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DEPTH AND STANLEY DEPTH OF TWO SPECIAL

CLASSES OF MONOMIAL IDEALS

Xiaoqi Wei

Abstract. In this paper, we define two new classes of monomial ideals

Il,d and Jk,d. When d ≥ 2k + 1 and l ≤ d − k − 1, we give the exact

formulas to compute the depth and Stanley depth of quotient rings S/Itl,d
for all t ≥ 1. When d = 2k = 2l, we compute the depth and Stanley depth
of quotient ring S/Il,d. When d ≥ 2k, we also compute the depth and

Stanley depth of quotient ring S/Jk,d.

1. Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K in
n variables. Let M be a finitely generated Zn-graded S-module. A Stanley
decomposition D of M is a finite direct sum of K-vector spaces

D : M =

r⊕
i=1

uiK[Zi],

where ui ∈ M is homogeneous and Zi ⊆ {x1, . . . , xn}, i = 1, . . . , r, and its
Stanley depth, sdepth(D), is defined as min{|Zi| : i = 1, . . . , r}. The number

sdepth(M) := max{sdepth(D) : D is a Stanley decomposition of M}

is called the Stanley depth of M . For a friendly introduction to Stanley depth,
we refer the reader to [6, 14].

Stanley conjectured in [16] that sdepth(M) ≥ depth(M) for any Zn-graded
S-module M . There are many researches on this conjecture, especially when
M has the form S/I or I with I a monomial ideal of S, see [1, 4, 7, 15]. In
[5], Duval et al. constructed an explicit counterexample to disprove the Stanley
conjecture for S/I, where I is a monomial ideal of S. But it is still important
to find new classes of Zn-graded modules which satisfy the Stanley inequality.
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For the monomial ideal I ⊂ S it is clear that depth(I) = depth(S/I) + 1,
whereas for Stanley depth this is not the case. In [6], Herzog conjectured:

Conjecture 1.1. Let I⊂S be a monomial ideal. Then sdepth(I)≥sdepth(S/I).

The above conjecture has been proved in some special cases by Popescu and
Qureshi in [12] and Rauf in [13]. For recent works on the above conjecture, we
refer the reader to [8–10].

Let ∆ be a simplicial complex on the vertex set V = {xi : 1 ≤ i ≤ n}.
Each element of ∆ is called a face of ∆, and a face F is called a facet if F is a
maximal face under inclusion. Let F(∆) denote the collection of all its facets.
For each subset F ⊂ V , we set xF =

∏
xj∈F xj . By identifying the vertex

xi with the variable xi in the polynomial ring S, one can associate ∆ with a
squarefree monomial ideal I(∆) = (xF : F ∈ F(∆)), which is called the facet
ideal of ∆. In [19], Zhu computed the depth and Stanley depth of the edge
ideals (which are in fact the facet ideals of graphs) of some m-line graphs and
m-cyclic graphs with a common vertex. Wei and Gu [18] defined two classes of
simplicial complexes ∆n,d and ∆′

n,d, where

F(∆n,d) = {{x1, x2, . . . , xd}, {xd−k+1, xd−k+2, . . . , x2d−k}, . . . ,
{xn−d+1, xn−d+2, . . . , xn}}

and

F(∆′
n,d) = {{x1, x2, . . . , xd}, {xd−k+1, xd−k+2, . . . , x2d−k}, . . . ,

{xn−2d+2k+1, xn−2d+2k+2, . . . , xn−d+2k},
{xn−d+k+1, . . . , xn, x1, . . . , xk}}.

They computed the depth and Stanley depth of the facet ideals of these sim-
plicial complexes.

In this paper, we define two new classes of squarefree monomial ideals Il,d
and Jk,d, where Il,d (resp. Jk,d) is in fact the facet ideal associated to the simpli-
cial complex consisting of the union of ∆n1,d, . . . ,∆ns,d (resp. ∆′

n1,d
, . . . ,∆′

ns,d
)

with common vertices x1, . . . , xl (resp. x1, . . . , xk). These two ideals generalize
the constructions of those monomial ideals introduced in [18] and [19]. In this
article, we study the depth and Stanley depth of quotient rings of Il,d and Jk,d,
and prove Conjecture 1.1 for these two ideals in some cases.

Our paper is organized as follows: In Section 2, we give the definitions of Il,d
and Jk,d, and review some terminologies, notations and results. In Section 3,
we first give the exact formulas for depth and Stanley depth of quotient rings
S/Itl,d for all t ≥ 1, when d ≥ 2k + 1 and l ≤ d − k − 1. We also compute

the depth and Stanley depth of quotient ring S/Il,d, when d = 2k = 2l. In
Section 4, we compute the depth and Stanley depth of quotient ring S/Jk,d in
two cases: d ≥ 2k + 1 and d = 2k.
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2. Preliminaries

In this section, we first give the definitions of Il,d and Jk,d, and review some
standard terminologies and notations from algebra. For more details, see [17].
Let s ≥ 1 be an integer throughout the paper.

Definition 2.1. Let l, k, d and ni be positive integers with i ∈ [s] := {1, 2, . . . ,
s}. We define the squarefree monomial ideal

Il,k,d,(ni)1≤i≤s
:=

s∑
i=1

(x1 · · ·xlxl+1,i · · ·xd,i, xd−k+1,ixd−k+2,i · · ·x2d−k,i, . . . ,

xni−d+1,ixni−d+2,i · · ·xni,i),

where 1 ≤ l ≤ d− k and ni ≥ d > k ≥ 1 for 1 ≤ i ≤ s. Note that d− k | ni − k
for all i ∈ [s].

Remark 2.2. (1) For simplicity, we denote Il,d := Il,k,d,(ni)1≤i≤s
in this paper.

(2) |G(Il,d)| =
∑s

i=1
ni−k
d−k , where G(Il,d) denotes the set of minimal mono-

mial generators of Il,d.

Example 2.3. Set s = 3, l = k = 1, d = 3, n1 = 3, n2 = 5 and n3 = 7 in Defi-
nition 2.1. Then we have I1,3 = (x1x2,1x3,1, x1x2,2x3,2, x3,2x4,2x5,2, x1x2,3x3,3,
x3,3x4,3x5,3, x5,3x6,3x7,3).

Definition 2.4. Let k, d and ni be positive integers with i ∈ [s]. We define
the squarefree monomial ideal

Jk,d,(ni)1≤i≤s
:=

s∑
i=1

(x1 · · ·xkxk+1,i · · ·xd,i, xd−k+1,ixd−k+2,i · · ·x2d−k,i, . . . ,

xni−2d+2k+1,ixni−2d+2k+2,i · · ·xni−d+2k,i,

xni−d+k+1,i · · ·xni,ix1 · · ·xk),

where d ≥ 2k ≥ 2 and ni ≥ 3d − 3k for 1 ≤ i ≤ s. Note that d − k | ni for all
i ∈ [s].

Remark 2.5. (1) For convenience, we denote Jk,d := Jk,d,(ni)1≤i≤s
in this paper.

(2) It is easy to see that |G(Jk,d)| =
∑s

i=1
ni

d−k .

Example 2.6. Set s = 3, d = 2k = 2, n1 = 3, n2 = 4 and n3 = 5 in Definition
2.4, then we get J1,2 = (x1x2,1, x2,1x3,1, x3,1x1, x1x2,2, x2,2x3,2, x3,2x4,2, x4,2x1,
x1x2,3, x2,3x3,3, x3,3x4,3, x4,3x5,3, x5,3x1).

Let I ⊂ S be a monomial ideal. The big height of I, denoted by bight(I), is
the maximum height of the minimal prime ideals of I. The arithmetical rank of
I, denoted by ara(I), is the minimum number r of elements of S such that the
ideal (u1, u2, . . . , ur) has the same radical as I. If I is a squarefree monomial
ideal, it is well-known that

ht(I) ≤ bight(I) ≤ pd(S/I) ≤ ara(I) ≤ |G(I)|,
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where pd(S/I) denotes the projective dimension of S/I.
A prime ideal P is associated to I if P = (I : c) for some monomial c ∈ S.

The set of prime ideals associated to I will be denoted by Ass(S/I). The
associated prime ideals of a monomial ideal are monomial prime ideals. The
set Min(S/I) consists of all prime ideals that are minimal over I with respect
to inclusion. It is known that Min(S/I) ⊂ Ass(S/I). When I is squarefree,
Ass(S/I) = Min(S/I).

Now we recall some known results that are heavily used in this paper.

Lemma 2.7 (Depth Lemma). Let S be a local ring or a Noetherian graded
ring with S0 local. If

0 −→ A −→ B −→ C −→ 0

is a short exact sequence of finitely generated S-modules, where the maps are
all homogeneous, then ([17, Lemma 1.3.9]):

a) If depth(B) < depth(C), then depth(A) = depth(B).
b) If depth(B) = depth(C), then depth(A) ≥ depth(B).
c) If depth(B) > depth(C), then depth(A) = depth(C) + 1.

Also (see [2, Proposition 1.2.9]):
d) depth(A) ≥ min{depth(B),depth(C) + 1}.
e) depth(B) ≥ min{depth(A),depth(C)}.
f) depth(C) ≥ min{depth(A)− 1,depth(B)}.

In [13], Rauf proved the analog of Lemma 2.7(e) for Stanley depth:

Lemma 2.8. Let 0 −→ U −→ M −→ N −→ 0 be a short exact sequence of
finitely generated Zn-graded S-modules. Then

sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

We also need the following lemma, see [13, Theorem 3.1].

Lemma 2.9. Let I ⊂ S1 = K[x1, . . . , xn], J ⊂ S2 = K[y1, . . . , ym] be mono-
mial ideals and S = K[x1, . . . , xn, y1, . . . , ym]. Then

sdepth(S/(IS, JS)) ≥ sdepth(S1/I) + sdepth(S2/J).

3. Depth and Stanley depth of the monomial ideal Il,d

Throughout this section, we set S := K[x1, . . . , xl, xl+1,1, . . . , xn1,1, . . .,
xl+1,s, . . . , xns,s] be the polynomial ring over a field K in n variables, where
n :=

∑s
i=1 ni − (s− 1)l. Next, we will discuss our main results in two cases.

3.1. The case d ≥ 2k + 1 and l ≤ d − k − 1

In this section, we will give some formulas for depth and Stanley depth of
quotient rings S/Itl,d for all t ≥ 1. Our proofs of the main results make heavy
use of the following lemma.

Lemma 3.1. P =
∑s

i=1(xd−k,i, x2(d−k),i, x3(d−k),i, . . . , xni−k,i) ∈ Min(S/Il,d).
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Proof. Let ai,j = x1+(i−1)(d−k),jx2+(i−1)(d−k),j · · ·xd+(i−1)(d−k),j and bi,j =

xi(d−k),j for 1 ≤ i ≤ nj−k
d−k and 1 ≤ j ≤ s, where x1,j = x1, . . . , xl,j = xl

for all j ∈ [s]. Then Il,d =
∑s

j=1(a1,j , a2,j , . . . , a(nj−k)/(d−k),j) and P =∑s
j=1(b1,j , b2,j , . . . , b(nj−k)/(d−k),j).
According to the definitions of ai,j and bi,j , bi1,j1 appears in ai2,j2 if and

only if i1 = i2 and j1 = j2. It follows that bi1,j1 divides ai2,j2 if and only if
i1 = i2 and j1 = j2, so Il,d ⊂ P . We assume that P is not minimal over Il,d.
Let P0 ⊊ P be a minimal prime ideal of Il,d. Since Il,d is squarefree, P0 ⊊ P is
a monomial prime ideal, and there exists ai,j such that none of G(P0) divides
ai,j . Hence Il,d ⊈ P0, a contradiction. □

Proposition 3.2. bight(Il,d)=pd(S/Il,d)=ara(Il,d)= |G(Il,d)|=
∑s

i=1
ni−k
d−k .

Proof. From Lemma 3.1, P =
∑s

i=1(xd−k,i, x2(d−k),i, x3(d−k),i, . . . , xni−k,i) ∈
Min(S/Il,d) and ht(P ) =

∑s
i=1

ni−k
d−k . It follows that

∑s
i=1

ni−k
d−k ≤ bight(Il,d) ≤

pd(S/Il,d) ≤ ara(Il,d) ≤ |G(Il,d)| =
∑s

i=1
ni−k
d−k . Now the result is clear. □

Now, we give the exact formulas for sdepth(S/Il,d) and depth(S/Il,d).

Theorem 3.3. sdepth(S/Il,d) = depth(S/Il,d) = n−
∑s

i=1
ni−k
d−k .

Proof. Since |G(Il,d)| =
∑s

i=1
ni−k
d−k , we have sdepth(S/Il,d) ≥ n −

∑s
i=1

ni−k
d−k

by [3, Proposition 1.2]. On the other hand, there exists a prime ideal P ∈
Ass(S/Il,d) such that ht(P ) =

∑s
i=1

ni−k
d−k by Lemma 3.1. It follows that

sdepth(S/Il,d) ≤ n −
∑s

i=1
ni−k
d−k by [7, Proposition 1.3]. By the Auslander-

Buchsbaum formula and Proposition 3.2, depth(S/Il,d) = n − pd(S/Il,d) =

n−
∑s

i=1
ni−k
d−k . □

The following corollary states that the Stanley inequality and Conjecture
1.1 hold for Il,d.

Corollary 3.4. sdepth(Il,d) ≥ sdepth(S/Il,d) + 1 = depth(Il,d).

Proof. Since |G(Il,d)| =
∑s

i=1
ni−k
d−k , sdepth(Il,d) ≥ max{1, n− ⌊ 1

2 |G(Il,d)|⌋} =

n−⌊
∑s

i=1
ni−k
2(d−k)⌋ ≥ n−

∑s
i=1

ni−k
d−k +1 = sdepth(S/Il,d)+1 = depth(S/Il,d)+

1 = depth(Il,d) by [11, Theorem 2.3] and Theorem 3.3. □

Let Il,k,d,ni
:= (x1 · · ·xlxl+1,i · · ·xd,i, xd−k+1,i · · ·x2d−k,i, . . ., xni−d+1,i · · ·

xni,i), i = 1, . . . , s. For simplicity, we denote Ini,i := Il,k,d,ni
, hence Il,d =∑s

i=1 Ini,i. Next, we present a main result of this section.

Theorem 3.5. For all t ≥ 1, sdepth(S/Itl,d) = depth(S/Itl,d) = n−
∑s

i=1
ni−k
d−k .

Proof. We use induction on n and t. If ni = d for 1 ≤ i ≤ s (i.e., n =
sd − (s − 1)l), then Itl,d = (x1 · · ·xlxl+1,1 · · ·xd,1, . . . , x1 · · ·xlxl+1,s · · ·xd,s)

t.
We consider the short exact sequence

0 −→ S

(Itl,d : xt
1 · · ·xt

l)
−→ S

Itl,d
−→ S

(Itl,d, x
t
1 · · ·xt

l)
−→ 0.
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Since xt
1 · · ·xt

l divides any element of G(Itl,d), it follows that (I
t
l,d : xt

1 · · ·xt
l) =

(xl+1,1 · · ·xd,1, . . . , xl+1,s · · ·xd,s)
t := J t and (Itl,d, x

t
1 · · ·xt

l) = (xt
1 · · ·xt

l). It

is easy to see that J ⊂ S is a complete intersection. Then by [4, Theorem
2.15(1)], we obtain

sdepth(S/(Itl,d : xt
1 · · ·xt

l)) = sdepth(S/J t) = dim(S/J) = n− s.

Similarly, depth(S/(Itl,d : xt
1 · · ·xt

l)) = n− s. Note that (xt
1 · · ·xt

l) is principal,

then sdepth(S/(Itl,d, x
t
1 · · ·xt

l)) = depth(S/(Itl,d, x
t
1 · · ·xt

l)) = n − 1 ≥ n − s.

It follows that sdepth(S/Itl,d) ≥ depth(S/Itl,d) = n − s by Lemmas 2.7 and

2.8. From Lemma 3.1, P0 = (xd−k,1, xd−k,2, . . . , xd−k,s) ∈ Min(S/Il,d) =
Min(S/Itl,d) ⊂ Ass(S/Itl,d) for all t ≥ 1, and ht(P0) = s. Then sdepth(S/Itl,d) ≤
dim(S/P0) = n− s by [7, Proposition 1.3], so sdepth(S/Itl,d) = depth(S/Itl,d) =

n− s for all t ≥ 1. Assume that n > sd− (s− 1)l in the following.
If t = 1, the result holds for all n by Theorem 3.3. Now assume that t ≥ 2 and

ns ≥ 2d−k. We denote u := xns−d+1,s · · ·xns−d+k,s, v := xns−d+k+1,s · · ·xns,s

and consider the short exact sequence

0 −→ S

(Itl,d : uv)
−→ S

(Itl,d : v)
−→ S

((Itl,d : v), u)
−→ 0.

Let G(Il,d) =
⋃s

j=1{a1,j , a2,j , . . . , a(nj−k)/(d−k),j}, the same as in the proof

of Lemma 3.1, and w ∈ G(Itl,d). If a(ns−k)/(d−k),s | w, then w
a(ns−k)/(d−k),s

∈
G(Itl,d : uv) ∩ It−1

l,d . If a(ns−k)/(d−k),s ∤ w and a(ns−d)/(d−k),s | w, then we

get w
u ∈ G(Itl,d : uv) and w

a(ns−d)/(d−k),s
| w

u , where
w

a(ns−d)/(d−k),s
∈ It−1

l,d . If

a(ns−k)/(d−k),s ∤ w and a(ns−d)/(d−k),s ∤ w, then w
1 ∈ G(Itl,d : uv) and w must

be divisible by some element of It−1
l,d . Thus (Itl,d : uv) ⊆ It−1

l,d . It follows that

(Itl,d : uv) = It−1
l,d .

By induction on t, we get depth(S/(Itl,d : uv)) = depth(S/It−1
l,d ) = n −∑s

i=1
ni−k
d−k . Similarly, sdepth(S/(Itl,d : uv)) = n−

∑s
i=1

ni−k
d−k .

Since u divides any element of G(Itl,d) which is divisible by a(ns−k)/(d−k),s or

a(ns−d)/(d−k),s, it follows that ((Itl,d : v), u) = (I ′S, u), where I ′ := (In1,1, . . . ,

Ins−1,s−1, Ins−2d+2k,s)
t ⊂ S1 :=K[x1, . . . , xl, xl+1,1, . . . , xn1,1, . . . , xl+1,s−1, . . . ,

xns−1,s−1, xl+1,s, . . . , xns−2d+2k,s]. Notice that u is regular on S/I ′S, hence the
induction on n and [7, Lemma 3.6] imply that

depthS(S/((I
t
l,d : v), u)) = depthS1

(S1/I
′) + (2d− 2k)− 1

= n−
s−1∑
i=1

ni − k

d− k
− (ns − 2d+ 2k)− k

d− k
− 1

= n−
s∑

i=1

ni − k

d− k
+ 1.
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Similarly, sdepth(S/((Itl,d : v), u)) = n −
∑s

i=1
ni−k
d−k + 1. Then we have

sdepth(S/(Itl,d : v)) ≥ depth(S/(Itl,d : v)) = n −
∑s

i=1
ni−k
d−k by Lemmas 2.7

and 2.8.
Since v divides any element of G(Itl,d) which is divisible by a(ns−k)/(d−k),s,

we get (Itl,d, v)=(I ′′S, v), where I ′′ := (In1,1, . . . , Ins−1,s−1, Ins−d+k,s)
t ⊂ S2 :=

K[x1, . . . , xl, xl+1,1, . . . , xn1,1, . . . , xl+1,s−1, . . . , xns−1,s−1, xl+1,s, . . . , xns−d+k,s].
Note that v is regular on S/I ′′S, by induction on n and [7, Lemma 3.6], we
deduce that

depthS(S/(I
t
l,d, v)) = depthS2

(S2/I
′′) + (d− k)− 1

= n−
s−1∑
i=1

ni − k

d− k
− (ns − d+ k)− k

d− k
− 1

= n−
s∑

i=1

ni − k

d− k
.

Similarly, sdepth(S/(Itl,d, v)) = n −
∑s

i=1
ni−k
d−k . By applying Lemmas 2.7 and

2.8 to the short exact sequence

0 −→ S

(Itl,d : v)
−→ S

Itl,d
−→ S

(Itl,d, v)
−→ 0,

we obtain sdepth(S/Itl,d) ≥ depth(S/Itl,d) = n−
∑s

i=1
ni−k
d−k .

From Lemma 3.1, P1 =
∑s

i=1(xd−k,i, x2(d−k),i, . . . , xni−k,i) ∈ Ass(S/Itl,d)

for all t ≥ 1, and ht(P1) =
∑s

i=1
ni−k
d−k . Then sdepth(S/Itl,d) ≤ dim(S/P1) =

n−
∑s

i=1
ni−k
d−k by [7, Proposition 1.3]. This completes the proof. □

Remark 3.6. Set s = 1 in Theorem 3.5, then sdepth(S/Itl,d) = depth(S/Itl,d) =

n1 − n1−k
d−k for all t ≥ 1. Thus our results generalize [18, Theorem 2.7].

3.2. The case d = 2k = 2l

In this section, we will give some formulas for depth and Stanley depth of
quotient ring S/Il,d. We adopt the following notations:

α :=
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni−2d
3d ⌉

)
+ s+ k − sk,

β :=
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni

3d ⌉
)
+ k − sk,

γ :=
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni−d
3d ⌉

)
+ s+ k − sk − 1.

Now, we prove the main results of this section.

Theorem 3.7. With the notations introduced one has

sdepth(S/Il,d) ≥ depth(S/Il,d) =


α, if ni

k ≡ 2 (mod 3) for some i ∈ [s],

β, if ni

k ≡ 1 (mod 3) for all i ∈ [s],

γ, otherwise.
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Proof. It is easy to see that (Il,d : x1 · · ·xk) =
∑s

i=1(xk+1,i · · ·xd,i, L1,i) and
(Il,d, x1 · · ·xk) =

∑s
i=1 L2,i + (x1 · · ·xk), where L1,i := (xd+1,i · · ·x2d,i, . . . ,

xni−d+1,i · · ·xni,i) and L2,i := (xk+1,i · · ·x3k,i, . . . , xni−d+1,i · · ·xni,i) for 1 ≤
i ≤ s. We denote ai := xk+1,i · · ·xd,i, Xi := {xd+1,i, . . . , xni,i} and Yi :=
{xk+1,i, . . . , xni,i} for 1 ≤ i ≤ s. Thus we obtain

S

(Il,d : x1 · · ·xk)
∼=

K[Y1 \X1]

(a1)
⊗K · · · ⊗K

K[Ys \Xs]

(as)

⊗K
K[X1]

L1,1
⊗K · · · ⊗K

K[Xs]

L1,s
⊗K K[x1, . . . , xk],

and
S

(Il,d, x1 · · ·xk)
∼=

K[Y1]

L2,1
⊗K · · · ⊗K

K[Ys]

L2,s
⊗K

K[x1, . . . , xk]

(x1 · · ·xk)
.

For i ∈ [s], (ai) and (x1 · · ·xk) are complete intersections. Therefore, by
Lemma 2.9, [17, Proposition 2.2.20, Theorem 2.2.21] and [18, Theorem 2.11],
we deduce that sdepth(S/(Il,d : x1 · · ·xk)) ≥ depth(S/(Il,d : x1 · · ·xk)) =∑s

i=1

(
(d−2)(ni−d)

d +⌈ 2(ni−d)
3d ⌉

)
+(sk−s)+k = α, and sdepth(S/(Il,d, x1 · · ·xk))

≥ depth(S/(Il,d, x1 · · ·xk)) =
∑s

i=1

(
(d−2)(ni−k)

d + ⌈ 2(ni−k)
3d ⌉

)
+ (k − 1) = γ.

If ni

k ≡ 2 (mod 3) for some i ∈ [s], then α ≤ γ. Using Lemmas 2.7 and 2.8
on the short exact sequence

(1) 0 −→ S/(Il,d : x1 · · ·xk) −→ S/Il,d −→ S/(Il,d, x1 · · ·xk) −→ 0,

we conclude that sdepth(S/Il,d) ≥ depth(S/Il,d) = α.
Assume that ni

k ̸≡ 2 (mod 3) for all i ∈ [s]. Set bi := xd+1,i · · ·x3k,i,
L3,i := (x3k+1,i · · ·x5k,i, . . . , xni−d+1,i · · ·xni,i) and Ai := Yi \Xi for 1 ≤ i ≤ s.
Then we have

(Il,d : x1 · · ·xk)

Il,d
∼= a1

(K[x1, . . . , xk]

(x1 · · ·xk)
⊗K

K[X1]

(b1, L3,1)

⊗K
K[Y2]

L2,2
⊗K · · · ⊗K

K[Ys]

L2,s

)
[A1]

⊕ a2

(K[x1, . . . , xk]

(x1 · · ·xk)
⊗K

K[Y1]

(a1, L1,1)
⊗K

K[X2]

(b2, L3,2)

⊗K
K[Y3]

L2,3
⊗K · · · ⊗K

K[Ys]

L2,s

)
[A2]

⊕ · · ·

⊕ as

(K[x1, . . . , xk]

(x1 · · ·xk)
⊗K

K[Y1]

(a1, L1,1)
⊗K · · ·

⊗K
K[Ys−1]

(as−1, L1,s−1)
⊗K

K[Xs]

(bs, L3,s)

)
[As].

Next, we consider the following two cases.
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Case 1: ni

k ≡ 1 (mod 3) for all i ∈ [s]. Using Lemma 2.9, [17, Propo-
sition 2.2.20, Theorem 2.2.21], [18, Theorem 2.11] and the isomorphism, we
obtain sdepth((Il,d : x1 · · ·xk)/Il,d) ≥ depth((Il,d : x1 · · ·xk)/Il,d) = (k − 1) +∑s−1

i=1

(
(d−2)(ni−d)

d +⌈ 2(ni−d)
3d ⌉+(k−1)

)
+
(

(d−2)(ns−3k)
d +⌈ 2(ns−3k)

3d ⌉+(k−1)
)
+

k = β = α. Now, applying Lemmas 2.7 and 2.8 to the short exact sequence

(2) 0 −→ (Il,d : x1 · · ·xk)/Il,d −→ S/Il,d −→ S/(Il,d : x1 · · ·xk) −→ 0,

we get sdepth(S/Il,d) ≥ depth(S/Il,d) = β.
Case 2: ni

k ≡ 0 (mod 3) for some i ∈ [s]. We assume that ns

k ≡ 0 (mod 3).
Using Lemma 2.9, [17, Proposition 2.2.20, Theorem 2.2.21], [18, Theorem
2.11] and the isomorphism, it follows that sdepth((Il,d : x1 · · ·xk)/Il,d) ≥
depth((Il,d : x1 · · ·xk)/Il,d) = (k − 1) +

∑s−1
i=1

(
(d−2)(ni−d)

d + ⌈ 2(ni−d)
3d ⌉ + (k −

1)
)
+

(
(d−2)(ns−3k)

d + ⌈ 2(ns−3k)
3d ⌉ + (k − 1)

)
+ k = γ = α − 1. By apply-

ing Lemmas 2.7 and 2.8 to the short exact sequence (2), we conclude that
sdepth(S/Il,d) ≥ depth(S/Il,d) = γ. □

Let u ∈ S be a monomial and I ⊂ S a monomial ideal. We set supp1(u) :=
{i : xi | u}, supp2(u) := {(i, j) : xi,j | u}, supp1(I) := {i : xi | v for some v ∈
G(I)} and supp2(I) := {(i, j) : xi,j | v for some v ∈ G(I)}. Let C denote the
set

⋃s
i=1{(k+ 1, i), . . . , (ni, i)}. With these notations and the same arguments

as used in the proof of [8, Lemma 3.3], one can prove the following lemma.

Lemma 3.8. Let I ⊂ S be a squarefree monomial ideal with supp1(I) = [k]
and supp2(I) = C. Let v ∈ S/I be a squarefree monomial such that xiv ∈ I
for all i ∈ [k] \ supp1(v) and xi,jv ∈ I for all (i, j) ∈ C \ supp2(v). Then
sdepth(S/I) ≤ |supp1(v)|+ |supp2(v)|.

Next, we give another main result of this section.

Theorem 3.9. With the notations introduced one has

sdepth(S/Il,d) ≤

{
α, if ni

k ̸≡ 0 (mod 3) for some i ∈ [s],

γ, otherwise.

Proof. We prove the result by the following two cases.

Case 1: ni

k ̸≡ 0 (mod 3) for some i ∈ [s]. For 1 ≤ i ≤ nj−k
k and 1 ≤ j ≤ s,

we define the monomial ai,j ∈ S by

ai,j =

{
xik+1,j · · ·x(i+1)k,j , if i ≡ 0 (mod 3),

xik+1,j · · ·x(i+1)k−1,j , otherwise.

If
nj

k ≡ 1 (mod 3) or
nj

k ≡ 2 (mod 3), we set uj := a1,ja2,j · · · a(nj−k)/k,j . If
nj

k ≡ 0 (mod 3), we set uj := a1,ja2,j · · · a(nj−k)/k,jxnj ,j . Since v := x1 · · ·xk ·∏s
j=1 uj ∈ S/Il,d, but xiv ∈ Il,d for all i ∈ [k] \ supp1(v) and xi,jv ∈ Il,d for all

(i, j) ∈ C\supp2(v), thus we obtain sdepth(S/Il,d) ≤ |supp1(v)|+|supp2(v)| = α
by Lemma 3.8.



156 X. WEI

Case 2: ni

k ≡ 0 (mod 3) for all i ∈ [s]. For 1 ≤ i ≤ nj−k
k and 1 ≤ j ≤ s, we

define the monomial bi,j ∈ S by

bi,j =

{
xik+1,j · · ·x(i+1)k,j , if i ≡ 1 (mod 3),

xik+1,j · · ·x(i+1)k−1,j , otherwise.

We set uj := b1,jb2,j · · · b(nj−k)/k,j , j = 1, . . . , s. Since w := x1 · · ·xk−1 ·∏s
j=1 uj ∈ S/Il,d, but xiw ∈ Il,d for all i ∈ [k] \ supp1(w) and xi,jw ∈ Il,d

for all (i, j) ∈ C \ supp2(w), therefore we get sdepth(S/Il,d) ≤ |supp1(w)| +
|supp2(w)| = γ by Lemma 3.8. □

Remark 3.10. Set s = 1 in Theorems 3.7 and 3.9, then we have sdepth(S/Il,d) =

depth(S/Il,d) = (d−2)n1

d + ⌈ 2n1

3d ⌉, which generalizes [18, Theorem 2.11]. Our
results also generalize [19, Theorems 3.3 and 3.4], where d = 2k = 2l = 2.

As a consequence of Theorems 3.7 and 3.9, we get the following corollary.

Corollary 3.11. sdepth(Il,d) ≥ sdepth(S/Il,d) + 1 ≥ depth(Il,d).

Proof. Since |G(Il,d)| =
∑s

i=1
ni−k

k , sdepth(Il,d) ≥ max{1, n− ⌊ 1
2 |G(Il,d)|⌋} =

n − ⌊
∑s

i=1
ni−k
2k ⌋ ≥ sdepth(S/Il,d) + 1 ≥ depth(S/Il,d) + 1 = depth(Il,d) by

Theorems 3.7, 3.9 and [11, Theorem 2.3]. □

4. Depth and Stanley depth of the monomial ideal Jk,d

Throughout this section we set S := K[x1, . . . , xk, xk+1,1, . . . , xn1,1, . . .,
xk+1,s, . . . , xns,s] be the polynomial ring over a field K in n variables, where
n :=

∑s
i=1 ni − (s− 1)k. Next, we will discuss our main results in two cases.

4.1. The case d ≥ 2k+ 1

In this section, we will give some formulas for depth and Stanley depth of
quotient ring S/Jk,d. The following lemma will be useful in several proofs.

Lemma 4.1. P =
∑s

i=1(xd−k,i, x2(d−k),i, x3(d−k),i, . . . , xni,i) ∈ Min(S/Jk,d).

Proof. With the same arguments as used in the proof of Lemma 3.1, one can
show that P is a minimal prime ideal of Jk,d. □

Proposition 4.2. bight(Jk,d)=pd(S/Jk,d)=ara(Jk,d)= |G(Jk,d)|=
∑s

i=1
ni

d−k .

Proof. We have P =
∑s

i=1(xd−k,i, x2(d−k),i, x3(d−k),i, . . . , xni,i) ∈ Min(S/Jk,d)

and ht(P ) =
∑s

i=1
ni

d−k by Lemma 4.1. Then
∑s

i=1
ni

d−k ≤ bight(Jk,d) ≤
pd(S/Jk,d) ≤ ara(Jk,d) ≤ |G(Jk,d)| =

∑s
i=1

ni

d−k . The proof is completed. □

Now, we give the exact formulas for depth and Stanley depth of S/Jk,d.

Theorem 4.3. sdepth(S/Jk,d) = depth(S/Jk,d) = n−
∑s

i=1
ni

d−k .
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Proof. Since |G(Jk,d)| =
∑s

i=1
ni

d−k , we have sdepth(S/Jk,d) ≥ n −
∑s

i=1
ni

d−k

by [3, Proposition 1.2]. On the other hand, there exists a prime ideal P ∈
Ass(S/Jk,d) such that ht(P ) =

∑s
i=1

ni

d−k by Lemma 4.1. It follows that

sdepth(S/Jk,d) ≤ n −
∑s

i=1
ni

d−k by [7, Proposition 1.3]. By the Auslander-

Buchsbaum formula and Proposition 4.2, we obtain depth(S/Jk,d) = n −
pd(S/Jk,d) = n−

∑s
i=1

ni

d−k . □

Remark 4.4. Set s = 1 in Theorem 4.3, then sdepth(S/Jk,d) = depth(S/Jk,d) =
n1 − n1

d−k , which generalizes [18, Theorem 2.9].

The following corollary implies that the Stanley inequality and Conjecture
1.1 hold for Jk,d.

Corollary 4.5. sdepth(Jk,d) > sdepth(S/Jk,d) + 1 = depth(Jk,d).

Proof. Since |G(Jk,d)| =
∑s

i=1
ni

d−k and ni ≥ 3d − 3k for 1 ≤ i ≤ s, we have

sdepth(Jk,d) ≥ max{1, n−⌊ 1
2 |G(Jk,d)|⌋} = n−⌊

∑s
i=1

ni

2(d−k)⌋ > n−
∑s

i=1
ni

d−k+

1 = sdepth(S/Jk,d) + 1 = depth(S/Jk,d) + 1 = depth(Jk,d) by [11, Theorem
2.3] and Theorem 4.3. □

4.2. The case d = 2k

In this section, we will give some formulas to compute the depth and Stanley
depth of quotient ring of Jk,d. We adopt the following notations:

α :=
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni

3d ⌉
)
+ k − sk,

β :=
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni−d
3d ⌉

)
+ s+ k − sk − 1.

Now, we prove the main results of this section.

Theorem 4.6. With the notations introduced one has

sdepth(S/Jk,d) ≥ depth(S/Jk,d) =

{
α, if ni

k ̸≡ 1 (mod 3) for some i ∈ [s],

β, otherwise.

Proof. We get (Jk,d : x1 · · ·xk) =
∑s

i=1(xk+1,i · · ·xd,i, xni−k+1,i · · ·xni,i, L1,i)
and (Jk,d, x1 · · ·xk) =

∑s
i=1 L2,i+(x1 · · ·xk), where L1,i := (xd+1,i · · ·x2d,i, . . . ,

xni−3k+1,i · · ·xni−k,i) and L2,i := (xk+1,i · · ·x3k,i, . . . , xni−d+1,i · · ·xni,i) for
1 ≤ i ≤ s. We denote a1,i := xk+1,i · · ·xd,i, a2,i := xni−k+1,i · · ·xni,i, A1,i :=
{xd+1,i, . . . , xni−k,i}, A2,i := {xk+1,i, . . . , xd,i}, A3,i := {xni−k+1,i, . . . , xni,i}
and A4,i := A1,i ∪A2,i ∪A3,i for all i ∈ [s]. Then we obtain

S

(Jk,d : x1 · · ·xk)
∼=

K[A1,1]

L1,1
⊗K · · · ⊗K

K[A1,s]

L1,s

⊗K
K[A2,1]

(a1,1)
⊗K · · · ⊗K

K[A2,s]

(a1,s)

⊗K
K[A3,1]

(a2,1)
⊗K · · · ⊗K

K[A3,s]

(a2,s)
⊗K K[x1, . . . , xk],
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and

S

(Jk,d, x1 · · ·xk)
∼=

K[A4,1]

L2,1
⊗K · · · ⊗K

K[A4,s]

L2,s
⊗K

K[x1, . . . , xk]

(x1 · · ·xk)
.

Note that (a1,i), (a2,i) and (x1 · · ·xk) are complete intersections for all 1 ≤
i ≤ s. Thus, by Lemma 2.9, [17, Proposition 2.2.20, Theorem 2.2.21] and
[18, Theorem 2.11], we have sdepth(S/(Jk,d : x1 · · ·xk)) ≥ depth(S/(Jk,d :

x1 · · ·xk)) =
∑s

i=1

(
(d−2)(ni−3k)

d + ⌈ 2(ni−3k)
3d ⌉

)
+2(sk− s) + k = α, and we get

sdepth(S/(Jk,d, x1 · · ·xk)) ≥ depth(S/(Jk,d, x1 · · ·xk)) =
∑s

i=1

(
(d−2)(ni−k)

d +

⌈ 2(ni−k)
3d ⌉

)
+ (k − 1) = β.

If ni

k ̸≡ 1 (mod 3) for some i ∈ [s], then α ≤ β. Using Lemmas 2.7 and 2.8
on the short exact sequence

0 −→ S/(Jk,d : x1 · · ·xk) −→ S/Jk,d −→ S/(Jk,d, x1 · · ·xk) −→ 0,

we conclude that sdepth(S/Jk,d) ≥ depth(S/Jk,d) = α.
Assume that ni

k ≡ 1 (mod 3) for all i ∈ [s]. For any 1 ≤ i ≤ s, we
set X1,i := A1,i ∪ A3,i, X2,i := A4,i, X3,i := A1,i ∪ A2,i, b1,i := xd+1,i · · ·x3k,i,
b2,i := xni−d+1,i · · ·xni−k,i, L3,i := (x3k+1,i · · ·x5k,i, . . . , xni−d+1,i · · ·xni,i) and
L4,i := (xd+1,i · · ·x2d,i, . . . , xni−2d+1,i · · ·xni−d,i). Then it follows that

(Jk,d : x1 · · ·xk)

Jk,d
∼= a1,1

(
R⊗K

K[X1,1]

(b1,1, L3,1)
⊗K

K[X2,2]

L2,2
⊗K · · ·

⊗K
K[X2,s]

L2,s

)
[A2,1]

⊕ a2,1

(
R⊗K

K[X3,1]

(a1,1, b2,1, L4,1)
⊗K

K[X2,2]

L2,2
⊗K · · · ⊗K

K[X2,s]

L2,s

)
[A3,1]

⊕ a1,2

(
R⊗K

K[X2,1]

M1
⊗K

K[X1,2]

(b1,2, L3,2)
⊗K

K[X2,3]

L2,3
⊗K · · · ⊗K

K[X2,s]

L2,s

)
[A2,2]

⊕ a2,2

(
R⊗K

K[X2,1]

M1
⊗K

K[X3,2]

(a1,2, b2,2, L4,2)
⊗K

K[X2,3]

L2,3
⊗K · · ·

⊗K
K[X2,s]

L2,s

)
[A3,2]

⊕ · · ·

⊕ a1,s

(
R⊗K

K[X2,1]

M1
⊗K · · · ⊗K

K[X2,s−1]

Ms−1
⊗K

K[X1,s]

(b1,s, L3,s)

)
[A2,s]

⊕ a2,s

(
R⊗K

K[X2,1]

M1
⊗K · · · ⊗K

K[X2,s−1]

Ms−1
⊗K

K[X3,s]

(a1,s, b2,s, L4,s)

)
[A3,s],

where R := K[x1,...,xk]
(x1···xk)

and Mi := (a1,i, a2,i, L1,i) for 1 ≤ i ≤ s − 1. Using

Lemma 2.9, [17, Proposition 2.2.20, Theorem 2.2.21], [18, Theorem 2.11] and
the isomorphism, it follows that sdepth((Jk,d : x1 · · ·xk)/Jk,d) ≥ depth((Jk,d :
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x1 · · ·xk)/Jk,d) = (k − 1) +
∑s−1

i=1

(
(d−2)(ni−3k)

d + ⌈ 2(ni−3k)
3d ⌉ + (d − 2)

)
+(

(d−2)(ns−2d)
d + ⌈ 2(ns−2d)

3d ⌉+(d− 2)
)
+ k = β < α. Now, applying Lemmas 2.7

and 2.8 to the short exact sequence

0 −→ (Jk,d : x1 · · ·xk)/Jk,d −→ S/Jk,d −→ S/(Jk,d : x1 · · ·xk) −→ 0,

we have sdepth(S/Jk,d) ≥ depth(S/Jk,d) = β, as desired. □

Theorem 4.7. sdepth(S/Jk,d) ≤
∑s

i=1

(
(d−2)ni

d + ⌈ 2ni

3d ⌉
)
+ k − sk = α.

Proof. For 1 ≤ i ≤ nj−k
k and 1 ≤ j ≤ s, we define the monomial ai,j ∈ S by

ai,j =

{
xik+1,j · · ·x(i+1)k,j , if i ≡ 0 (mod 3),

xik+1,j · · ·x(i+1)k−1,j , otherwise.

If
nj

k ≡ 0 (mod 3) or
nj

k ≡ 2 (mod 3), we set uj := a1,ja2,j · · · a(nj−k)/k,j .

If
nj

k ≡ 1 (mod 3), we set uj :=
a1,j ···a(nj−k)/k,jxnj−k,j

xnj,j
. Since v := x1 · · ·xk ·∏s

j=1 uj ∈ S/Jk,d, but xiv ∈ Jk,d for all i ∈ [k]\supp1(v) and xi,jv ∈ Jk,d for all

(i, j) ∈ C\supp2(v), it follows that sdepth(S/Jk,d) ≤ |supp1(v)|+|supp2(v)| = α
by Lemma 3.8. □

Remark 4.8. Theorems 4.6 and 4.7 generalize [18, Proposition 2.16, Theorem
2.18], where s = 1. Our results also generalize [19, Theorems 4.2 and 4.3], where
d = 2 and k = 1.

As a consequence of Theorems 4.6 and 4.7, we get the following corollary,
which says that the Stanley inequality and Conjecture 1.1 hold for Jk,d.

Corollary 4.9. sdepth(Jk,d)≥ sdepth(S/Jk,d) and sdepth(Jk,d)≥ depth(Jk,d).

Proof. Since |G(Jk,d)| =
∑s

i=1
ni

k , sdepth(Jk,d) ≥ max{1, n − ⌊ 1
2 |G(Jk,d)|⌋} =

n − ⌊
∑s

i=1
ni

2k ⌋ ≥ max{sdepth(S/Jk,d),depth(Jk,d)} by Theorems 4.6, 4.7 and
[11, Theorem 2.3]. □
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