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ON DELAY DIFFERENTIAL EQUATIONS WITH

MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS

THAN ONE

Risto Korhonen and Yan Liu

Abstract. We consider the delay differential equations

b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

wk(z)
=

P (z, w(z))

Q(z, w(z))
,

where k ∈ {1, 2}, a(z), b(z) ̸≡ 0, c(z) ̸≡ 0 are rational functions, and
P (z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coeffi-

cients satisfying certain natural conditions regarding their roots. It is

shown that if this equation has a non-rational meromorphic solution w
with hyper-order ρ2(w) < 1, then either degw(P ) = degw(Q) + 1 ≤ 3 or

max{degw(P ),degw(Q)} ≤ 1. In addition, it is shown that in the case

max{degw(P ),degw(Q)} = 0 the equations above can have such a solu-
tion, with an additional zero density requirement, only if the coefficients

of the equation satisfy certain strict conditions.

1. Introduction

Ablowitz, Halburd and Herbst [1] have suggested that the existence of suf-
ficiently many finite-order meromorphic solutions of a difference equation is a
good indication that the equation in question is of Painlevé type. Further work
in this direction have supported their hypothesis, see, e.g., [9,18] as well as the
review papers [6, 10] and the references therein. Halburd and one of us [11]
have found necessary conditions for certain types of rational delay differential
equations to admit a non-rational meromorphic solution of hyper-order less
than one. The equations singled out by this method include a delay equation
of Painlevé type and equations that can be explicitly solved by elliptic func-
tions. For more recent studies applying Nevanlinna theory to delay differential
equations, see, e.g., [3, 4, 15,19].
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Grammaticos, Ramani and Moreira [7] have examined Painlevé-type delay
differential equations from the point of view of a version of singularity con-
finement. Viallet [5] has introduced a notion of algebraic entropy for such
equations. Recently, Berntson [2] has considered elliptic and soliton-type solu-
tions of examples of delay differential Painlevé equations, while Stokes [20] has
conducted research on the geometric interpretation of singularity confinement
phenomena in such equations.

We assume that the reader is familiar with standard symbols and fundamen-
tal results of Nevanlinna theory [13, 14]. We recall the definitions of the order
and the hyper-order for a meromorphic function w as follows:

ρ(w) = lim sup
r→∞

log T (r, w)

log r
, ρ2(w) = lim sup

r→∞

log log T (r, w)

log r
.

Recently, Halburd and one of us [11] applied Nevanlinna theory to study
delay differential equations and obtained the following theorem:

Theorem 1.1 ([11]). Let w(z) be a non-rational meromorphic solution of

(1.1) w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
,

where a(z) is rational, P (z, w(z)) is a polynomial in w(z) having rational co-
efficients in z, and Q(z, 0) ̸≡ 0 is a monic polynomial in w(z) with roots that
are rational in z and not roots of P (z, w(z)). If ρ2(w) < 1, then

degw(P ) = degw(Q) + 1 ≤ 3

or the degree of R(z, w(z)) as a rational function in w(z) is either 0 or 1.

The coefficients on the left hand side of equation (1.1) are selected to be of
a specific form so that the equation contains the equation

(1.2) w(z + 1)− w(z − 1) + a
w′(z)

w(z)
= b, a, b ∈ C,

obtained by Quispel, Capel and Sahadevan [17] as a symmetry reduction of the
Kac-van Moerbeke equation. Note that if a ̸= 0, then (1.2) can be mapped,
using the transformation w(z) = af(z), into

(1.3) f(z + 1)− f(z − 1) +
f ′(z)

f(z)
= C,

where C = b/a. Equation (1.2) is one of the few delay differential equations
with a known continuum limit to a Painlevé equation. It is natural to ask how
restrictive is the choice made in (1.1), and what happens if we consider a more
general equation, for example

(1.4) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
,

where, as in (1.1), we assume that a(z), b(z), c(z) is rational, P (z, w(z)) is a
polynomial in w(z) having rational coefficients in z, and Q(z, 0) ̸≡ 0 is a monic
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polynomial in w(z) with roots that are rational in z and not roots of P (z, w(z)).
In the special case, where one of b(z), c(z) vanishes identically, the equation
(1.4) has been considered in [19]. In this paper, we consider the case b(z) ̸≡ 0,
c(z) ̸≡ 0 and obtain the following theorem.

Theorem 1.2. Let w(z) be a non-rational meromorphic solution of equation
(1.4). If ρ2(w) < 1, then

(1.5) degw(P ) = degw(Q) + 1 ≤ 3 or degw(R) ≤ 1.

If, in addition, degw(R) = 3, then T (r, w) = N(r, w) + S(r, w).

The proof of Theorem 1.2 in Section 3 below is a simplified version of the
proof of Theorem 1.1 in [11]. Halburd and one of us [11] considered more
carefully the special case, where degw(R(z, w)) = 0 in (1.1):

Theorem 1.3 ([11]). Let w(z) be a non-rational meromorphic solution of

(1.6) w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= b(z),

where a(z) ̸≡ 0 and b(z) are rational. If ρ2(w) < 1, and for any ϵ > 0

N(r,
1

w
) ≥ (

3

4
+ ϵ)T (r, w) + S(r, w),

then the coefficients a(z) and b(z) are both constants.

Under the assumptions of Theorem 1.3 the equation (1.6) reduces exactly
into equation (1.2) discovered by Quispel, Capel and Sahadevan. Similarly, we
consider the case, where R(z, w(z)) = d(z) does not depend on w(z), and the
equation (1.4) becomes

(1.7) a(z)w(z + 1) + b(z)w(z − 1) + c(z)
w′(z)

w(z)
= d(z),

where a(z) ̸≡ 0, b(z) ̸≡ 0, c(z), d(z) are rational. We obtain the following
generalization of Theorem 1.3.

Theorem 1.4. Let w(z) be a non-rational meromorphic solution of equation
(1.7), where a(z) ̸≡ 0, b(z) ̸≡ 0, c(z), d(z) are rational. If ρ2(w) < 1, and for
any ε > 0

(1.8) N(r,
1

w
) ≥ (

3

4
+ ε)T (r, w) + S(r, w),

then (1.7) reduces by a linear change in w(z) into (1.3), where f(z)= a(z−1)
c(z−1)w(z)

and C ∈ C.

Finally, we consider an equation outside the class (1.4).

Theorem 1.5. Let w(z) be a non-rational meromorphic solution of

(1.9) α(z)w(z + 1) + β(z)w(z − 1) =
a(z)w′(z) + b(z)w(z)

w2(z)
+ c(z),



232 R. KORHONEN AND Y. LIU

where α(z) ̸≡ 0, β(z) ̸≡ 0, a(z) ̸≡ 0, b(z), c(z) are rational. If ρ2(w) < 1, and
for any ε > 0

(1.10) N(r,
1

w
) ≥ (

3

4
+ ε)T (r, w) + S(r, w),

then c(z) ≡ 0 and

−β(z + 2)

α(z)
=

α(z + 1)a(z + 2) + β(z + 2)a(z + 1)

α(z)a(z + 1) + β(z + 1)a(z)

and
b(z + 2)

a(z + 2)
− b(z)

a(z)
=

a′(z)

a(z)
− a′(z + 2)

a(z + 2)
+ γ(z),

where γ(z) = β′(z+2)
β(z+2) − α′(z)

α(z) .

The theorem above is a generalization of [11, Theorem 1.3], which is a special
case of Theorem 1.5 corresponding to the choices α(z) = 1 and β(z) = −1. In
the final result we consider a version of the equation (1.9), where the right hand
side is a rational function of w(z) with rational coefficients.

Theorem 1.6. Let w(z) be a non-rational meromorphic solution of

(1.11) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w2(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
,

where a(z) is rational, P (z, w(z)) is a polynomial in w(z) having rational co-
efficients in z, and Q(z, 0) ̸≡ 0 is a monic polynomial in w(z) with roots that
are rational in z and not roots of P (z, w(z)). If ρ2(w) < 1, then

(1.12) degw(P ) = degw(Q) + 1 ≤ 3 or degw(R) ≤ 1.

If, in addition, degw(R) = 3, then N
(
r, 1

w

)
= S(r, w).

The remainder of the paper is organized as follows. Section 2 contains
two auxiliary lemmas needed in the proofs of Theorems 1.2 and 1.4–1.6 in
Sections 3–6. Section 3 contains the proof of Theorem 1.2, while Sections 4–6
present the proofs of Theorems 1.4–1.6.

2. Lemmas

The Valiron-Mohon’ko identity [16,21] is a useful tool to estimate the char-
acteristic function of rational functions. Its proof can be found, for example,
in [14, Theorem 2.2.5].

Lemma 2.1 ([14], Theorem 2.2.5). Let w be a meromorphic function and
R(z, w) be a rational function in w and meromorphic in z. If the coefficients
of R(z, w) are small compared to w, then

T (r,R(z, w)) = degw(R)T (r, w) + S(r, w).
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The following lemma, related to the value distribution of meromorphic so-
lutions of a large class of differential-difference equations, is an important tool
in this article. A differential-difference polynomial in w(z) is defined by

P (z, w)=
∑
l∈L

bl(z)w(z)
l0,0w(z+c1)

l1,0 · · ·w(z+cν)
lν,0w′(z)l0,1 · · ·w(µ)(z+cν)

lν,µ ,

where c1, . . . , cν are distinct complex constants, L is a finite index set consisting
of elements of the form l = (l0,0, . . . , lν,µ) and the coefficients bl(z) are rational
functions of z for all l ∈ L.

Lemma 2.2 ([11], Lemma 2.1). Let w be a non-rational meromorphic solution
of

(2.1) P (z, w) = 0,

where P (z, w) is a differential-difference polynomial in w(z) with rational coef-
ficients, and let a1, . . . , ak be rational functions. If the following two conditions

(1) P (z, aj) ̸≡ 0 for all j ∈ {i, . . . , k};
(2) there exist s > 0 and τ ∈ (0, 1) such that

(2.2)

k∑
j=1

n

(
r,

1

w − aj

)
≤ kτn(r + s, w) +O(1)

are satisfied, then ρ2(w) ≥ 1.

3. Proof of Theorem 1.2

Liu and Song [15, Remark 1.1] found a clever way to simplify the first part
of the proof of [11, Theorem 1.1]. In the current proof of Theorem 1.2, we have
introduced new ideas to further simplify the proof method of [11, Theorem 1.1].

The first step we prove is that degw(R) ≤ 3. In the second step we discuss
four cases which depend on the numbers of the roots of Q(z, w). Suppose that
(1.5) has a non-rational meromorphic solution w(z) with ρ2(w) < 1.

First step: Since w = 0 is not a pole of R(z, w(z)), we see that either
w(z) has finitely many zeros which are the zeros of a(z) or w(z) has infinite
many zeros which are poles of w(z + 1) or w(z − 1) or both. Thus using
[15, Remark 1.1] and [12, Lemma 8.3] we obtain

N

(
r, b(z)w(z + 1) + c(z)w(z − 1) + a(z)

w′(z)

w(z)

)
≤ N(r, w(z + 1)) +N(r, w(z − 1)) +N(r, w(z)) + S(r, w)

≤ 2N(r, w(z)) +N(r, w(z)) + S(r, w).

From using Lemma 2.1, the logarithmic derivative lemma and its difference
analogue, it follows that

degw(R(z, w(z)))T (r, w(z)) ≤ T

(
r, b(z)w(z+1)+c(z)w(z−1)+a(z)

w′(z)

w(z)

)
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≤ N

(
r, b(z)w(z + 1) + c(z)w(z − 1) + a(z)

w′(z)

w(z)

)
+m(r, w(z)) + S(r, w)

≤ 2N(r, w(z)) +N(r, w(z)) +m(r, w(z)) + S(r, w)

≤ 2T (r, w(z)) +N(r, w(z)) + S(r, w).

Therefore,

(degw(R(z, w(z)))− 2)T (r, w(z)) ≤ N(r, w(z)) + S(r, w),

which implies that degw R(z) ≤ 3, i.e., degw(P ) ≤ 3, and degw(Q) ≤ 3. Also,
if degw R(z) = 3, it follows that T (r, w) = N(r, w) + S(r, w).

Second step: Case 1. If Q(z, w(z)) in (1.4) has at least two distinct non-
zero rational roots for w, say d1(z) ̸≡ 0 and d2(z) ̸≡ 0, then (1.4) can be written
as

(3.1)

b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w(z)

=
P (z, w(z))

(w(z)− d1(z))(w(z)− d2(z))Q̃(z, w(z))
,

where degw(P ) ≤ 3 and degw(Q̃) ≤ 1. Here, there exists the possibility that

Q̃(z, d1(z)) ≡ 0 or Q̃(z, d2(z)) ≡ 0. We also assume that P (z, w(z)) and

Q̃(z, w(z)) do not have common roots. Since P (z, dj) ̸≡ 0 for j = 1, 2, neither
d1(z) nor d2(z) is a solution of (3.1), and thus the first condition of Lemma 2.2
is satisfied.

Assume that ẑ ∈ C is any point satisfying

(3.2) w(ẑ) = d1(ẑ),

and such that none of the rational coefficients of (3.1) and their shifts have a
zero or a pole at ẑ and P (ẑ, w(ẑ)) ̸= 0. Let p denote the order of the zero of
w − d1 at z = ẑ. Here, ẑ is called a generic root of w − d1 of order p.

We will only consider generic roots from now on. Since the coefficients are
rational, the contributions from the non-generic roots can always be included
in an error term of the type O(log r). Next we discuss whether z = ẑ is a zero
or a pole of w(z + n) (n = 1, 2, 3) or not.

Now, by (3.1), it follows that w(ẑ + 1) = ∞ or w(ẑ − 1) = ∞ and the order
is at least p. Without loss of generality we may assume that w(ẑ + 1) = ∞.
Then, by shifting the equation (3.1), we have

(3.3)

b(z + 1)w(z + 2) + c(z + 1)w(z) + a(z + 1)
w′(z + 1)

w(z + 1)

=
P (z + 1, w(z + 1))

(w(z + 1)− d1(z + 1))(w(z + 1)− d2(z + 1))Q̃(z + 1, w(z + 1))
.

Subcase 1.1. Let

degw(P ) ≤ degw(Q̃) + 2.
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Now, by (3.3), ẑ + 2 is a pole of w(z) with order one. Therefore, for any p ≥ 1
there is a pole of order at least p at z = ẑ+1, which can be paired up with the
root of w − d1 at z = ẑ.

Using the same discussions for the roots of w − d2 without the possible
overlap in the pairing of poles with the zeros of w − d1 and w − d2, by adding
up all points ẑ such that (3.2) is valid, and similarly for w(ẑ) = d2(ẑ), it follows
that

n

(
r,

1

w − d1

)
+ n

(
r,

1

w − d2

)
≤ n(r + 1, w) +O(1).

Therefore the second condition (2.2) of Lemma 2.2 is satisfied, and so ρ2(w) ≥
1, which is a contradiction with ρ2(w) < 1.

Subcase 1.2. Let
degw(P ) > degw(Q̃) + 2.

Since degw(P ) ≤ 3, then degw(P ) = 3, and it immediately follows that degw(Q)
= 2. Thus the assertion (1.5) holds in this case.

Case 2. Suppose that Q(z, w(z)) in (1.4) has at least one non-zero rational
root, say d1(z) ̸≡ 0. Then (1.4) can be written as

(3.4) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w(z)
=

P (z, w(z))

(w(z)− d1(z))nQ̌(z, w(z))
,

where degw(P ) ≤ 3 and n + l ≤ 3, degw(Q̌) = l. Then d1(z) is not a solution
of (3.4), and thus the first condition of Lemma 2.2 is satisfied for d1. We
assume that n ∈ {2, 3} and consider the case n = 1 as a part of Case 3 below.
Suppose that ẑ is a generic root of w(z)− d1(z) of order p. Next without loss
of generality suppose that ẑ + 1 is a pole of w(z) with order np at least.

Subcase 2.1. Let
degw(P ) ≤ n+ l.

Then ẑ + 2 is a pole of w(z) with order one, and ẑ + 3 is a pole of w(z) with
order np, at least. By continuing the iteration, it yields three possible cases as
follows:

(a) w(ẑ + 4) = ∞;
(b) w(ẑ + 4) ̸= ∞ and w(ẑ + 4) ̸= d1(ẑ + 4);
(c) w(ẑ + 4) = d1(ẑ + 4).

If the case (a) or (b) is valid, then ẑ+5 is a pole of w(z) with order np, and we
have even more poles for every root of w− d1. For the case (c), it is at least in
principle possible that w(ẑ+5) is a finite value. By adding up the contribution
from all points ẑ to corresponding counting functions, it follows that

n

(
r,

1

w − d1

)
≤ 1

n
n(r + 4, w) +O(1).

Thus both conditions of Lemma 2.2 are satisfied, and so ρ2(w) ≥ 1.

Subcase 2.2. Let
degw(P ) ≥ n+ l + 1.
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Suppose again that ẑ is a generic root of w(z)− d1(z) of order p. Similarly as
before, say ẑ+1 is a pole of w(z) with order np at least. This implies that ẑ+2
is a pole of w(z) with order np at least, and so, the only way that w(ẑ+4) can
be finite is that w(ẑ + 3) = d1(ẑ + 3), or w(ẑ + 3) is a root of Q̌(z, w(z)), with
multiplicity p. In this case, we have

n

(
r,

1

w − d1

)
≤ 1

n
n(r + 3, w) +O(1)

by going through all roots of w − d1 in this way. Lemma 2.2 thus implies that
ρ2(w) ≥ 1.

Case 3. Suppose now that Q(z, w) in the equation (1.4) has only one simple
root, say d1(z) ̸≡ 0. Then (1.4) can be written as

b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w(z)
=

P (z, w(z))

w(z)− d1(z)
.

Subcase 3.1. Assume first that

degw(P ) = 3.

Let ẑ be a generic root of w(z)−d1(z) of order p. Similarly as before, say ẑ+1
is a pole of w(z) with order p. Then ẑ + 2 is a pole of w(z) with order 2p at
least, and ẑ + 3 is a pole of w(z) with order 4p, and so on. We have

n

(
r,

1

w − d1

)
≤ 1

3
n(r + 2, w) +O(1).

Lemma 2.2 thus implies that ρ2(w) ≥ 1.

Subcase 3.2. Assume that

degw(P ) ≤ 2.

If degw(P ) = 2, then degw(P ) = degw(Q) + 1 and thus the assertion (1.5)
holds. If degw(P ) ≤ 1, then degw(R) = 1.

Case 4. R(z, w(z)) is a polynomial in w(z). Then (1.4) takes the form

(3.5) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w(z)
= P (z, w(z)),

where degw(P ) ≤ 3. If degw(P ) ≤ 1, then degw(R) ≤ 1.
Assume therefore that

degw(P ) ≥ 2,

and suppose first that w(z) has infinitely many poles. Next by applying the
reasoning in the proof of [11, Lemma 3.2], we get ρ2(w) ≥ λ2(

1
w ) ≥ 1.

Suppose now that w(z) has finitely many poles, and that ρ2(w) < 1. In this
case, from (3.5), we get

(3.6) b(z)w(z)w(z + 1) + c(z)w(z)w(z − 1) + a(z)w′(z) = P (z, w(z))w(z).
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Since degw(P ) ≥ 2, using the difference analogue of Clunie Lemma [8] with [12,
Remark 5.3], m(r, w) = S(r, w), so T (r, w) = S(r, w), which is a contradiction.
The proof of Theorem 1.2 is completed.

4. Proof of Theorem 1.4

First let’s rewrite equation (1.7) as

(4.1) α(z)w(z + 1) + β(z)w(z − 1) +
w′(z)

w(z)
= γ(z),

where α(z) = a(z)
c(z) ̸≡ 0, β(z) = b(z)

c(z) ̸≡ 0, γ(z) = d(z)
c(z) are rational.

By (1.8) and by the assumption that w(z) is non-rational, it follows that
w(z) has infinitely many zeros. Since γ(z) is rational, next we only consider
the case that ẑ is a generic zero of w(z). We need to consider two cases.

Case 1. Suppose first that w(ẑ + 1) = ∞ and w(ẑ − 1) = ∞. Then from
(4.1) it follows that w(ẑ+2) = ∞ and w(ẑ−2) = ∞. Now, at least in principle
we may have w(ẑ − 3) = 0 = w(ẑ + 3). Hence, in this case we can find at least
four poles of w(z) (ignoring multiplicity) which correspond to three zeros (also
ignoring multiplicity) of w(z) and to no other zeros.

Case 2. Assume now that w(ẑ+1) = ∞ or w(ẑ− 1) = ∞. Without loss of
generality we can then suppose that w(ẑ + 1) = ∞ (the case w(ẑ − 1) = ∞ is
completely analogous). We will begin by showing that we need only consider
simple generic zeros of w(z). Let N1

(
r, 1

w

)
denote the integrated counting

function for the simple zeros of w and let N[p

(
r, 1

w

)
be the counting function

for the zeros of w, which are of order p or higher. Then N(r, 1
w ) = N1

(
r, 1

w

)
+

N[2

(
r, 1

w

)
and

N

(
r,

1

w

)
= N1

(
r,

1

w

)
+N [2

(
r,

1

w

)
≤ N1

(
r,

1

w

)
+

1

2
N[2

(
r,

1

w

)
≤ 1

2
N1

(
r,

1

w

)
+

1

2
N

(
r,

1

w

)
.

Hence, using the assumption (1.8),

N1

(
r,

1

w

)
≥ 2N

(
r,

1

w

)
−N

(
r,

1

w

)
≥

(
3

2
+ ε

)
T (r, w)−N

(
r,

1

w

)
≥

(
1

2
+ ε

)
T (r, w) + S(r, w).
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Thus there are at least “
(
1
2 + ε

)
T (r, w)” worth of simple zeros of w. So we

consider the case in which the zeros of w at ẑ are simple, and we have

w(z − 1) = K +O(z − ẑ), K ∈ C,
w(z) = A(z − ẑ) +O((z − ẑ)2), A ∈ C\{0},

α(z)w(z + 1) = − 1

z − ẑ
+O(1),

α(z + 1)w(z + 2) =
1

z − ẑ
+O(1),

α(z + 2)w(z + 3) =
α(z) + β(z + 2)

α(z)
· 1

z − ẑ
+O(z − ẑ)

(4.2)

in a neighborhood of ẑ.
If α(ẑ) + β(ẑ + 2) ̸= 0, then

α(z + 3)w(z + 4) =
α(z + 1)− β(z + 3)

α(z + 1)
· 1

z − ẑ
+O(z − ẑ).

Therefore either we have infinitely many points such that α(z) = −β(z+2) or
we can find at least four poles of w(z) for every two simple zeros of w(z), if
w(z + 4) = ∞. Even if w(z + 4) = 0, there are three poles of w(z) for every
two simple zeros of w(z), and then, either way,

n

(
r,

1

w

)
≤ 2

3
n(r + 1, w) +O(1).

Hence, for any ε > 0,

N

(
r,

1

w

)
≤

(
2

3
+

ε

2

)
N(r + 1, w) +O(log r),

and so by using [12, Lemma 8.3] to deduce that N(r+1, w) = N(r, w)+S(r, w),
we have

N

(
r,

1

w

)
≤

(
2

3
+

ε

2

)
T (r, w) + S(r, w).

This is a contradiction with the assumption (1.8).
So

(4.3) β(z + 2) = −α(z).

By substituting (4.3) into (1.7), it follows that

(4.4) α(z)w(z + 1)− α(z − 2)w(z − 1) +
w′(z)

w(z)
= γ(z).

Letting f(z) = α(z − 1)w(z), then (4.4) can be written

f(z + 1)− f(z − 1) +
f ′(z)

f(z)
= γ(z) +

α′(z − 1)

α(z − 1)
.

By using Theorem 1.3, we get γ(z) + α′(z−1)
α(z−1) = C (C ∈ C).
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5. Proof of Theorem 1.5

By (1.10) and by the assumption that w(z) is non-rational, it follows that
w(z) has infinitely many zeros. Since a(ẑ), b(ẑ) and c(ẑ) are rational, it is
sufficient to just think about the case, where z = ẑ is a generic zero of w(z)
of order p. Then by (1.9) there is a pole of w(z) of order p + 1, at least, at
z = ẑ + 1 or at z = ẑ − 1 (or at both points). We need to consider two cases.

Case 1. Assume now that w(ẑ+1) = ∞ or w(ẑ− 1) = ∞. Without loss of
generality we can then suppose that w(ẑ + 1) = ∞.

Subcase 1.1. The zero is simple, and suppose that c(z) ̸≡ 0. Then, in a
neighborhood of ẑ,

w(z − 1) = K +O(z − ẑ), K ∈ C,
w(z) = δ(z − ẑ) +O((z − ẑ)2), δ ∈ C\{0},

α(z)w(z + 1) =
a(z)

δ(z − ẑ)2
+

b(z)

δ(z − ẑ)
+ c(z)−Kβ(z) +O(z − ẑ),

α(z + 1)w(z + 2) = c(z + 1) +O(z − ẑ),

α(z + 2)w(z + 3) =
−β(z + 2)

α(z)

(
a(z)

δ(z − ẑ)2
+

b(z)

δ(z − ẑ)

)
+O(1),

(5.1)

where there can be at most finitely many ẑ such that c(ẑ + 1) = 0. Hence
there are two poles of w(z) (counting multiplicity) corresponding to one zero
(counting multiplicity) in this case.

Assume now that c(z) ≡ 0, w(z) has a pole at z = ẑ + 1, and that w(ẑ − 1)
is finite. Then, in a neighborhood of ẑ,

w(z − 1) = K +O(z − ẑ), K ∈ C,
w(z) = δ(z − ẑ) +O((z − ẑ)2), δ ∈ C\{0},

α(z)w(z + 1) =
a(z)

δ(z − ẑ)2
+

b(z)

δ(z − ẑ)
+O(1),

α(z + 1)w(z + 2) =

(
−β(z + 1)− 2α(z)a(z + 1)

a(z)

)
δ(z − ẑ)

+O((z − ẑ)2),

α(z + 2)w(z + 3) =
A(z)

δ(z − ẑ)2
+

B(z)

δ(z − ẑ)
+O(1),

(5.2)

where

A(z) =
−β(z + 2)a(z)

α(z)
+

α(z + 1)a(z)a(z + 2)

−β(z + 1)a(z)− 2α(z)a(z + 1)
,

B(z) =
−β(z + 2)D(z)b(z) + α(z)α(z + 1)a(z)b(z + 2)

α(z)D(z)

+
a(z + 2)(α(z + 1)D′(z)a(z)−D(z)(α′(z + 1)a(z) + α(z + 1)a′(z)))

D2(z)
,
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D(z) = − β(z + 1)a(z)− 2α(z)a(z + 1).

From (5.2), we find if A(z) ̸≡ 0, there are at least four poles (counting multi-
plicity) with the two zeros of w(z) (counting multiplicity). If

(5.3) A(z) =
−β(z + 2)a(z)

α(z)
+

α(z + 1)a(z)a(z + 2)

−β(z + 1)a(z)− 2α(z)a(z + 1)
= 0

and B(z) ̸≡ 0, from equation (1.9) it follows that

α(z + 3)w(z + 4) = −α(z + 2)δa(z + 3)

B(z)
+O(z − ẑ)

for all z in a neighborhood of ẑ, and so w(ẑ + 4) is finite and non-zero with
at most finitely many exceptions. Thus we can group together three poles of
w(z) (counting multiplicity) and two zeros of w(z) (ignoring multiplicity). If
A(z) ≡ 0 and B(z) ≡ 0, then w(ẑ + 3) can be finite.

Subcase 1.2. If the order of the zero of w(z) at z = ẑ is p ≥ 2, then there
are always at least three poles of w(z) (counting multiplicity) for each two zeros
of w(z) (ignoring multiplicity) in sequences (5.1) and (5.2).

If there are only finitely many zeros ẑ of w(z) such that A(z) ≡ 0 and
B(z) ≡ 0 both hold, then

n

(
r,

1

w

)
≤ 2

3
n(r + 1, w) +O(1).

Hence, for any ε > 0,

N

(
r,

1

w

)
≤

(
2

3
+

ε

2

)
N(r + 1, w) +O(log r),

and so by using [12, Lemma 8.3] to deduce that N(r+1, w) = N(r, w)+S(r, w),
we have

N

(
r,

1

w

)
≤

(
2

3
+

ε

2

)
T (r, w) + S(r, w).

This is in contradiction with (1.10), and so there must be infinitely many points
ẑ such that A(z) ≡ 0 and B(z) ≡ 0 are both satisfied.

By A(z) ≡ 0, we get

−β(z + 2)

α(z)
=

α(z + 1)a(z + 2) + β(z + 2)a(z + 1)

α(z)a(z + 1) + β(z + 1)a(z)

and by B(z) ≡ 0, it follows that

b(z + 2)

a(z + 2)
− b(z)

a(z)
=

a′(z)

a(z)
− a′(z + 2)

a(z + 2)
+ γ(z),

where γ(z) = β′(z+2)
β(z+2) − α′(z)

α(z) .

Case 2. Suppose that w(ẑ + 1) = ∞ and w(ẑ − 1) = ∞. Then, even if
w(ẑ + 2) = 0 and w(ẑ − 2) = 0, we can group together three zeros of w(z)
(ignoring multiplicity) with at least four poles of w(z) (counting multiplicity).
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6. Proof of Theorem 1.6

In the proof, as the first step we prove that degw(R) ≤ 3. In the second step
we discuss four cases depending on the numbers of the roots ofQ(z, w). Suppose
that (1.11) has a non-rational meromorphic solution w(z) with ρ2(w) < 1.

First step: Since w = 0 is not a pole of R(z, w(z)), we see that either
w(z) has finitely many zeros which are the zeros of a(z) or w(z) has infinite
many zeros which are poles of w(z + 1) or w(z − 1) or both. Next similarly to
Case 1 in the proof of Theorem 1.2, by using [12, Lemma 8.3], Lemma 2.1, the
logarithmic derivative lemma and its difference analogue, it follows that

degw(R(z, w(z)))T (r, w(z))

≤ T

(
r, b(z)w(z + 1) + c(z)w(z − 1) + a(z)

w′(z)

w2(z)

)
≤ 2N(r, w(z)) +m(r, w) +m

(
r,

1

w(z)

)
+ S(r, w)

≤ 2T (r, w(z)) +m

(
r,

1

w(z)

)
+ S(r, w).

Therefore,

(degw(R(z, w(z)))− 2)T (r, w(z)) ≤ m

(
r,

1

w(z)

)
+ S(r, w),

which implies that degw R(z) ≤ 3, i.e., degw(P ) ≤ 3, and degw(Q) ≤ 3. Fur-
thermore, if degw(R) = 3, we have N

(
r, 1

w

)
= S(r, w).

Second step: Case 1. If Q(z, w(z)) in (1.11) has at least two distinct
non-zero rational roots for w, say d1(z) ̸≡ 0 and d2(z) ̸≡ 0, then (1.11) can be
written as

(6.1)

b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w2(z)

=
P (z, w(z))

(w(z)− d1(z))(w(z)− d2(z))Q̃(z, w(z))
,

where degw(P ) ≤ 3 and degw(Q̃) ≤ 1. Here, there exists the possibility

that Q̃(z, d1(z)) ≡ 0 or Q̃(z, d2(z)) ≡ 0. We also assume that P (z, w(z))

and Q̃(z, w(z)) do not have common roots. Then neither d1(z) nor d2(z) is a
solution of (6.1), and so they satisfy the first condition of Lemma 2.2.

Assume that ẑ ∈ C is a generic root of w − d1 of order p, where the generic
root has been defined in the proof of Theorem 1.2. Similarly to Case 1 in the
proof of Theorem 1.2, next we discuss whether z = ẑ is a zero or a pole of
w(z + n) (n = 1, 2, 3) or not.

Now, by (6.1), it follows that w(z + 1) or w(z − 1) has a pole at z = ẑ of
order at least p. Without loss of generality we may assume that w(z + 1) has
such a pole at ẑ.
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Subcase 1.1. Let

(6.2) degw(P ) ≤ degw(Q̃) + 2.

If p > 1, we obtain

w(z) = d1(z) + α1(z − ẑ)p +O((z − ẑ)p+1),

w(z + 1) =
α2

(z − ẑ)p
+O((z − ẑ)1−p),

w(z + 2) = −c(z + 1)d1(z)

b(z + 1)
+

pa(z + 1)

α2b(z + 1)
· (z − ẑ)p−1

− α1c(z + 1)

b(z + 1)
(z − ẑ)p +O((z − ẑ)p+1),

w(z + 3) = −α2c(z + 2)

b(z + 2)
· 1

(z − ẑ)p
+O((z − ẑ)1−p),

w(z + 4) =
c(z + 3)c(z + 1)

b(z + 3)b(z + 1)
· d1(z) +O((z − ẑ)p−1),

(6.3)

where αj (j = 1, 2) are non-zero constants. From (6.3), it may be that w(ẑ +
2) = dj(ẑ + 2) and w(ẑ + 4) = dj(ẑ + 4) (j = 1, 2), both with the order p− 1.
In addition, we have w(ẑ + 5) = ∞, with the order p. This is the scenario,
where there are the least number of poles for the biggest number of roots of
w−dj (j = 1, 2). Namely, if w(ẑ+2) ̸= dj(ẑ+2) and w(ẑ+4) ̸= dj(ẑ+4) (j =
1, 2), then we have even more poles for every root of w−d1. Identical reasoning
holds also for the roots of w − d2. Hence in this case, we have

(6.4) n

(
r,

1

w − d1

)
+ n

(
r,

1

w − d2

)
≤ n(r + 3, w) +O(1).

If p = 1, we have

w(z) = d1(z) + α1(z − ẑ) +O((z − ẑ)2),

w(z + 1) =
α2

(z − ẑ)
+O(1),

w(z + 2) = −c(z + 1)

b(z + 1)
· d1(z) +

a(z + 1)

α2b(z + 1)
− α1c(z + 1)

b(z + 1)
(z − ẑ) +O((z − ẑ)2),

w(z + 3) = −α2c(z + 2)

b(z + 2)
· 1

(z − ẑ)
+O(1),

w(z + 4) =
c(z + 3)c(z + 1)

b(z + 3)b(z + 1)
· d1(z) +

a(z + 3)b(z + 2)

α1c(z + 2)b(z + 3)
− a(z + 1)c(z + 3)

α2b(z + 1)b(z + 3)

+O(z − ẑ),

where αj (j = 1, 2) are non-zero constants. Similarly as in the case p > 1, we
can still get

(6.5) n

(
r,

1

w − d1

)
+ n

(
r,

1

w − d2

)
≤ n(r + 3, w) +O(1).
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Hence, the second condition of Lemma 2.2 is satisfied again, which yields
ρ2(w) ≥ 1.

Subcase 1.2. Let

degw(P ) > degw(Q̃) + 2.

If degw(P ) = 3, it immediately follows that degw(Q) = 2, and so the assertion
(1.12) holds in this case.

Case 2. Suppose that Q(z, w(z)) in (1.11) has at least one multiple non-zero
rational root, say d1(z) ̸≡ 0. Then (1.11) can be written as

(6.6) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w2(z)
=

P (z, w(z))

(w(z)− d1(z))nQ̌(z, w(z))
,

where degw(P ) ≤ 3 and n + l ≤ 3, degw(Q̌) = l. Then d1(z) is not a solution
of (6.6), and thus the first condition of Lemma 2.2 is satisfied for d1. Now
we have that n ∈ {2, 3}, and we moreover suppose that ẑ is a generic root of
w(z)− d1(z) of order p. Then either w(z + 1) or w(z − 1) has a pole order np
at least, at z = ẑ, and we suppose without loss of generality that w(ẑ+1) = ∞
is such a pole.

Subcase 2.1. Let

degw(P ) ≤ n+ l.

Since n > 1, we always have np > 1, and so

w(z) = d1(z) + α1(z − ẑ)p +O((z − ẑ)p+1),

w(z + 1) =
α2

(z − ẑ)np
+O(1),

w(z + 2) = −c(z + 1)d1(z)

b(z + 1)
+

npa(z + 1)

α2b(z + 1)
· (z − ẑ)np−1

− α1c(z + 1)

b(z + 1)
(z − ẑ)p +O((z − ẑ)p+1),

w(z + 3) = −α2c(z + 2)

b(z + 2)
· 1

(z − ẑ)np
+O(1),

w(z + 4) =
c(z + 3)c(z + 1)

b(z + 3)b(z + 1)
· d1(z) +O((z − ẑ)p),

(6.7)

where αj (j = 1, 2) are non-zero constants. From (6.7), it follows that we
cannot (at least immediately) rule out the possibility that w(ẑ+2) = d1(ẑ+2)
and w(ẑ + 4) = d1(ẑ + 4), both with order at most p. It also follows that
w(ẑ + 5) = ∞, with order np. This is the case, where the amount of roots of
w − d1 is maximal compared to the number of poles of w. Hence in this case,
we have

(6.8) n

(
r,

1

w − d1

)
≤ 1

n
n(r + 3, w) +O(1).

Hence, the second condition of Lemma 2.2 is satisfied again, which yields
ρ2(w) ≥ 1.
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Subcase 2.2. Let
degw(P ) ≥ n+ l + 1.

This case is exactly the same as Subcase 2.2 in the proof of Theorem 1.2, so
we get ρ2(w) ≥ 1.

Case 3. Suppose now that Q(z, w) in the equation (1.11) has only one
simple root, say d1(z) ̸≡ 0. Then (1.11) can be written as

b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w2(z)
=

P (z, w(z))

w(z)− d1(z)
.

Subcase 3.1. Assume first that

degw(P ) = 3.

This case is the same as Subcase 3.1 in the proof of Theorem 1.2, so ρ2(w) ≥ 1.
Subcase 3.2. Assume that

degw(P ) ≤ 2.

If degw(P ) = 2, then degw(P ) = degw(Q) + 1 and thus the assertion (1.12)
holds. If degw(P ) ≤ 1, then degw(R) = 1.

Case 4. The final remaining case is the one, where R(z, w(z)) is a polyno-
mial in w(z). Then (1.11) takes the form

(6.9) b(z)w(z + 1) + c(z)w(z − 1) + a(z)
w′(z)

w2(z)
= P (z, w(z)),

where degw(P ) ≤ 3. If degw(P ) ≤ 1, then degw(R) ≤ 1.
Assume therefore that

degw(P ) ≥ 2,

and suppose first that w(z) has infinitely many poles. By applying the reason-
ing in the proof of [11, Lemma 3.2], we get ρ2(w) ≥ 1.

Suppose now that w(z) has finitely many poles, and that ρ2(w) < 1. In this
case, from (6.9), we get

(6.10) b(z)w2(z)w(z+1)+ c(z)w2(z)w(z− 1)+a(z)w′(z) = P (z, w(z))w2(z).

Since degw(P ) ≥ 2, using the difference analogue of Clunie Lemma [8] with
[12, Remark 5.3] implies m(r, w) = S(r, w), so T (r, w) = S(r, w), which is a
contradiction. The proof of Theorem 1.6 is completed.
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