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C∗-ALGEBRA OF LOCAL CONJUGACY EQUIVALENCE

RELATION ON STRONGLY IRREDUCIBLE SUBSHIFT OF

FINITE TYPE

Chengjun Hou and Xiangqi Qiang

Abstract. Let G be an infinite countable group and A be a finite set. If
Σ ⊆ AG is a strongly irreducible subshift of finite type and G is the local

conjugacy equivalence relation on Σ. We construct a decreasing sequence

R of unital C∗-subalgebras of C(Σ) and a sequence of faithful conditional
expectations E defined on C(Σ), and obtain a Toeplitz algebra T (R, E)
and a C∗-algebra C∗(R, E) for the pair (R, E). We show that C∗(R, E)
is ∗-isomorphic to the reduced groupoid C∗-algebra C∗

r (G).

1. Introduction

In [7], Ruelle constructed C∗-algebras from the equivalence relation given by
homoclinicity satisfying the “Condition C” in expansive dynamical systems of
countable groups actions on metrizable spaces by homeomorphisms. Roughly
speaking, the above homoclinicity with the “Condition C” means that homo-
clinic property of two points in the systems can be extended to a “uniform
local homoclinicity”, and this restriction ensures that the homoclinic equiva-
lence relation under certain topology is étale. As a generalization of this strong
version of homoclinic property, Thomsen introduced in [8] the notion of local
conjugacy relation in a relatively expansive system and constructed the cor-
responding equivalence relation C∗-algebra which is called the Ruelle algebra
or the homoclinic algebra (associated with the expansive system). It is very
interesting to characterize the structure of this kind of algebra. The homoclinic
algebra associated with two-sided shift system of a shift space X ⊆ AZ over a
finite A is isomorphic to the Krieger algebra of the shift space X, and for posi-
tively expansive group endomorphisms the homoclinic algebra is an AT -algebra
([8]).
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For a finite set A and an infinite countable group G, the canonical shift
action of G on each subshift Σ ⊆ AG forms a classic expansive dynamical
system. The second author of this paper showed in [4] the homoclinicity and
local conjugacy of two points in a strongly irreducible subshift Σ of finite type
are consistent. He also proved that the homoclinic algebra associated with this
kind of subshift is a minimal AF -algebra.

In [3], Exel and Renault considered a class of examples of approximately
proper equivalence relation R and showed that the associated groupoid C∗-
algebra C∗

r (R) is isomorphic to the canonical quotient algebra C∗(R, E) of the
Toeplitz algebra T (R, E) associated to a pair (R, E), where E is a sequence of
suitable conditional expectations. They mainly discussed the tail-equivalence
relation on a Bratteli diagram and directly proved that the associated C∗-
algebra is isomorphic to the AF -algebra of the diagram. In this paper, we will
characterize the structure of the reduced groupoid C∗-algebra associated to
the local conjugacy equivalence relation G on a strongly irreducible subshift of
finite type Σ. For this kind of equivalence relation, we construct a decreasing
sequence R of unital C∗-subalgebras of C(Σ) and a sequence of faithful condi-
tional expectations E defined on C(Σ). We provide a very specific and different
structure to prove that C∗(R, E) is ∗-isomorphic to the reduced groupoid C∗-
algebra C∗

r (G), even though this can be induced from Exel-Renault’s result.
Now we recall some notions. For a finite set A and an infinite countable

group G, let AG be the set of all maps u from G into A. Under the topology of
pointwise convergence, AG is a compact metrizable space. Let α be the shift
action of G on AG defined by gu(h) = u(g−1h) for g, h ∈ G and u ∈ AG. A
closed G-invariant subset of AG is called a subshift. A subshift Σ is said to be
of finite type (we abbreviate it as SFT) if there is a finite subset Ω of G and a
subset P ⊆ AΩ such that Σ = {u ∈ AG : (gu)|Ω ∈ P for all g ∈ G}, where v|S
is the restriction of v in AG to a subset S of G. The full shift, the empty shift
and the golden mean shift are of finite type, but the even shift is not of finite
type ([5, 9]). A subshift Σ is said to be strongly irreducible if there is a finite
subset ∆ of G such that Σ is ∆-irreducible, in the sense that, for given any two
finite subsets Ω1 and Ω2 of G such that (Ω1∆)∩Ω2 = ∅, and any two elements
u1, u2 ∈ Σ, there is a u ∈ Σ such that u coincides with u1 on Ω1 and with u2 on
Ω2. Moreover, if Σ is strongly irreducible, then we can choose a finite subset
Ω of G and P ⊆ AΩ satisfying that e ∈ Ω = Ω−1 and Σ is Ω-irreducible. In
particular, AG is a strongly irreducible subshift of finite type.

Two elements x and y in X are said to be locally conjugate if, for a metric
d on X compatible with the topology, there exist open neighborhoods U and
V of x and y in X, respectively, and a homeomorphism γ : U → V such
that γ(x) = y and limg→∞ d(gz, gγ(z)) = 0 uniformly for z ∈ U . The triple
(U, V, γ) is called a local conjugacy from x to y, or just a local conjugacy for
short when it is not necessary to emphasize to the points x and y. Note that
local conjugacy is an equivalence relation on X which is independent of the
choice of the metric d. Endowed with G the topology whose base consists of



C∗-ALGEBRA OF LOCAL CONJUGACY EQUIVALENCE RELATION ON SFT 219

all open subsets of the form {(z, γz) : z ∈ U} for local conjugacies (U, V, γ), G
is a separable, locally compact, Hausdorff and r-discrete equivalence relation
on X ([7]). Two points x and y in X are homoclinic in the sense that, for
a given metric d on X compatible with the topology, limg→∞ d(gx, gy) = 0.
Clearly, local conjugacy implies homoclinicity. There are two homoclinic, but
not locally conjugate points in the even subshift of {0, 1}Z ([8]).

2. The Toeplitz algebra arising from the local conjugacy
equivalence relation

Let Σ be an infinite strongly irreducible subshift of finite type defined by a
finite subset Ω of G. Let {Gn}n≥1 be an increasing sequence of finite subsets
of G such that G1 = Ω3, GnΩ

3 ⊂ Gn+1 for n ≥ 1 and ∪∞
n=1Gn = G. For

convenience, we let G0 = ∅. For u, v ∈ AG, let

k(u, v) =

 1, if there is g ∈ G1

with u(g) ̸= v(g);
sup{n ≥ 2 : u(g) = v(g) for g ∈ Gn−1}, otherwise,

d(u, v) =
1

k(u, v)
,

where we use the usual convenience 1
∞ = 0. Then d is a metric on AG compat-

ible with the pointwise convergence topology.

Remark 2.1. For u, v ∈ AG, d(u, v) = 1 if and only if there exists g ∈ G1 such
that u(g) ̸= v(g). Moreover, d(u, v) ≤ 1

k for k ≥ 2 if and only if u(g) = v(g)
for all g ∈ Gk−1.

The following property for strongly irreducible subshifts comes from [1,4].

Lemma 2.2. Let F be a finite subset of G and let ∂F = FΩ2 \ F . For
u1, u2 ∈ Σ such that u1 coincides with u2 on ∂F , let u ∈ AG be defined by
u(g) = u1(g) for g ∈ FΩ and u(g) = u2(g) for g ∈ G \ FΩ. Then u ∈ Σ.

In particular, given u1, u2 ∈ Σ with u1|Gk+1\Gk
= u2|Gk+1\Gk

for some k ≥
1, let u ∈ AG be defined by u(g) = u1(g) for g ∈ Gk+1, and u(g) = u2(g) for
g ∈ G \Gk+1. Then u ∈ Σ.

In [4], Hou proved that two elements u, v ∈ Σ are locally conjugate if and
only if they are homoclinic if and only if there exists an integer n ≥ 0 such that
u coincides with v on G \Gn.

Let G = {(x, y) ∈ Σ×Σ : x and y are locally conjugate} be the local conju-
gacy equivalence relation on Σ. Let Gn = {(u, v) ∈ Σ × Σ : u|G\Gn

= v|G\Gn
}

for n ≥ 0. Then G0 = {(u, u) : u ∈ Σ} ∼= Σ, Gn ⊆ Gn+1 for each n ≥ 0, and
G = ∪n≥0Gn. Each Gn is a proper equivalence relation on Σ, and under the
relative topology of Σ× Σ, Gn is an open sub-equivalence relation of Gn+1 for
all n ≥ 0. In [4], Hou showed that the inductive limit topology τ on G coin-
cides with the topology τ0 given by local conjugatcy, so G is an AF -groupoid
in Renault’s sense ([6]).
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For u ∈ Σ and n ≥ 0, let Gn(u) and G(u) be the equivalence class of u in
Gn and G, respectively. Then each Gn(u) is finite, so G(u) = ∪∞

n=0Gn(u) is
countable. In this paper, we denote by #S the cardinality of a set S.

For each n ≥ 0, let

Rn = {f ∈ C(Σ) : f is constant on each equivalence class Gn(u)}.
Then R0 = C(Σ) and {Rn}n≥0 is a decreasing sequence of unital C∗-sub-
algebras of C(Σ).

Definition. For each n ≥ 0, let

En(f)(u) =
1

#Gn(u)

∑
w∈Gn(u)

f(w)

for each f ∈ C(Σ) and u ∈ Σ.

Lemma 2.3. Each En is a conditional expectation from C(Σ) onto Rn for
n ≥ 0, and EnEm = EmEn = Em for n ≤ m.

Proof. Clearly, E0 = I, so we can assume that n ≥ 1.
We first claim that the function #Gn(u), thus its inverse 1

#Gn(u)
, are con-

tinuous on Σ. In fact, for a sequence {um} converging to u in Σ, there is
a positive integer N such that d(um, u) ≤ 1

n+2 , thus um|Gn+1
= u|Gn+1

for

all m ≥ N . Let m ≥ N be arbitrary. For each w ∈ Gn(um), we have
w|G\Gn

= um|G\Gn
, so w|Gn+1\Gn

= u|Gn+1\Gn
. From Lemma 2.2, there exists

a unique w̃ ∈ Σ such that w̃|Gn+1 = w|Gn+1 and w̃|G\Gn+1
= u|G\Gn+1

, thus
w̃ ∈ Gn(u). On the other hand, for each ṽ ∈ Gn(u), we have ṽ|G\Gn

= u|G\Gn
,

so ṽ|Gn+1\Gn
= um|Gn+1\Gn

. From Lemma 2.2, there exists a unique v ∈ Σ
such that v|Gn+1

= ṽ|Gn+1
and v|G\Gn+1

= um|G\Gn+1
, thus v ∈ Gn(um).

Hence we have established a bijection from Gn(um) onto Gn(u), defined by
w ∈ Gn(um) 7→ w̃ ∈ Gn(u), thus

#Gn(um) = #Gn(u) for all m ≥ N .
Given f ∈ C(Σ), for ϵ > 0, there exists an integer k ≥ (n+1) such that, for

w, w̃ ∈ Σ with d(w, w̃) ≤ 1
k+1 , i.e., w|Gk

= w̃|Gk
, we have |f(w) − f(w̃)| < ϵ.

Let {um} be a sequence in Σ converging to u. We can choose an integer N
such that d(um, u) ≤ 1

k+1 (≤ 1
n+2 ) for each m ≥ N . For each m ≥ N , from

the proof of above paragraph, we have #Gn(um) = #Gn(u) and a bijection φ
from Gn(um) onto Gn(u), defined by φ : w ∈ Gn(um) 7→ w̃ ∈ Gn(u). One can
check that w|Gk

= w̃|Gk
, thus d(w, w̃) ≤ 1

k+1 for each w ∈ Gn(um). Hence, for
m ≥ N , we have

|En(f)(um)− En(f)(u)| ≤
1

#Gn(um)

∑
w∈Gn(um)

|f(w)− f(w̃)| ≤ ϵ,

so En(f) ∈ C(Σ).
Clearly, En(f)(u) = En(f)(v) for f ∈ C(Σ) and (u, v) ∈ Gn, so that En(f) ∈

Rn. One can check that En is a conditional expectation from C(Σ) onto
Rn. For two nonnegative integers n and m with n < m, since Rm ⊆ Rn
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and Ek is a conditional expectation from C(Σ) onto Rk for each k, we have
En(Em(f)) = Em(f) for each f ∈ C(Σ), so EnEm = Em.

For a subset F of G, let πF : Σ → AF be the restriction mapping defined
by πF (u) = u|F for u ∈ Σ, and let πF (Σ) be the range of πF . Let u ∈ Σ. For
η ∈ πGm\Gn

(Σ) and ξ ∈ πGn
(Σ), we let uξ,η ∈ AG be defined by uξ,η|Gn

= ξ,
uξ,η|Gm\Gn

= η and uξ,η|G\Gm
= u|G\Gm

. For η ∈ πGm\Gn
(Σ), we set Σu

η =
{ξ ∈ πGn(Σ) : uξ,η ∈ Σ}. For ξ ∈ Σu

η , one can check that w ∈ Gn(uξ,η) if and
only if there exists ξ′ ∈ Σu

η such that w = uξ′,η. Hence, for f ∈ C(Σ), one gets
that ∑

ξ∈Σu
η

En(f)(uξ,η) =
∑
ξ∈Σu

η

1
#Gn(uξ,η)

∑
ξ′∈Σu

η

f(uξ′,η) =
∑
ξ∈Σu

η

f(uξ,η).

Also since v ∈ Gm(u) if and only if there exist η ∈ πGm\Gn
(Σ) and ξ ∈ Σu

η such
that v = uξ,η, we have

EmEn(f)(u) =
1

#Gm(u)

∑
v∈Gm(u)

En(f)(v)

=
1

#Gm(u)

∑
η∈πGm\Gn (Σ)

∑
ξ∈Σu

η

En(f)(uξ,η)

=
1

#Gm(u)

∑
η∈πGm\Gn (Σ)

∑
ξ∈Σu

η

f(uξ,η)

=
1

#Gm(u)

∑
v∈Gm(u)

f(v) = Em(f)(u),

thus EmEn = Em. □

Given a unital C∗-algebra A, let R = {Rn}n≥0 be a decreasing sequence
of unital C∗-subalgebras of A with R0 = A. Assume that E = {En}n≥0 is a
sequence of faithful conditional expectations defined on A with En(A) = Rn

and En+1En = En+1 for all n ≥ 0. Recall that the Toeplitz algebra, T (R, E),
of the pair (R, E), is the universal C∗-algebra generated by A and a sequence
{ên}n≥0 of projections subject to the relations:

(i) ê0 = I, ên+1ên = ênên+1 for each n;
(ii) ênaên = En(a)ên for each n and a ∈ A.

By [2, 3.7], the natural map from A into T (R, E) is injective, so A can be
regarded as a unital C∗-subalgebra of T (R, E).

Let K̂n be the closed linear span of the set {aênb : a, b ∈ A} in T (R, E) for
each n ≥ 0, and let J be the so-called redunancy ideal, which is generated by
the following set{

n∑
k=0

ki : 0 ≤ n, ki ∈ K̂i, 0 ≤ i ≤ n,
n∑

k=0

kix = 0 for each x ∈ K̂n

}
.
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The C∗-algebra C∗(R, E) of the pair (R, E), is defined to be the quotient
of T (R, E) by the redunancy ideal J . Let q : T (R, E) → C∗(R, E) be the
quotient mapping. From [2, 3.7], the restriction of q to A is injective, so we
can identify a ∈ A with q(a) ∈ C∗(R, E), thus A is a unital C∗-subalgebra of

C∗(R, E). Write q(ên) = en and Kn = q(K̂n) for each n. Then Kn is the closed
linear span of AenA for each n and C∗(R, E) is generated by A and {en}n≥0.
If all En are of index-finite type, then {Kn}n≥0 are increasing and C∗(R, E) is
the norm-closure of

⋃∞
n=0 Kn ([2]).

Definition. Let A = C(Σ), R = {Rn}n≥0 and E = {En}n≥0. Let T (R, E)
and C∗(R, E) be the C∗-algebras for the pair (R, E).

3. Isomorphism of C∗(R, E) and C∗
r (G)

As before, let πF (Σ) be the range of the restriction mapping πF from Σ onto
AF for a subset F of G. Recall that G0 = {(u, u) : u ∈ Σ} and Gn = {(u, v) ∈
Σ× Σ : u|G\Gn

= v|G\Gn
} for each n ≥ 1. Let Λ0 = {(ξ, ξ) : ξ ∈ πG1

(Σ)} and

Λk =
{
(ξ, η) ∈ πGk+1

(Σ)× πGk+1
(Σ) : ξ|Gk+1\Gk

= η|Gk+1\Gk

}
for k ≥ 1.

Clearly, Λk ⊆ πGk+1
(Σ)× πGk+1

(Σ) is an equivalence relation on πGk+1
(Σ) for

each k ≥ 0. By Lemma 2.2, for k ≥ 0 and ξ, η ∈ πGk+1
(Σ), we have (ξ, η)

is in Λk if and only if there is (u, v) ∈ Gk with u|Gk+1
= ξ and v|Gk+1

= η.
For ξ ∈ πGk+1(Σ), we let Λk(ξ) be the equivalence class of ξ under Λk for each
k ≥ 0.

Lemma 3.1. For u ∈ Σ, we have #Gk(u) =
#Λk(u|Gk+1

) for each k ≥ 0.

Proof. If k = 0, we have #G0(u) =
#Λ0(u|G1

) = 1.
Let k ≥ 1. If w, v ∈ Gk(u), we have w|Gk+1\Gk

= u|Gk+1\Gk
= v|Gk+1\Gk

,
so we have a mapping φ : Gk(u) → Λk(u|Gk+1

), given by φ(v) = v|Gk+1
. For

ξ ∈ Λk(u|Gk+1
), choose v ∈ Σ such that v|Gk+1

= ξ and ξ|Gk+1\Gk
= u|Gk+1\Gk

.

From Lemma 2.2, the function w ∈ AG, defined by w|G\Gk+1
= u|G\Gk+1

and
w|Gk+1

= v|Gk+1
= ξ is in Σ, so that w ∈ Gk(u). One can check that φ is

injective, so it is a bijection. Hence #Gk(u) =
#Λk(u|Gk+1

). □

Let E be a faithful conditional expectation from A onto its unital C∗-
subalgebra B. A finite subset {u1, u2, . . . , un} of A is called a quasi-basis for E
if x =

∑n
i=1 uiE(u∗

i x) =
∑n

i=1 E(xu∗
i )ui for all x ∈ A. A faithful conditional

expectation E is called to be of index-finite type if there is a quasi-basis for it
[10].

Lemma 3.2. Let n ≥ 0 be given. For ξ ∈ πGn+1
(Σ), let Σξ = {u ∈ Σ :

u|Gn+1 = ξ}, Iξ be the characteristic functional of Σξ, and φξ =
√

#Λn(ξ) Iξ.
Then {φξ : ξ ∈ πGn+1

(Σ)} is a quasi-basis for En, thus En is of index-finite
type.
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Proof. One can check that Σξ is an open and closed subset of Σ, so that Iξ
and φξ are in C(Σ) for each ξ ∈ πGn+1

(Σ). Since E0 is the identity map on
A = C(Σ), we can assume that n ≥ 1. For f ∈ C(Σ) and u ∈ Σ, from Lemma
3.1, we have ∑

ξ∈πGn+1
(Σ)

φξEn(φ
∗
ξf)(u)

=
√

#Λn(u|Gn+1) En(φu|Gn+1
f)(u)

=
√

#Λn(u|Gn+1)
1

#Gn(u)

∑
v∈Λn(u)

√
#Λn(u|Gn+1)Iu|Gn+1

(v)f(v)

=
#Λn(u|Gn+1

)
#Gn(u)

f(u) = f(u).

Hence {φξ : ξ ∈ πGn+1
(Σ)} is a quasi-basis for En, thus En is of index-finite

type. □

Lemma 3.3. For k ≥ 0 and ξ, η ∈ πGk+1
(Σ), let ekξ,η = #Λk(ξ) · IξekIη ∈

C∗(R, E), where Iξ and Iη are as in Lemma 3.2. We have

(i) Iξ = ekξ,ξ;

(ii) ekξ,η ̸= 0 if and only if (ξ, η) ∈ Λk. Moreover, when k = 0, e0ξ,η =
IξIη ̸= 0 if and only if ξ = η;

(iii) For (ξ, η), (ς, ζ) ∈ Λk, e
k
ξ,ηe

k
ς,ζ = δη,ςe

k
ξ,ζ , where δη,ς is the Kronecker

symbol.

Proof. When k = 0, we have Λ0 = {(ξ, ξ) : ξ ∈ πG1
(Σ)}, so e0ξ,η = IξIη = δξ,ηIξ

for ξ, η ∈ πG1
(Σ). In this case, (i), (ii) and (iii) hold. Hence we assume that

k ≥ 1 in the following proof.
(i) By Lemma 3.2, {φξ : ξ ∈ πGk+1

(Σ)} is a quasi-basis for Ek, where

φξ =
√

#Λk(ξ)Iξ for ξ ∈ πGk+1
(Σ). It follows from [2, 6.2(i)] that∑

η∈πGk+1
(Σ)

φηekφη = e0 = I.

Hence for ξ ∈ πGk+1
(Σ), we have

Iξ =
∑

η∈πGk+1
(Σ)

Iξφηekφη = φξekφξ = #Λk(ξ) · IξekIξ = ekξ,ξ.

(ii) For ξ, η ∈ πGk+1
(Σ) and u ∈ Σ, we have

IξEk(Iη)(u) =
1

#Gk(u)
Iξ(u)

∑
v∈Gk(u)

Iη(v),

so that IξEk(Iη) ̸= 0 if and only if there exists (u, v) ∈ Gk such that u|Gk+1
= ξ

and v|Gk+1
= η, i.e., (ξ, η) ∈ Λk. Moreover, in the case that IξEk(Iη) ̸= 0, we

have IξEk(Iη)(u) =
1

#Gk(u)
Iξ(u) =

1
#Λk(ξ)

Iξ(u) for each u ∈ Σ.
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Since ekξ,η(e
k
ξ,η)

∗ = #Λk(ξ)
2IξEk(Iη)ekIξ, we have ekξ,η ̸= 0 if and only if

IξEk(Iη) ̸= 0 if and only if (ξ, η) ∈ Λk.
(iii) For (ξ, η), (ς, ζ) ∈ Λk, we have ekξ,ηe

k
ς,ζ = #Λk(ξ) ·# Λk(ς) IξekIηIςekIζ .

Thus if η ̸= ς, then IηIς = 0, so that ekξ,ηe
k
ς,ζ = 0.

If η = ς, then (ξ, ζ) ∈ Λk. In this case, from the proof in (ii), we have
IξEk(Iη) =

1
#Λk(ξ)

Iξ, thus

ekξ,ηe
k
η,ζ = #Λk(ξ)

2IξEk(Iη)ekIζ = #Λk(ξ)IξekIζ = ekξ,ζ . □

Lemma 3.4. Given k ≥ 0, for (ξ, η) ∈ Λk, let Φ = {(ξ̃, η̃) ∈ Λk+1 : ξ̃|Gk+1
=

ξ, η̃|Gk+1
= η}. Then ekξ,η =

∑
(ξ̃,η̃)∈Φ

ek+1

ξ̃,η̃
.

Proof. Let k = 0. For (ξ, ξ) ∈ Λ0, we have Φ = {(ξ̃, ξ̃) ∈ Λ1 : ξ̃|G1
= ξ}. One

can check that Iξ =
∑

ξ̃∈πG2
(Σ), ξ̃|G1

=ξ

Iξ̃. Hence the statement holds for k = 0.

Next we assume that k ≥ 1.
For ζ ∈ πGk+2

(Σ) and u ∈ Σ, one checks that
∑

v∈Gk(u)

Iζ(v) ≤ 1, and the

equality holds if and only if u|Gk+2\Gk
= ζ|Gk+2\Gk

, so that
∑

v∈Gk(u)

Iζ(v) =

Iζ|Gk+2\Gk
(u), where Iζ|Gk+2\Gk

(u) is the characteristic function of the set

Σζ|Gk+2\Gk
= {u ∈ Σ : u|Gk+2\Gk

= ζ|Gk+2\Gk
}.

Hence, given ξ ∈ πGk+1
(Σ), ζ ∈ πGk+2

(Σ) and u ∈ Σ, by noting that #Gk(u) =
#Λk(u|Gk+1

), we have

(IξEk(φζ))(u) =

√
#Λk+1(ζ)
#Gk(u)

Iξ(u)
∑

v∈Gk(u)

Iζ(v)

=

√
#Λk+1(ζ)
#Λk(ξ)

Iξ(u)Iζ|Gk+2\Gk
(u),

so

IξEk(φζ) = Ek(φζ)Iξ =

√
#Λk+1(ζ)
#Λk(ξ)

IξIζ|Gk+2\Gk
.

From the proof in Lemma 3.3, {φζ : ζ ∈ πGk+2
(Σ)} is a quasi-basis for Ek+1,

it follows from [2, 6.1] that {Ek(φζ) : ζ ∈ πGk+2
(Σ)} is a quasi-basis for the

restriction of Ek+1 to Rk. By [2, 6.2] again, we have∑
ζ∈πGk+2

(Σ)

Ek(φζ)ek+1Ek(φζ) = ek.

For (ξ, η) ∈ Λk and (ξ̃, η̃) ∈ Φ, we have #Λk(ξ) = #Λk(η), ξ|Gk+1\Gk
=

η|Gk+1\Gk
and ξ̃|Gk+2\Gk+1

= η̃|Gk+2\Gk+1
. Hence each (ξ̃, η̃) in Φ is deter-

mined uniquely by ξ̃. Let E = {ξ̃ : (ξ̃, η̃) ∈ Φ} and E(ξ̃) = {ζ ∈ πGk+2
(Σ) :
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ζ|Gk+2\Gk
= ξ̃|Gk+2\Gk

} for ξ̃ ∈ E . Since ekξ,η = #Λk(ξ)IξekIη, it follows from
the equality for ek that we have

ekξ,η = #Λk(ξ)
∑

ζ∈πGk+2
(Σ)

IξEk(φζ)ek+1Ek(φζ)Iη

=
∑

ζ∈πGk+2
(Σ)

#Λk+1(ζ)
#Λk(ξ)

IξIζ|Gk+2\Gk
ek+1Iζ|Gk+2\Gk

Iη

=
∑

ζ∈πGk+2
(Σ),ζ|Gk+1\Gk

=ξ|Gk+1\Gk

#Λk+1(ζ)
#Λk(ξ)

IξIζ|Gk+2\Gk
ek+1Iζ|Gk+2\Gk

Iη

=
∑
ξ̃∈E

∑
ζ∈E(ξ̃)

#Λk+1(ζ)
#Λk(ξ)

IξIξ̃|Gk+2\Gk+1

ek+1Iξ̃|Gk+2\Gk+1

Iη

=
∑
ξ̃∈E

#Λk+1(ξ̃)Iξ̃ek+1Iη̃

=
∑

(ξ̃,η̃)∈Φ

ek+1

ξ̃,η̃
.

□

Proposition 3.5. Given k ≥ 0, let Tk be the subalgebra generated by {ekξ,η :

(ξ, η) ∈ Λk} in C∗(R, E). Then

(i) Tk is a finite dimensional subalgebra in C∗(R, E);
(ii) Tk ⊆ Tk+1, and C∗(R, E) is the norm-closure of ∪∞

k=0Tk, so it is a
unital AF-algebra.

Proof. Recall that, for each k ≥ 0, Λk ⊆ πGk+1
(Σ)×πGk+1

(Σ) is an equivalence
relation on πGk+1

(Σ). Let {Λk(ξ1),Λk(ξ2), . . . ,Λk(ξnk
)} be the list of all Λk-

equivalence classes on πGk+1
(Σ) and denoted by mi

k the cardinal of the set
Λk(ξi) for i = 1, 2, . . . , nk.

By Lemma 3.3, one can check that {ekξ,η : ξ, η ∈ Λk(ξi)} is a complete

set of matrix units with pik =
∑

ξ∈Λk(ξi)

ekξ,ξ. Moreover,
nk∑
i=1

pik = I. Hence the

subalgebra, T i
k, generated by {ekξ,η : ξ, η ∈ Λk(ξi)} in C∗(R, E) for 1 ≤ i ≤ nk is

isomorphic to the mi
k ×mi

k matrix algebra Mmi
k
(C), thus Tk = T 1

k ⊕T 2
k ⊕· · ·⊕

Tni

k , is isomorphic to the direct sum of matrix algebras Mm1
k
(C)⊕Mm2

k
(C)⊕

· · · ⊕Mm
nk
k
(C). By the above lemma, Tk ⊆ Tk+1.

Let B be the norm-closure of ∪∞
k=0Tk in C∗(R, E). Since {Σξ : ξ ∈ πGk

(Σ),
k ≥ 0} generates the topology on Σ and Iξ = ekξ,ξ for each ξ ∈ πGk

(Σ), we

have {Iξ : ξ ∈ πGk
(Σ), k ≥ 0} generates C(Σ) as a C∗-algebra, thus C(Σ) is

contained in B. Also since

ek = (

nk∑
i=1

pik)ek(

nk∑
i=1

pik) =

nk∑
i,j=1

∑
η∈Λk(ξi)

∑
ζ∈Λk(ξj)

IηekIζ
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=

nk∑
i,j=1

∑
η∈Λk(ξi)

∑
ζ∈Λk(ξj)

1
#Λk(η)

ekη,ζ ,

we have ek ∈ B. Hence C∗(R, E) is the norm-closure of ∪∞
k=0Tk. □

Recall that G is the homoclinic equivalence relation on Σ. In the follow-
ing we will show that C∗(R, E) is ∗-isomorphic to the reduced groupoid C∗-
algebra C∗

r (G). As in the proof of above proposition, for each k ≥ 0, we
let {Λk(ξ1),Λk(ξ2), . . . ,Λk(ξnk

)} be the list of all Λk-equivalence classes on
πGk+1

(Σ) and denote by mi
k the cardinal of the set Λk(ξi) for i = 1, 2, . . . , nk.

Firstly, we have the following characterizations of C∗
r (G) given in [4].

Lemma 3.6. Given k ≥ 0, for (ξ, η) ∈ Λk, let F (ξ, η) = {(u, v) ∈ Gk, u|Gk+1
=

ξ, v|Gk+1
= η} and let fk

(ξ,η) be the characteristic function of F (ξ, η). Then

(i) Each fk
(ξ,η) is in C∗

r (G) for (ξ, η) ∈ Λk;

(ii) For each i = 1, 2, . . . , nk, {fk
ξ,η : ξ, η ∈ Λk(ξi)} is a set of matrix units

with pik =
∑

ξ∈Λk(ξi)

fk
ξ,ξ and

nk∑
i=1

pik = I. So the subalgebra Si
k generated

by {fk
ξ,η : ξ, η ∈ Λk(ξi)} in C∗

r (G) is isomorphic to mi
k × mi

k matrix

algebra Mmi
k
(C), and the subalgebra Sk generated by {fk

ξ,η : (ξ, η) ∈ Λk}
in C∗

r (G) is equal to S1
k ⊕ S2

k ⊕ · · · ⊕ Snk

k ;

(iii) For (ξ, η) ∈ Λk, fk
ξ,η =

∑
(ξ̃,η̃)∈Φ

fk+1

ξ̃,η̃
, where Φ = {(ξ̃, η̃) ∈ Λk+1 :

ξ̃|Gk+1
= ξ, η̃|Gk+1

= η} is as in Lemma 3.4, so that Sk ⊆ Sk+1;
(iv) ∪∞

k=0Sk is dense in C∗
r (G) under the reduced norm, thus C∗

r (G) is a
unital AF C∗-algebra.

Lemma 3.7. For n ≥ 0, let ěn(u, v) =

{ 1
#Gn(u)

, if (u, v) ∈ Gn

0, otherwise,
for (u, v) ∈

G. Then

(i) {ěn}n≥0 is a decreasing sequence of projections in C∗
r (G) with ě0 = I,

the unit element in C∗
r (G). Moreover, ěn ∗ f ∗ ěn = En(f) ∗ ěn for each

n;
(ii) For (ξ, η) ∈ Λn, we have Iξ ěnIη = 1

#Λn(ξ)
fn
(ξ,η).

By the universal property of the Toeplitz algebra, there is a unique ∗-
homomorphism π : T (R, E) → C∗

r (G) such that π(f) = f and π(ên) = ěn
for each n and f ∈ C(Σ).

Theorem 3.8. C∗(R, E) is ∗-isomorphic to the reduced groupoid C∗-algebra
C∗

r (G).

Proof. Let n ≥ 0, ki ∈ K̂i for 0 ≤ i ≤ n such that
∑n

i=0 kix = 0 for every

x ∈ K̂n, write k =
∑n

i=0 ki. Then π(k) ∈ C∗
r (G) ⊆ C0(G). Since the support

of each π(ki) is on Gn, we have the support of π(k) is also supported on Gn.
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For each (u, v) ∈ Gn, choose f ∈ C(Σ) such that f(v) = 1 and f(w) = 0

for every w ∈ Gn(v) \ {v}. Since fên ∈ K̂n, we have kfên = 0, so that
π(k) ∗ π(f) ∗ π(en) = 0, thus π(k) ∗ π(f) ∗ π(en)(u, v) = 0. By calculation,
we have π(k)(u, v) = 0. Then π(k) = 0. Hence the restriction of π to the
redunancy vanishes, so that it induces a ∗-homomorphism, still denoted by
π, from C∗(R, E) onto C∗

r (G). Since π(f) = f , π(en) = ěn, it follows from
Lemma 3.7 that π(ekξ,η) = fk

(ξ,η) for each k ≥ 0 and (ξ, η) ∈ Λk. Hence π is an

isomorphism. □
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