<r},
j=1

where v;; € K for all1 <i <r, 1< j <n. If at least one of v;; is nonzero
foralll <i<r,1<j<n, thenV is a Mathieu-Zhao space of B if and only
if viadys +viade + - 4+ Vi di, # 0 for some i € {1,2,...,r} for all nonzero
vectors d = (di,da, ... ,ds,) and dj, € {0,1} for 1 < j; <t;, t; € {1,...,n}.
Proof. We can assume that v; ; # 0 for all 1 < j <t for some i € {1,2,...,r}
and 7;; =0forall1 <7 <randt+1<j <n byreordering v, ; for 1 <i <r,
1 < j <n and then we have

t columns
—N—
OX-- - xXOxKx---xKCV

and
n—t columns

——
O0x - XxXKx0x--x0x--x0¢ZV,

where t = max{t1,ta,...,t}.
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(=) Suppose that v; 1d1 4+ vi2d2 + - - - +75.¢,dy; = 0 for some nonzero vector
d = (dv,da,...,dy;), dj; = 0or1forl < j; <t foralll <i <r, then
e = (di,...,d;,0,...,0) is an idempotent of V. Since V is a Mathieu-Zhao
space of B, we have that Be = Kdy; X --- X Kdy x 0 x --- x 0 C V, which is a

contradiction. Then the conclusion follows.
t columns

——

(<)Let I =0x---x 0xKx---xK. Then I is an ideal of B. We claim that
V/I contains no nonzero idempotent. Suppose that e is a nonzero idempotent
of V/I. Then we have e = (eq, ea,...,€), where e; =0 or 1 for 1 < j <t. Let
d= (dl, ce ,dt) =e # (0, .. .,0). Then ’}/i71d1 + ’yi72d2 + -+ 7i7tidt¢ =0 for
all 1 < i <, which is a contradiction. It follows from Theorem 4.2 in [8] that
V/I is a Mathieu-Zhao space of B/I. Then it follows from Proposition 2.7 in
[8] that V' is a Mathieu-Zhao space of B. O

Remark 4.2. In Proposition 4.1, if v; ; =0 for all 1 <4 <r, 1 < j < n, then
V = B. Clearly, V is a Mathieu-Zhao space of B.

Corollary 4.3. Let L and G be as in Problem 1.2 and K a field of charac-
teristic zero or a field of characteristic p and p t |G|. If K is a split field for
G and G is Abelian, then Ker L is a Mathieu-Zhao space of K[G] if and only
if viadi + Yieda + -+ i, di, # O for some i € {1,2,...,r} for all nonzero
vectors d = (dy,da, . ..,dy,) and dj, € {0,1} for 1 < j; < t;, t; € {1,...,n},
where 7y, j = p;lag) for alll < i <r, 1 <j <n and p; is an irreducible
representation of G for 1 < j <n and a; be as in Lemma 2.13 for 1 <i <r.

Proof. Since G is Abelian, we have that all the irreducible representations of G
are of degree one. It follows from Theorem 2.14 that Ker L = {(aq, a2, ..., a,) €
Al Y5 viga; = 0 forall 1 <4 < r}, where A is n times product of K,
Yij = pjla;) = Trpj(ey) € K forall 1 <i<r,1<j<mn. Since L # 0, we
have that at least one of +; ; is nonzero for 1 < i < r, 1 < j < n. Then the
conclusion follows from Proposition 4.1. O

Lemma 4.4. Let R be an integral domain of characteristic p and G a finite
Abelian group with |G| = p®d, p t d. Then every idempotent of R[G] is also
an idempotent of R[é], where G = H x G and |H| = p*. In particular, the
idempotent elements of R[G] are the same as the idempotent elements of R[G].

Proof. Since G is a finite Abelian group, we have that G = H x G and |G’| =d.
Let e be an idempotent of R[G]. Then e can be written as

e= Z aph
heH
with aj, € R[G] for each h € H. Since |H| = p%, we have h?" = 1 for any
m > 1, h € H, where ¢ = p®. Thus, we have
e=el" = Z a!" e R[G).
heH
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Then the conclusion follows. O

Theorem 4.5. Let L and G be as in Problem 1.2 and K a field of characteristic
p. If K is a split field for G and G is Abelian with |G| = p®d, p t d, then the
following statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) vi,1d1+vi2de+- - -+, de, 70 for somei € {1,2,...,r} for all nonzero
vectors d = (dy,dy,...,dy,) and d;j, € {0,1} for 1 < j; <t;, t; € {1,...,d},
where v; ; = pj(a;) = Trpj(ay) forl <i<r,1 <5 <dandp; is an irreducible
representation of G/H for 1 < j < d, H is a Sylow p-subgroup of G and «;
is as in Lemma 2.13 by replacing G with G/H for 1 <i <wr;li1,li2,...,lin
satisfy the following equations:

X5 (G g+ x5(F2 et + -+ + X5 (G5 i (a—1ypes1 = 0,

" X (G iz 4 x5(F2 Vipata + -+ + X5 (G5 i (a—1)per2 = 0,
4.1

X (F7 Mipe + X5 (G5 iape + -+ x5 (G5 iape =0
foralll1 < i <randt+1<j < d, where x; is the irreducible character
according to p; fort+1 < j < d and G = Uzzlng with g1 = 1g/p and
H = {hl,hg, .. .,hpa} with hl = 1H; Li(hk) = li,k and Lz(gkhq) = li,(k}—l)p“-‘rq
forall1<i<r,1<k<d, 1<q<p®andt=max{ty,ta,...,t,}.

Proof. Since G is Abelian, we have that G = H x G, where G =~ G/H and
|G| = d.
Note that
d d
Yij = Trpj(a;) = ZTer(gzzl)li,(k—l)p“-&-l = ZXj(ﬁ;Zl)li,(k—npaH

k=1 k=1
forall 1 <i<r, 1<j<d Lete; = d—lzizlxj(g,;l)gk for 1 < j <d.
Then it follows from Theorem 2.12 in [3] that ej,es,...,eq are the primitive
orthogonal idempotents of K [é] Without loss of generality, we can assume
that 3, =0forall 1 <i<r,t+1<j<dandy; #0forall 1 <j <t for
some i € {1,2,...,7} by reordering p;(c;) forall 1 <:<r, 1 <j <d.

(1) = (2) It’s easy to see that if 7, ; =0 forall 1 <i<r, t+1<j<d,
then e;1,...,eq belong to Ker(L|z) € Ker L. Thus, the ideal I generated
by ety1,...,eq belongs to Ker L. Since G is Abelian, it is easy to check that
ejgr = X;(gr)e; for all 1 < j,k < d. Hence we have e;g; € Ker L for all
t+1<j<d 1<k <d Note that ejhy € KerL for all t +1 < 5 < d,
1 < ¢ < p® Then we have equations (4.1) forall 1 <i<r,t4+1<j<d. It
follows from Proposition 2.3 that Ker(L|s) is a Mathieu-Zhao space of K|[G].
That is, Ker(L|g,q) is a Mathieu-Zhao space of K[G/H]. Since p{|G/H|, the
conclusion follows from Corollary 4.3.
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2)=1Q)If~,;=0forall 1 <i<r t+1<j<d, then €;41,...,eq €
Ker(L|s) € Ker L. It is easy to check that e;gr = x;(gr)e; and e;gphg =
X;(Gr)ejhg forallt +1 < j <d, 1<k <d, 1<gq<p® Therefore, we have
I C Ker L, where [ is an ideal generated by e;41,...,€e4. Since eq, ..., eq are the
primitive orthogonal idempotent elements of K [é] and there are 2¢ idempotent
elements in K[G], we have that any idempotent of K [G] is a sum of some of the
ej for 1 < j < d. Note that the condition that v; 1d1 +7i2d2 +-- - +7vi,1,di, 70
for some i € {1,2,...,r} for all nonzero vectors d= (dv,dg,...,d;,) and d;, €
{0, 1} is equivalent to that any sum of some of the e; is not in Ker(L|z) except
zero for all 1 < j < t. Hence any sum of some of the e; is not in Ker(L|z)
for all 1 < j < d if it contains e, for some jo € {1,2,...,t}. Thus, any sum
of some of the e; is not in Ker L for all 1 < j < d if it contains ej, for some
jo € {1,2,...,t}. Otherwise, the sum of e; belong to Ker LN K[G] = Ker(L|z)
for 1 < j < d, which is a contradiction. It follows from Lemma 4.4 that
K[G] and K[G] have the same idempotents. Hence Ker L/I has no nonzero
idempotent. It follows from Theorem 4.2 in [8] that Ker L/I is a Mathieu-Zhao
space of K[G]/I. Hence it follows from Proposition 2.7 in [8] that Ker L is a
Mathieu-Zhao space of K[G]. O

Remark 4.6. If G is cyclic in Theorem 4.5, then all the primitive orthogonal
idempotent elements of K[G] are e; = d~1(1+ (£471)I71g+. .. +&~1g41) for

1 < j < d, where £ is a d-th root of unity and G is generated by §, where G be
as in Theorem 4.5.

5. The kernels of the class functions of finite group algebras

Condition 2: Let L and G be as in Problem 1.2 and K a field of characteristic
zero or a field of characteristic p, p { |G|, La, ..., L, are class functions of G
and K is a split field for G

Proposition 5.1. Let L, G, K be as in Condition 2 and Ly is class functions
of G. Then the following statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) a;1dy + ajode + -+ + aj,di, # 0 for some i € {1,2,...,r} for all
nonzero vectors d = (di,da, ..., ds,) and dj, € {0,1,...,n;,} for 1 < j; < t,,
t; € {1,...,s}, where L; = ijl a;jx; ond x1,...,Xs are the distinct (up
to isomorphism) irreducible characters of G and n; = x;(1), a;; € K for all
1<i<r,1<j<s.

Proof. Since L1, ..., L, are class functions of G, we have L; = Z;:1 @i i X
where a; ; € K for all 1 <7 <r, 1 <j <s. Hence we have

Ker L = {p € K[G]| Zai,ij(ﬁ) =0 for all 1 <i<r}.
j=1
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Since K[G] is semi-simple and K is a split field for G, K[G] can be written
as the product of matrices over K. That is, K[G] & M,,(K) x M,,(K) x
oo X My, (K) := A. It’s easy to see that there exists A; € M,,,(K) such that
TrA; = x;(B) for 1 < j <s. Then we have

Ker L = {(A41,...,A;) € A| Zam-TrAj =0 for all 1 <i<r}.
j=1

We can assume that a; ; # 0 for all 1 < j <¢ for some ¢ € {1,2,...,r} and
a;;j =0forall 1 <i<r, t+1<j<s byreordering x; for 1 < j <s. Then
we have 0 X -+ x 0 X M, (K)x -+ x M, (K)CKerL and

Nt41

n—t columns

——
0% XMy (K)x0x--x0x-x0¢gKerL,

where t = max{ty,ta,...,t.}.

(1) = (2) Suppose that a; 1d1 + a;2d2 + - - - + a;4,d;; = 0 for some nonzero
vectors d = (dv,da,...,ds,) and d;, € {0,1,...,n;,} for 1 < j; < ¢t; for all
1<i<r. Thene=(Ay,...,A:0,...,0) is an idempotent of Ker L, where

I; O
Ak_<gk 0)

and TrAg = di for all 1 < k < t. Since Ker L is a Mathieu-Zhao space
of K[G], we have K[G|eK|[G] C KerL. That is, (M,,(K)A1M,,(K), ...,
M,,(K)AM,,(K), 0,...,0) C Ker L. Since M, (K)AM,, (K) is a submod-
ule of M,, (K) and M,, (K) is simple, we have M,, (K)AiM,, (K) = 0 or
M, (K). Without loss of generality, we can assume that A; # 0. Then we
have M, (K)A1M,,,(K) = M,,(K). That is, M,,,(K) x0x --- x 0 C Ker L,
which is a contradiction. Then the conclusion follows.

(2)= (1) Let I=0x---x0xM,,  (K)x---xM, (K). Then I is an ideal
of A. We claim that Ker L/I has no nonzero idempotent. Suppose that e is a
nonzero idempotent of Ker L/I. Then we have e = (Ay,..., A;,0,...,0) and Ay
is similar to Ay for all 1 < k < t, where Ay, is defined as above. Thus, we have
Tr Ay € {0,1,...,nt} for all 1 <k <t and at least one of Tr A}, is nonzero for
1<k<t Letd=(d,da,...,d;) = (TrA;, TrAy,..., Tr A;) # (0,0,...,0).
Then a;1d1+a;2do+- - -+a;,dy, =0forall 1 <i < r, which is a contradiction.
Hence the claim follows. It follows from Theorem 4.2 in [8] that Ker L/I is a
Mathieu-Zhao space of A/I. Then it follows from Proposition 2.7 in [8] that
Ker L is a Mathieu-Zhao space of K[G]. O

Corollary 5.2. Let K be a field and V={(A1,..., As) € A| 3j_ja;; TrA; =
0 for all1 <i <r}, where A= My, (K)x---xM,_ (K). ThenV is a Mathieu-
Zhao space of A if and only if a;1d1 + a;2d2 + - -+ + a;+,di;, # 0 for some i €
{1,2,...,r} for all nonzero vectors d= (dy,dg,...,di,) andd;, € {0,1,...,n;,}
for1 <gj, <t;, t; € {1,...,s}.
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Proof. The conclusion follows from the proof of Proposition 5.1. O

Theorem 5.3. Let L and G be as in Problem 1.2 and K a field of characteristic
p. If G has a normal Sylow p-subgroup H and L, ..., L, are class functions
of G/H and K is a split field for G/H, then the following statements are
equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) a;1dr + a;ods + -+ + aip,di, # 0 for some i € {1,2,...,r} for all
nonzero vectors d = (dv,da,...,di,) and d;; € {0,1,...,n;,} for 1 < j; <t
t; € {1,...,s}, where L; = Zj’:l a; ;X5 and xi,...,Xs ore the distinct (up to
isomorphism) irreducible characters of G/H and n; = x;(1), a;; € K for all
1<i<r, 1<j5<s.

Proof. Let |G| = p®d, p t d and G = U;l:lng, H = {hy,ha,...,h;} with

t = p®. Then we have L;(§jh1) = Li(Gjh2) = --- = Li(gjhg) for all 1 <i < r,
1 < j < d. Hence the conclusion follows from Proposition 3.1 and Proposition
5.1. O

Remark 5.4. Tt’s easy to see that Ker L = Vg if L = nyx1+naxe+- - -+nsxs and
X1,---,Xs are the distinct (up to isomorphism) irreducible characters of K[G].
If G has a normal Sylow p-subgroup H, then Theorem 5.3 implies Theorem 1.5
in [10].

Proposition 5.5. Let L, G, K be as in Condition 2. Then the following two
statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) For all0 #b = (by,...,bs) € {0,1,...,n1} x -+ x{0,1,...,ns} with
a;1b1 +a; 200 + - 4 a;sbs =0 for all 1 < i <r —1, the following are true:

(a) there exists a Ay, € K such that Cp, = A1, for allm € Ty,

(1) S e, thb + S, 1o TH(Cr) 70,

where L; = Zj’=1 @i ;Xjs X1,---,Xs are the distinct (up to isomorphism) irre-
ducible characters of K[G] and n; = x;(1), Cj = pjlar), ar = 335, lm-gj*l,
G={g1,...,9n}, p; is an irreducible representation according to x;, a; ; € K*

Joralll < i <r—-1,1<j<sand T, :={1 <m < s|by, # 0,0},
Sp:={1<m < s|by =nm}.

Proof. Since Ly, ..., L,._1 are class functions of G, we have
S
Li=) ai;x;
j=1
forall 1 <i<r—1. Sincea;; € K*forall1<i<r—1,1<7<s, we have

Ker L = {p € K[G]| iaiijj(ﬁ) =0 and L, () =0 for all 1 <i<r—1}.
j=1
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Since K[G] is semi-simple, we have K [G]= M,,, (K) X M,,(K)x---x M, (K) =
A. It’s easy to see that there exists A; € M, (K) such that Tr A; = x;(3) for
all 1 <j <s. It follows from Lemma 2.13 and Theorem 2.14 that L,.(8) = 0 if
and only if

> n; Te(Cj4;) =0,
j=1

where A; = p;(8) and C; = p;(ay), o = Z;;l lmgj_1 forall 1 <j<s.
(2) = (1) Since Ker L 2V and

V:{(Al,...,AS)€A|Zai’jTI'Aj:O and ZHJTI"(CJAJ):O
j=1 j=1
for all 1 <i<pr—1}

and for all 0 # b = (by,ba,...,bs) € {0,1,...,n1} x --- x {0,1,...,ns} with
a;1b1 +a; 200 + -4+ a; b5 =0 for all 1 <7 <r —1, we have that:

(a) there exists a A, € K such that Cy,, = A I, for all m € Ty,

(B) D mmer, MmAmbm + 2 es, om Tr(Cr) # 0.

Now suppose that V' contains a nonzero idempotent (E1,..., Es) and b; =
Tr(E;) for 1 < j < s. Then we have that a;1b1 + -+ + a; b5 = 0 for all
1<i<r—1and (a), (b) hold. Hence we have

Z N Am bm + Z ny Tr(Cy,) # 0,

meTy, meSy

which contradicts with (Ei,...,E;) € V. Thus, V does not contain any
nonzero idempotent and hence is Mathieu-Zhao space of K[G]. Then the con-
clusion follows.

(1) = (2) Suppose that Ker L is a Mathieu-Zhao space of K[G] and there
exists a0 £ b= (by,...,bs) €{0,...,n1} x - x{0,...,ns} with a; 161 +---+
a; sbs = 0 for all 1 <4 <r —1 such that (a) does not hold. Then there is an
m € T; such that C,, is not a multiple of the identity matrix. Let E; be the
matrix with ones on the first b; diagonal entries and zeros on all other entries
for all 1 < j < s with j # m. Then E; is an idempotent of rank b;. It follows
from Lemma 4.6 in [4] that there exists an idempotent E,, of rank b,, # 0,n,,
such that

Tr(Cp By = —ni > n; Te(CyE;).
" j#Em

Since Tr E; = rank E; for all 1 < j < s, we have that (Eq,E»,...,E;) is a
nonzero idempotent which contained in V. This contradicts with that V is a
Mathieu-Zhao space of A.

Suppose that there exists a 0 # b = (by,...,bs) € {0,...,n1} x --+ %
{0,...,ns} with a;1b1 + --- 4+ a;sbs = 0 for all 1 < ¢ < r — 1 such that
(1) does hold but (2) does not hold. Let E; be the matrix with ones on the
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first b; diagonal entries and zero on all other entries. Then Ej is an idempotent
of rank b;. Since Tr E; = rank E; for all 1 < j < s, we have

Z N A O, + Z ny, Tr(Cy) =0,

meTy, meSy

which exactly means that (Fq,..., Es) is contained in V. As b # 0, we have
that V contains a nonzero idempotent, which contradicts with that V is a
Mathieu-Zhao space of A. Then the conclusion follows. O

We can remove the condition that a; ; € K* forall1<i<r—-1,1<j5<s
in Proposition 5.5 by introducing a new set X := {a; ;| there exists i; €
{1,2,...,7 — 1} such that a;; ; #0 for 1 <i <7 —1,1<j <s}. Then we
have the following theorem.

Theorem 5.6. Let L, G, K be as in Condition 2. Then the following two
statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) For all 0 # b= (biy, by, -, bk,) € {0,1, ... np, } x - x {0,1,...,np, }
with a; g, b, + Qi kybry + -+ + @ik, br, =0 for all 1 <i < r —1, the following
are true:

(a) there exists a A\, € K such that Cp, = A1, for allm e T, N X,

(b) ZmeTbﬂX N Ambm + ZmeSbOX N Tr(Cry) # 0,

where L; = E;Zl @i jXj, X1,---,Xs are the distinct (up to isomorphism) ir-
reducible characters of K[G|, a;; € K and n; = x;(1), C; = pj(ay), ap =
2?21 lm»gj*l, G = {g1,..-,9n}, p; is an irreducible representation according

toxjforalll <i<r—1,1<j<sandTy :={1 <m<s|by # 0,0},
Sy = {1 <m < s|bp = nm}, X = {a;;]| there exists i; € {1,2,...,r —
1} such that a;; ; #0 for 1 <i<r—1,1<j <s}={ajk,...,a;k for 1<
i<r-—1}

Proof. The conclusion follows by following the arguments of Proposition 5.5.
O

Proposition 5.7. Let L and G be as in Problem 1.2 and K a field of charac-
teristic p, |G| = p®d, H a normal Sylow p-subgroup of G and G = U?’:1§jH7
H = {1y, ha,...,h;} for t = p®. Suppose that L,.(G;h2) = L.(gjhs) = --- =
L. (gjh;) for all 1 < j < d and K is a split field for G/H. If there exist
i€ {1,2,...,r} such that det Mr., ,, # 0 and det My, # 0 and L1, ..., Ly
are class functions of G/H, then the following two statements are equivalent:

(1) Ker L is a Mathieu-Zhao space of K[G].

(2) For all 0 7’5 b= (bk17bk27--~7bkt) S {O,l,...,nkl} X oo X {O,l,...,nkt}
with a; g, by, + @i bk, + -+ + @i g,br, =0 for all 1 <i < r—1, the following
are true:

(a) there exists a Ay, € K such that Cp, = App I, for allm e T,N X,
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(b) ZmeTme nm)‘mbm + Zmesmx N Tr(Cm) 7& 07
where L; = Z;zl @i jXjs X1,---,Xs ore the distinct (up to isomorphism) ir-
reducible characters of K[G|, a;; € K and n; = x;(1), C; = pj(ay), ap =

ijl lw@j_l, G/H ={g1,...,8a}, p; s an irreducible representation accord-
ingtox; foralll <i<r—1,1<j5<s cmdMLz‘G/H, ML2 be as in Proposition

3.4; Ty, Sy, X be as in Theorem 5.6.

Proof. Since Lq,...,L,_1 are class functions of G/H, we have L;(gjlg) =
Li(gjho) = --- = Li(g;h;) for all 1 <i < r—1. Then it follows from Proposition
3.4 that Ker L is a Mathieu-Zhao space of K[G] if and only if Ker(L|g/x) is a
Mathieu-Zhao space of K[G/H]. Since p t |G/H]|, the conclusion follows from
Theorem 5.6. O
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