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A FUNCTION-FIELD ANALOGUE OF THE GOLDBACH

COUNTING FUNCTION AND THE ASSOCIATED

DIRICHLET SERIES

Shigeki Egami and Kohji Matsumoto

Abstract. We consider a function-field analogue of Dirichlet series as-
sociated with the Goldbach counting function, and prove that it can,

or cannot, be continued meromorphically to the whole plane. When it

cannot, we further prove the existence of the natural boundary of it.

1. Introduction

Let N be the set of positive integers, N0 = N ∪ {0}, Z the set of rational
integers, Q the set of rational numbers, R the set of real numbers, and C the
set of complex numbers.

In their study [8] on Goldbach’s problem, Hardy and Littlewood considered
the function

G2(n) =
∑

k,m∈N
k+m=n

Λ(k)Λ(m) (n ∈ N),(1.1)

where Λ(·) denotes the von Mangoldt function. Later, Fujii [4–6] studied the
average

∑
n≤X G2(n) extensively.

Inspired by Fujii’s work, the authors [3] considered the Dirichlet series

Φ2(s) =

∞∑
n=1

G2(n)

ns
,(1.2)

which is absolutely convergent in the region ℜs > 2. In [3] it is proved that,
under the Riemann hypothesis (RH) for the Riemann zeta-function ζ(s), Φ2(s)
can be continued meromorphically to ℜs > 1. Then the authors raised the
following.
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Conjecture 1.1. The line ℜs = 1 is the natural boundary of Φ2(s).

Let I be the set of all imaginary parts of non-trivial zeros of ζ(s). A well-
known conjecture predicts that the positive elements of I would be linearly
independent overQ. The following statement is a special case of this conjecture:

(A) If γj ∈ I (1 ≤ j ≤ 4) and γ1 + γ2 = γ3 + γ4( ̸= 0), then (γ3, γ4) equals
(γ1, γ2) or (γ2, γ1).

In [3], the authors introduced the following quantitative version of Conjec-
ture (A):

(B) There exists a constant α, with 0 < α < π/2, such that if γj ∈ I
(1 ≤ j ≤ 4), γ1+γ2 ̸= 0, and (γ3, γ4) is neither equal to (γ1, γ2) nor to (γ2, γ1),
then

|(γ1 + γ2)− (γ3 + γ4)| ≥ exp(−α(|γ1|+ |γ2|+ |γ3|+ |γ4|))(1.3)

holds.
In [3] the authors showed that Conjecture 1.1 can be deduced if we assume

the RH and Conjecture (B). Bhowmik and Schlage-Puchta [2] proved that
Conjecture (B) is actually not necessary to deduce Conjecture 1.1; it is enough
to assume the RH and Conjecture (A).

The aim of the present note is to consider the function-field analogue of the
above results. The situation becomes much simpler, so this is a kind of “toy
model”. However it is still interesting because, in the function-field case, we
can give an unconditional proof of the existence or non-existence of the natural
boundary.

In what follows, the notation f ≪ g will be used in the same meaning as
f = O(g). When the implied constant depends on some parameter a, we write
f ≪a g. Sometimes we also use the notation g ≫ f and g ≫a f .

Acknowledgment. The results of the present paper were presented at the
international conference “Algebraic and Analytic Aspects of L-functions”, held
at Incheon, Korea (January 2023). The second named author expresses his
sincere gratitude to the organizers of the conference for their kind invitation.
The authors are also indebted to the anonymous referee for careful reading
of the manuscript and useful comments; especially he/she pointed out some
inaccuracies included in the original manuscript.

2. Statement of results

Let Fi (i = 1, 2) be finite fields whose cardinalities are qi = prii with primes
p1, p2. Let Ki be function fields of one variable over Fi. The zeta-function of
Ki is defined by

ζKi
(s) =

∑
Ai

(NAi)
−s =

∏
Pi

(1− (NPi)
−s)−1,(2.1)

where s is a complex variable, Ai runs over all effective divisors of Ki, Pi runs

over all primes of Ki, and NAi = qdegAi

i . The above series expression can
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be rewritten as
∑∞

n=1 ℓi(n)q
−ns
i , where ℓi(n) denotes the number of effective

divisors of degree n in Ki. Therefore (2.1) is absolutely convergent in the
domain ℜs > 1, because

ℓi(n) = O(qni )(2.2)

holds (see [9, p. 52]).
It is well known that the above zeta-function can be written as ζKi

(s) =
ZKi

(q−s
i ), with (putting ui = ui(s) = q−s

i )

ZKi
(ui) =

LKi
(ui)

(1− ui)(1− qiui)
, LKi

(ui) =

2gi∏
j=1

(1− πjiui),(2.3)

where gi is the genus of Ki and πji ∈ C, |πji| = q
1/2
i (see, for example, [9,

Theorems 5.9 and 5.10]).
From (2.1) it easily follows that

ζ ′Ki

ζKi

(s) = −
∑
Pi

∞∑
h=1

log(NPi)

(NPi)hs
= −

∑
Ai

ΛKi
(Ai)

(NAi)s
,(2.4)

where ΛKi
(Ai) is the function-field analogue of the von Mangoldt function

defined by

ΛKi
(Ai) =

{
log(NPi) if Ai = hPi with some Pi, h,

0 otherwise.
(2.5)

Using (2.5) we now define the analogue of (1.1) by

GFF
2 (n) =

∑
A1,A2

NA1+NA2=n

ΛK1
(A1)ΛK2

(A2).(2.6)

This function may be regarded as the counting function of an analogue of the
Goldbach problem in function fields, that is, how frequently n ∈ N can be
written as n = NP1+NP2, where Pi are primes of Ki (i = 1, 2). The Dirichlet
series associated with (2.6) is

ΦFF
2 (s) =

∞∑
n=1

GFF
2 (n)

ns
.(2.7)

We first notice the following.

Proposition 2.1. The Dirichlet series (2.7) is absolutely convergent in the
region ℜs > 2.

The main results in the present article are as follows.

Theorem 2.2. If p1 = p2, then ΦFF
2 (s) can be continued meromorphically to

the whole plane C.

Theorem 2.3. If p1 ̸= p2, then the vertical line ℜs = 2 is the natural boundary
of ΦFF

2 (s).
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First we will show Proposition 2.1 in Section 3. Then, after some prepara-
tions in Section 4, we will prove the main theorems in Section 5.

3. Proof of Proposition 2.1

By the definition (2.5) it is clear that ΛK1(A1)ΛK2(A2) ̸= 0 only when
A1 = h1P1 and A2 = h2P2 with h1, h2 ∈ N and primes P1, P2. Therefore

ΦFF
2 (s) =

∑
P1,P2

∞∑
h1,h2=1

log(NP1) log(NP2)

(N(h1P1) +N(h2P2))s
(3.1)

=
∑
P1,P2

∞∑
h1,h2=1

degP1 log q1 · degP2 log q2

(q
deg(h1P1)
1 + q

deg(h2P2)
2 )s

≤
∞∑

k1,k2=1

∑
P1,P2,h1,h2

deg(h1P1)=k1

deg(h2P2)=k2

k1 log q1 · k2 log q2
(qk1

1 + qk2
2 )s

.

The number of the pairs (hi, Pi) (i = 1, 2) satisfying deg(hiPi) = ki is O(qki
i )

by (2.2). Therefore the right-hand side of (3.1) is

≪q1,q2

∞∑
k1,k2=1

k1q
k1
1 · k2qk2

2

(qk1
1 + qk2

2 )ℜs
≤

∞∑
k1=1

k1

q
k1(ℜs/2−1)
1

∞∑
k2=1

k2

q
k2(ℜs/2−1)
2

,(3.2)

which converges for ℜs > 2. The assertion of Proposition 2.1 follows.

4. An integral expression

We first recall the information on the distribution of zeros and poles of
ζKi

(s). From the expression (2.3) we find that the poles of ζKi
(s) are given by

ui = 1 and qiui = 1, that is, they can be written as

ρ(ai) =
2aiπ

√
−1

log qi
, ρ(bi) = 1 +

2biπ
√
−1

log qi
(ai, bi ∈ Z).(4.1)

These are not cancelled by the numerator, hence indeed poles and they are all
simple; for ai = 0 and bi = 0 this fact is in [9, Theorem 5.9], and then the
fact for other values of ai and bi follows because ζKi

(s) is periodic in ℑs with
period 2π

√
−1/ log qi. (As for the residue at s = 1, see [9, p. 309, formula (4)].)

On the other hand, the zeros are given by πjiui = 1. Since |πji| = q
1/2
i , we

may write πji = q
1/2
i exp(

√
−1 arg πji). Then a zero s should be a solution of

q
1/2
i exp(

√
−1 arg πji − s log qi) = 1,

and hence zeros can be written as

ρ(cji) =
1

2
+

√
−1

log qi
(arg πji + 2cjiπ) (cji ∈ Z, 1 ≤ j ≤ 2gi).(4.2)
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Differentiating (2.3) we find that

ζ ′Ki

ζKi

(s)(4.3)

= − ui log qi
(dLKi

(ui)/dui)(1− ui)(1− qiui) + LKi
(ui)(1 + qi − 2qiui)

LKi
(ui)(1− ui)(1− qiui)

,

hence all the poles and zeros of ζKi
(s) listed above are the simple poles of

ζ ′Ki
/ζKi

(s).

Now we show an integral expression of ΦFF
2 (s). First assume ℜs > 2 + 2ε

with a small ε > 0. Then

ΦFF
2 (s) =

∞∑
n=1

1

ns

∑
A1,A2

NA1+NA2=n

ΛK1(A1)ΛK2(A2)(4.4)

=
∑

A1,A2

ΛK1
(A1)ΛK2

(A2)

(NA1 +NA2)s

=
∑

A1,A2

ΛK1
(A1)ΛK2

(A2)

(NA1)s

(
1 +

NA2

NA1

)−s

.

Here we quote the Mellin-Barnes integral formula

(1 + λ)−s =
1

2π
√
−1

∫
(α)

Γ(s− z)Γ(z)

Γ(s)
λ−zdz,(4.5)

where s, λ ∈ C, λ ̸= 0, | arg λ| < π, ℜs > 0, 0 < α < ℜs, and the path of
integration is the vertical line from α−

√
−1∞ to α+

√
−1∞ (see [10, Section

14.51]).

Remark 4.1. Recall that the Mellin-Barnes transformation of the function (1+
λ)−s is

ϕ(z) =

∫ ∞

0

λz−1(1 + λ)−sdλ.

Changing the variable by (1 + λ)ν = 1, we find

ϕ(z) =

∫ 1

0

(
1

ν
− 1

)z−1 (
1

ν

)−s
dν

ν2
=

∫ 1

0

(1− ν)z−1νs−z−1dν

= B(s− z, z) =
Γ(s− z)Γ(z)

Γ(s)
,

hence (4.5) is an inverse Mellin-Barnes transform.

Using this formula with λ = NA2/NA1, we find that the right-hand side of
(4.4) is

=
∑

A1,A2

ΛK1(A1)ΛK2(A2)

(NA1)s
1

2π
√
−1

∫
(α)

Γ(s− z)Γ(z)

Γ(s)

(
NA2

NA1

)−z

dz
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=
1

2π
√
−1

∫
(α)

Γ(s− z)Γ(z)

Γ(s)

∑
A1

ΛK1(A1)

(NA1)s−z

∑
A2

ΛK2(A2)

(NA2)z
dz.

The absolute convergence of the two infinite series on the right-hand side can
be verified if we choose α = 1 + ε. Then we have

ΦFF
2 (s) =

1

2π
√
−1

∫
(α)

Γ(s− z)Γ(z)

Γ(s)

ζ ′K1

ζK1

(s− z)
ζ ′K2

ζK2

(z)dz.(4.6)

Let N ∈ N, and we shift the path of integration to ℜz = −N + ε. Since
ζ ′Ki

/ζKi
(z) is periodic with respect to ℑz, while Stirling’s formula

|Γ(z)| = (2π)1/2|ℑz|ℜz−1/2e−π|ℑz|/2 (1 +O(|ℑz|−1
)

implies that Γ(s − z), Γ(z) are of exponential decay with respect to |ℑz|, we
see that the above shifting is possible. The relevant poles of the integrand are

(A) z = 0,−1,−2, . . . ,−(N − 1) coming from Γ(z),
(B) z = ρ(a2), ρ(b2), ρ(cj2) (a2, b2, cj2 ∈ Z, 1 ≤ j ≤ 2g2) coming from

(ζ ′K2
/ζK2

)(z).
The point z = 0 is included in both (A) and (B). Therefore z = 0 is a double

pole, and its residue is

R0(s) =
ζ ′K1

ζK1

(s)

(
Γ′

Γ
(s)− Γ′(1) +

(ζ ′K1
/ζK1

)′

ζ ′K1
/ζK1

(s) +
C0,K2

C−1,K2

)
,

where C0,K2
, C−1,K2

are determined by the Laurent expansion

ζK2
(s) =

C−1,K2

s
+ C0,K2

+ · · ·

at s = 0. All other poles listed in (A) and (B) are simple. Therefore, shifting
the path and counting the residues we obtain

ΦFF
2 (s) = Σ1(s) + Σ1/2(s) + Σ0(s) +R0(s) + ΣN (s) + IN (s)(4.7)

for ℜs > 2 + 2ε, where

Σ1(s) = −
∑
b2∈Z

Γ(s− ρ(b2))Γ(ρ(b2))

Γ(s)

ζ ′K1

ζK1

(s− ρ(b2)),

Σ1/2(s) = −
2g2∑
j=1

∑
cj2∈Z

Γ(s− ρ(cj2))Γ(ρ(cj2))

Γ(s)

ζ ′K1

ζK1

(s− ρ(cj2)),

Σ0(s) = −
∑

a2∈Z\{0}

Γ(s− ρ(a2))Γ(ρ(a2))

Γ(s)

ζ ′K1

ζK1

(s− ρ(a2)),

ΣN (s) =

N−1∑
n=1

(
−s

n

)
ζ ′K1

ζK1

(s+ n)
ζ ′K2

ζK2

(−n),

and

IN (s) =
1

2π
√
−1

∫
(−N+ε)

Γ(s− z)Γ(z)

Γ(s)

ζ ′K1

ζK1

(s− z)
ζ ′K2

ζK2

(z)dz.
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5. Proof of theorems

Now we consider how to continue the right-hand side of (4.7) meromorphi-
cally to some wider region. The (possible) poles of the terms on the right-hand
side are given as follows (where ai, bi, cji ∈ Z, 1 ≤ j ≤ 2gi).

• The poles of Σ1(s): s = ρ(b2) − n (n ∈ N0), ρ(a1) + ρ(b2), ρ(b1) + ρ(b2),
and ρ(cj1) + ρ(b2).

• The poles of Σ1/2(s): s = ρ(cj2)−n (n ∈ N0), ρ(a1)+ρ(cj2), ρ(b1)+ρ(cj2),
and ρ(cj1) + ρ(cj2).

• The poles of Σ0(s): s = ρ(a2)− n (n ∈ N0), ρ(a1) + ρ(a2), ρ(b1) + ρ(a2),
and ρ(cj1) + ρ(a2).

• The poles of ΣN (s): s = ρ(a1)− n, ρ(b1)− n, ρ(cj1)− n (1 ≤ n ≤ N − 1).
• The poles of R0(s): The poles of the term (ζ ′K1

/ζK1
)′/(ζ ′K1

/ζK1
)(s) are

coming from the zeros and poles of (ζ ′K1
/ζK1)(s). The numerator of (4.3)

(for i = 1) is a polynomial in u1 of order 2g1 + 1. Denote the roots of this
polynomial by wk = |wk| exp(

√
−1 argwk) (1 ≤ k ≤ 2g1 + 1). Then the zeros

of (ζ ′K1
/ζK1

)(s) are of the form

ρ(dk1) =
−1

log q1
(log |wk|+

√
−1(argwk + 2dk1π))(5.1)

(dk1 ∈ Z, 1 ≤ k ≤ 2g1 + 1).

The poles of (ζ ′K1
/ζK1

)(s) are coming from the zeros and the poles of ζK1
(s),

which we have already determined. Therefore, the poles of R0(s) are s = −n
(n ∈ N0), ρ(a1), ρ(b1), ρ(cj1), and ρ(dk1).

Proof of Theorem 2.2. Now we consider the case p1 = p2, which we denote by
p. The above list implies that the right-hand side of (4.7) has infinitely many
(possible) poles, but they are distributed discretely. In fact, in the horizontal
direction they are located periodically with period 1, while in the vertical di-
rection, since log qi = ri log p (i = 1, 2), the poles are distributed periodically
with period 2π/r1 log p or 2π/r2 log p or 2π/[r1, r2] log p (where [r1, r2] is the
minimal common multiple of r1 and r2). These poles are therefore not obstacles
when we consider the analytic continuation.

The terms Σ1(s), Σ1/2(s), and Σ0(s) are infinite series, but again using the
periodicity of ζ ′K1

/ζK1 in the vertical direction and Stirling’s formula, it is easy
to see that these infinite series are absolutely and uniformly convergent in any
compact subset of C which does not include the poles.

Lastly, the integrand of IN (s) does not have poles if ℜs > 1−N+ε. Therefore
we may continue IN (s) holomorphically to the region ℜs > 1−N + ε, and in
this region ΦFF

2 (s) is meromorphic. Since N is arbitrary, we complete the proof
of Theorem 2.2. □

We encounter a totally different situation when p1 ̸= p2. In the above list of
the poles, the real part of the poles of the form ρ(b1) + ρ(b2) is 2. Let

K = {ρ(b1) + ρ(b2) | b1, b2 ∈ Z}.
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We first prove:

Lemma 5.1. When p1 ̸= p2, the set K is dense in the vertical line {s | ℜs = 2}.

Proof. Since

ρ(b1) + ρ(b2) = 2 + 2π
√
−1

(
b1

r1 log p1
+

b2
r2 log p2

)
= 2 +

2π
√
−1

r1 log p1

(
b1 + b2 ·

r1 log p1
r2 log p2

)
,

it is enough to show that the set

K′ =

{
b1 + b2 ·

r1 log p1
r2 log p2

∣∣∣∣ b1, b2 ∈ Z
}

is dense in R. Since p1 ̸= p2, the number (r1 log p1)/(r2 log p2) is irrational.
Therefore the set {b2 · (r1 log p1)/(r2 log p2) | b2 ∈ Z} (mod 1) is dense in [0, 1),
and hence K′ is dense in R. □

Here we quote the following lemma due to Gel’fond [7]:

Lemma 5.2. Let α1, α2 be non-zero algebraic numbers with heights at most A,
β1, β2 be algebraic numbers with heights at most B(≥ 2), and Λ = β1 logα1 +
β2 logα2. Then either Λ = 0 or |Λ| > B−C , where C > 0 depends only on the
degrees of αis, βis and A.

Remark 5.3. Recall that, for an algebraic number α, the height H(α) is the
maximum of the absolute values of the relatively prime integer coefficients in
the minimal defining polynomial of α. In particular, if α ∈ Z, then obviously
H(α) = max{1, |α|}.

This lemma is now a special case of a more general theorem; see [1, Theorem
3.1].

Using Lemma 5.2 we obtain the following lemma, which is the key fact in
the proof of Theorem 2.3.

Lemma 5.4. For any element ρ(b01) + ρ(b02) ∈ K, the sum Σ1(s) tends to
infinity as s tends to ρ(b01) + ρ(b02) from the right.

Proof. From (4.3), for any b2 ∈ Z we have

ζ ′K1

ζK1

(s− ρ(b2))

= − u1(s− ρ(b2)) log q1
dLK1(u1(s− ρ(b2)))/du1(s− ρ(b2))

LK1
(u1(s− ρ(b2)))

− u1(s− ρ(b2)) log q1
1 + q1 − 2q1u1(s− ρ(b2))

(1− u1(s− ρ(b2)))(1− q1u1(s− ρ(b2)))

= B∗(s, b2) +B∗∗(s, b2),
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say, where u1(s− ρ(b2)) = q
−s+ρ(b2)
1 . Accordingly we divide

Σ1(s) = −
∑
b2∈Z

Γ(s− ρ(b2))Γ(ρ(b2))

Γ(s)
B∗(s, b2)(5.2)

−
∑
b2∈Z

Γ(s− ρ(b2))Γ(ρ(b2))

Γ(s)
B∗∗(s, b2)

= − Σ∗
1(s)− Σ∗∗

1 (s),

say. Put s = ρ(b01) + ρ(b02) + η with a small positive number η. Then u1(s −
ρ(b2)) = q

−ρ(b01)−ρ(b02)+ρ(b2)−η
1 , whose absolute value is q−1−η

1 , so we see that
LK1

(u1(s−ρ(b2))) ̸= 0, and hence B∗(s, b2) remains bounded as η → 0. There-
fore, again noting Stirling’s formula we see that Σ∗

1(s) remains finite as η → 0.

Consider B∗∗(s, b2). When b2 = b02, we have u1(s− ρ(b02)) = q
−ρ(b01)−η
1 , and

so

1− q1u1(s− ρ(b02)) = 1− q
−2b01π

√
−1/ log q1−η

1 = 1− q−η
1 = η log q1 +O(η2).

This implies that B∗∗(s, b02) diverges as η → 0.
When b2 ̸= b02, we have

1− q1u1(s− ρ(b2)) = 1− q
−ρ(b01)−ρ(b02)+ρ(b2)−η
1(5.3)

= 1− q
2π

√
−1(b2−b02)/ log q2−η

1

= 1− exp

(
2π

√
−1(b2 − b02)

log q1
log q2

)
q−η
1

= 1− exp

(
2π

√
−1

(
(b2 − b02)

log q1
log q2

−m

))
q−η
1 ,

where m is the integer nearest to (b2 − b02) log q1/ log q2. Let

X = (b2 − b02)
log q1
log q2

−m =
1

log q2
((b2 − b02) log q1 −m log q2).

Since now b2 ̸= b02, we have X ̸= 0. Therefore, applying Lemma 5.2 to the
above with α1 = q1, α2 = q2, β1 = b2 − b02 and β2 = −m, we obtain

|X| > 1

log q2
B−C

with C = C(q1, q2) > 0, where B is the maximum of the heights of b2 − b02 and
m. Since m ≤ (b2 − b02) log q1/ log q2 + 1, in view of Remark 5.3 we find that

B ≤ (|b2|+ |b02|)
(
1 +

log q1
log q2

)
+ 1,

and hence

|X| ≫q1,q2 (|b2|+ |b02|)−C .(5.4)
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The right-hand side of (5.3) is

= 1− exp(2π
√
−1X)q−η

1 = q−η
1 (qη1 − exp(2π

√
−1X)).(5.5)

Since qη1 ≥ 1, we find that

|qη1 − exp(2π
√
−1X)| ≥ |1− exp(2π

√
−1X)|,

so (5.5) (and hence (5.3)) is

≫ q−η
1 |1− exp(2π

√
−1X)| ≫q1 |X|.

Combining this estimate with (5.4), we obtain

|1− q1u1(s− ρ(b2))| ≫q1,q2 (|b2|+ |b02|)−C .(5.6)

Therefore the total contribution of the terms b2 ̸= b02 to Σ∗∗
1 (s) is

≪
∑
b2 ̸=b02

∣∣∣∣Γ(s− ρ(b2))Γ(ρ(b2))

Γ(s)

∣∣∣∣ · (|b2|+ |b02|)C ,

which is absolutely convergent by virtue of Stirling’s formula.
The conclusion is that, on the right-hand side of (5.2), only the term in

Σ∗∗
1 (s) corresponding to b02 is divergent as η → 0, while the other sums remain

bounded, which implies the assertion of the lemma. □

Remark 5.5. In the above proof, a key inequality is (5.4), which may be re-
garded as the (unconditional !) function-field analogue of Conjecture (B) men-
tioned in Section 1.

Proof of Theorem 2.3. Now we complete the proof of Theorem 2.3. Lemma 5.1
and Lemma 5.4 imply that K is dense in {s | ℜs = 2}, and all points of K are
singularities of Σ1(s). That is, {s | ℜs = 2} is the natural boundary of Σ1(s).
On the other hand, it is easy to see that Σ1/2(s), Σ0(s), ΣN (s) have no pole
on {s | ℜs = 2}.

Therefore, if we can see that R0(s) also has no pole on {s | ℜs = 2}, then
the set of singularities of Σ1(s) on {s | ℜs = 2} is exactly the set of singularities
of ΦFF

2 (s), and hence the conclusion follows.
So far we cannot exclude the possibility of the existence of poles of R0(s)

on {s | ℜs = 2}, but even if so, those poles would distribute discretely (see
Remark 5.6 below), and hence it does not affect the conclusion. □

Remark 5.6. The term R0(s) has poles of the form ρ(dk1), whose real part is
given by −(log |wk|)/(log q1) (see (5.1)).

(i) The distribution of the roots wk has not been well studied, so at present
we cannot exclude the possibility that |wk| = q−2

1 for some k. If so, then the
corresponding ρ(dk1) are on {s | ℜs = 2}. But these are discretely distributed;
in fact, they are distributed periodically with period 2π

√
−1/ log q1.

(ii) If |wk| < q−2
1 for some k, then the real part of the corresponding ρ(dk1)

is larger than 2. Hence ΦFF
2 (s) has poles in the region ℜs > 2, but this
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contradicts Proposition 2.1. Therefore, as a by-product of our theory, we find
that |wk| ≥ q−2

1 for all k.
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