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LIST INJECTIVE COLORING OF PLANAR GRAPHS
WITH GIRTH AT LEAST FIVE

HoNGYUu CHEN

ABSTRACT. A vertex coloring of a graph G is called injective if any two
vertices with a common neighbor receive distinct colors. A graph G is
injectively k-choosable if any list L of admissible colors on V(G) of size k
allows an injective coloring ¢ such that ¢(v) € L(v) whenever v € V(G).
The least k for which G is injectively k-choosable is denoted by Xé(G).
For a planar graph G, Bu et al. proved that Xé(G) < A+6if girthg>5
and maximum degree A(G) > 8. In this paper, we improve this result by
showing that x(G) < A +6 for g > 5 and arbitrary A(G).

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let
V(G), E(G), F(G), A(G), 6(G) and g(G) be the vertex set, edge set, face
set, maximum degree, minimum degree and girth of G, respectively, and let
Ng() ={u|uv € E(G)}.

An injective k-coloring of a graph G is a mapping ¢: V(G) — {1,2,...,k}
such that for any two vertices u,v € V(G), c(u) # c(v) if N(u) N N(v) # 0.
The injective chromatic number of G, denoted by x;(G), is the least integer k
such that G has an injective k-coloring.

A list assignment of a graph G is a mapping L which assigns a color list L(v)
to each vertex v € V(G). Given a list assignment L of G, an injective coloring
¢ of G is called an injective L-coloring if p(v) € L(v) for each v € V(G). A
graph G is injectively k-choosable if G has an injective L-coloring for any list
assignment L with |L(v)| > k for each v € V(G). The injective choosability
number of G, denoted by x!(G), is the least integer k such that G is injectively
k-choosable. Note that x;(G) < x(GQ) for every graph G. Borodin et al. [1]
proved that for a planar graph, x}(G) = x;(G) = A if A > 16 and g = 7, or
A>10and 8<g<9, A>6and 10<g<11l,or A=5and g > 12.

A 2-distance k-coloring of a graph G is a mapping ¢: V(G) — {1,2,...,k}
such that for any two vertices u,v € V(G), c(u) # c(v) if 1 < d(v1,v2) < 2.
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The 2-distance chromatic number of G, denoted by x2(G), is the least integer
k such that G has a 2-distance k-coloring.

The concept of injective coloring was introduced by Hahn et al. [15] in 2002.
They showed the injective chromatic number of complete graphs, paths, cycles,
stars and proved that x(G) < x;(G) < A%(G) — A(G) + 1 if G is connected
and G # K.

Obviously, an injective coloring is not necessarily proper, and this is the
only difference between an injective coloring and a 2-distance coloring. But if
every edge of a graph is incident with a triangle, they are the same. For the 2-
distance coloring of a planar graph, Wegner [19] posed the following conjecture
in 1977.

Conjecture A. Let G be a planar graph with maximum degree A.
(1) x2(G) < Tit A =3;
(2) x2(G) < A+5if4<ALT;
(3) x2(G) < %] +1if A > 8.

On the trivial fact that x;(G) < x2(G), in 2010, Luzar posed the following
conjecture about planar graphs in [17]. The upper bounds are tight if Conjec-
ture B is true.

Conjecture B. Let G be a planar graph with maximum degree A.

(1) x:(G) <5 if A =3;

(2) vi(G) < A4+5if4<ALT;

(3) xi(G) < P2 +1ifA>8,

Clearly, A(G) < x;(G) < |[V(G)], so it seems natural to describe graphs of
Xi(G) = A(G). For a planar graph, the following sufficient conditions (in terms
of g and A) are known: A > 71l and g > 7 [2], A > 4 and g > 13 [9], and
A>3 and g > 19 [18].

Many researches about the injective chromatic number have been studied un-
der the limitation of maximum degree A and maximum average degree mad(G),
where mad(G) = max@)#HgG{%}, there are the following results.

Theorem 1. Let G be a graph with mazximum degree A.

(1) xi(G) < A+3 if mad(G) < &5 xi(G) < A +4 if mad(G) < 3; xi(G) <
A+ 8 if mad(G) < L2 [14].

(2) XHG) < A+2 if mad(G) < & and A > 4; X{(G) <5 if mad(G) < 33
and A =3 [10].

(3) X4(G) < A+2 if mad(G) < 3 and A > 12; x}(G) < A+4 if mad(G) < 2
and A > 30; X4(G) < A+5 if mad(G) < L and A > 18; X¥\(G) < A +6 if
mad(G) < 1 and A > 14 [16].

(4) xi(G) < A+1if mad(G) < 5; xi(G) = A if mad(G) < 12 [9].

For a planar graph G with girth at least g, mad(G) < %. The issue of
the injective chromatic number is discussed under the limitation of girth and
maximum degree in [1,4,5,7,8,11,12], which can be described as follows.
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Theorem 2. Let G be a planar graph with g(G) > ¢' and A(G) > D.

(1) If (¢', D) € {(9,4),(7,7), (6, 17)}, then xi(

(2) If (¢, D) € {(7,1), (6,9)}, then i(G) < A +2.

(3) If (4. D) = {(8.5), then x{(G) < A + 1. I (¢/, D) = {(6,8)}, then
XHG) < A+2. If (¢/,D) = {(6,24)}, then x{(G) < A+ 1. If ¢ = 6, then
XHG) < A+3.

For a planar graph G with girth g > 5, Bu et al. [7] proved that if A > 8,
then x(G) < A + 6. In [5], they proved that if A > 13, then x}(G) < A +4,
and for any A, x}(G) < A+7, and in [3], they improved the result and showed
that if A > 11, then x}(G) < A + 4. In [6], Bu et al. proved that if A > 10,
then x!(G) < A +5. So far, for a planar graph G with girth ¢ > 5 and for
any A, the best result of injective chromatic number is x;(G) < A+ 6 [13]. In
this paper, we improve these results by proving the following theorem, which
is closer to Conjecture B.

Theorem 3. If G is a planar graph with girth g(G) > 5, then x'(G) < A +6.
2. Structural properties of critical graphs

A graph G is called k-critical if G does not admit any injective L-coloring
with |L(v)| > k for each v € V(G), but any subgraph G does. In this section,
we will investigate some structural properties of critical graphs.

For convenience, we introduce some notations. A k-, kT- or k~- vertex
is a vertex of degree k, at least k, or at most k, respectively. Similarly, we
can define the k-, k™~ or k~-face. A k-, k™ or k™ -neighbor of v is a k-,
kT~ or k~-vertex adjacent to v. For each v € V(G), let vy, va,... »Vd(v) be
the neighbors of v with d(vi1) < d(ve) < .-+ < d(vgw)). Let ng(v) be the
number of k-neighbors of v, ny+(v) be the number of k*-neighbors of v, and
Sa(v) = X uenw (dw) = 1) =32, cn(p) d(u) — d(v). Obviously, the number of
vertices that have a common neighbor with v in G is at most Sg(v). So, every
vertex v has at most S (v) forbidden colors if the other vertices are injectively
colored. Let G be a (A + 6)-critical graph, a 3-vertex v of G is called bad if
Sa(v) < A+ 5. For integers k and d, a k(d)-vertex is a k-vertex adjacent to d
2-vertices.

At the end of this section, we present the following properties of (A + 6)-
critical graphs which have been proved in [4].

Lemma 4. §(G) > 2.
Lemma 5. For any edge uwv € E(G), max{Sg(u), Sc(v)} > A +6.
Lemma 6. G has no adjacent 2-vertices.

Lemma 7. Suppose that 3 < d(v) < 7. If vy is a 2-neighbor of v, r = nz+(v)
and w; (i=1,...,7) is the 3% -neighbor of v, then

(1) r>2,

(2) S0 d(ui) > A+ 6+2r —d(v).

i=1
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3. Proof of Theorem 3

In this section, we always assume that a planar graph G has been embed-
ded in the plane. The theorem is proved by contradiction. Suppose that the
theorem is false. Let G be a (A + 6)-critical graph. It is easy to see that G is
connected and 6(G) > 2.

We apply a discharging procedure to complete the proof by showing that
G does not exist. We assign to each vertex v a charge w(v) such that w(v) =
3d(v) — 10 and to each face f a charge w(f) = 2d(f) — 10. Applying Euler’s
formula |V(G)|—|E(G)|+|F(G)| = 2 and the Handshaking Lemmas for vertices
and faces for a plane graph, we have

Z w(z) = —20.

zeVUF

If we obtain a new weight w*(x) for all z € V(G) U F(G) by transferring
weights from one element to another, then we also have > w*(z) = —20. If
these transfers result in w*(z) > 0 for all z € V(G) U F(G), then we get a
contradiction and the theorem is proved.

In [4], Bu et al. have proved that for a planar graph with girth ¢ > 5 and
A > 8, X{(G) < A +6. In the following, we only need to consider the case
when A < 7.

Claim 1. The following configurations are forbidden.
(1) 3)-vertex adjacent to a 5(1)-vertex.
2 4)-vertex adjacent to a 4(1)-vertex.
4)-vertex adjacent to a 5(3)-vertex.
-vertex adjacent to two 4(2)-vertices.
-vertex adjacent to a 5(3)-vertex, a 3-vertex and a 4-vertex.

A
A
A
A
A
A -vertex adjacent to a 3(1)-vertex.

5(
6(4)
6(4)
6(3)
6(3)
7(5)

Proof. For (1), suppose that v is a 5(3)-vertex with d(v;) = 2 for 1 < ¢ < 3 and
d(v4) = 5, where vy is a 5(1)-vertex. Let u be the adjacent 2-vertex of vy. For
convenience, we assume that d(vs) = A. Let L be an arbitrary list assignment
of G with |L(z)| > A+ 6 for each x € V(G). By the choice of G, G — vv; has
an injective L-coloring c¢. Now we erase the colors on u, v and v;. Our aim is
to recolor u, v and v; to extend c¢ from G —vv; to the whole graph G to obtain
a contradiction. Let L (v) be the set of available colors of v. Obviously,

L(v1) > A+6—(A+5—d(v)) > 3,
Li(v)>A+6—-(2x3+5+A—d(v)—1)>1,
Li(u)>A+6—(A+5—d(u)—1)>4.

So we can recolor v,vy,u in turn. The obtained coloring is an injective L-

coloring of G.
For (2), the proof is quite similar to that of (1), and we omit it.
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For (3), suppose that v is a 6(4)-vertex with d(v;) = 2 for 1 < i < 4 and
d(vs) = 5, where v is a 5(3)-vertex. Let u,w, z be the adjacent 2-vertices of vs.
For convenience, we consider the worst case and assume that d(veg) = A. Let L
be an arbitrary list assignment of G with |L(z)| > A+6 for each z € V(G). By
the choice of G, G —vv; has an injective L-coloring c¢. Now we erase the colors
on vy,v,u,w,z. Our aim is to recolor vy, v, u, w, z to extend ¢ from G — vv; to
the whole graph G to obtain a contradiction. Let L/ (v) be the set of available
colors of v. Obviously,

Li(v1) > A+6—(A+6—d(vy)) >2,

(
Li(v)>A+6—(2x4+5+A—d(v)—3)>2,
L(u)>A+6—(A+5—d(u)—3)>6,
L(w)>A+6—(A+5—d(w)—3)>6,
L(2)>A+6—(A+5—d(z) —3) >6.

So we can recolor v, vy, u,w, z in turn to obtain an injective L-coloring of G.
For (4), suppose that v is a 6(3)-vertex with d(v;) = 2 for 1 < i < 3 and
d(vs) = d(vs) = 4. Let x;,y;,2 be the other neighbor of v; and d(z;) =
d(y;) = 2 for i = 4,5, respectively. For convenience, we consider the worst case
and assume that d(vg) = A. Let L be an arbitrary list assignment of G with
|L(x)| > A+6 for each z € V(G). By the choice of G, G —vv; has an injective
L-coloring ¢. Now we erase the colors on v1,v,24,y4,%5,y5. Our aim is to
recolor vy, v, x4, Y4, Ts5,ys to extend ¢ from G — vv; to the whole graph G to
obtain a contradiction. Let L. (v) be the set of available colors of v. Obviously,

Lo(vi) 2 A+6—(A+6—d(v1)) > 2,
L) >A+6—(2x3+2x4+A—d(v)—4) > 2,
L (z4) > A46—(A+4—d(zs) —2) > 6,
Li(ya) > 6, Le(xs) > 6, Li(ys) > 6.
So we can recolor v, vy, x4, Y4, T5,ys in turn. The obtained coloring is an injec-
tive L-coloring of G.

For (5), suppose that v is a 6(3)-vertex with d(v;) = 2 for 1 < i < 3,
d(vg) = 3, d(vs) = 4 and d(vg) = 5, where vg is a 5(3)-vertex. Let u,w,z
be the adjacent 2-vertices of vg. Let L be an arbitrary list assignment of G
with |L(z)| > A 4 6 for each z € V(G). By the choice of G, G — vv; has an
injective L-coloring ¢. Now we erase the colors on vy, v, u,w, z. Our aim is to

recolor vy, v, u,w, z to extend ¢ from G — vv; to the whole graph G to obtain
a contradiction. Let L (v) be the set of available colors of v. Obviously,

LL('UI) ZA—FG—(A—FG—d(’Ul)) > 2,
L(w)>A+6—(2x3+3+4+5—d(v)—3) >3,
Li(u) > A46—(A+5—d(u) —3) > 6, L(w) >6, Li(z) > 6.
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So we can recolor v, vy, u,w, z in turn to obtain an injective L-coloring of G.
For (6), suppose that v is a 7(5)-vertex with d(v;) = 2 for 1 < i < 5,
d(ve) = 3, where vg is a 3(1)-vertex. Let u be the adjacent 2-vertices of vg. For
convenience, we assume that d(v7) = A. Let L be an arbitrary list assignment
of G with |L(z)| > A+6 for each = € V(G). By the choice of G, G —vv; has an
injective L-coloring c¢. Now we erase the colors on vy, v, u. Our aim is to recolor
v1, v, u to extend ¢ from G —vwv; to the whole graph G to obtain a contradiction.
Let L. (v) be the set of available colors of v. Obviously, L’ (vy) > 1, L/ (v) > 1,
L!(u) > 6. So we can recolor v,v1,u in turn to obtain an injective L-coloring
of G. (]

We list the following discharging rules.

R1. Each 2-vertex receives 2 from each adjacent 37 -vertex.
R2. Suppose d(v) = 3 and uv € E.
(1) A 3(1)-vertex receives 2 from each adjacent 7-vertex.
(2) Suppose d(u) = 3 and Sg(u) > A+6. If Sg(v) < A+ 5, then v
receives % from u. Otherwise, v receives nothing from w.
(3) If 4 < d(u) < 5, then v receives % from u.
(4) If 6 < d(u) < 7 and v is adjacent to a bad 3-vertex, then v receives
% from u. Otherwise, v receives 3 from u except v is a 3(1)-vertex.
R3. Each 4(2)-vertex receives 1 from each adjacent 67-vertex. Each 4(1)-
vertex receives % from each adjacent 5T -vertex.
R4. Each 5(3)-vertex receives 3 from each adjacent 5(0)-vertex, 3 from each

adjacent 6T-vertex.

Let f be a k-face of G, k > 5. Obviously, w*(f) = 2k — 10 > 0.

Let v be a k-vertex of G, k > 2. We will check that each vertex has a
non-negative charge after the discharging process.

If k =2, then w(v) = —4. By R1, w*(v) = —4+2x2=0.

If k = 3, then w(v) = —1. By Lemma 7(1), na(v) < 1. If ngo(v) = 1, then
d(ve) + d(vs) > A+ 7 by Lemma 7(2), that is, A = 7 and d(v2) = d(v3) = 7.
So w*(v) = —1—2+2x 2 =0 by R1 and R2(1).

Suppose ng(v) = 0. If 2 < nz(v) < 3, it is obviously Sg(v) < A+ 5. So
Sa(v;)) > A+6 for i = 1,2,3. By R2, v receives at least % from v;. So
w*(v) > =143 x5 =0.

Suppose ng(v) = 1. If Sg(v) < A+5, then Sg(v1) > A+6 by Lemma 5. By
R2, v receives at least % from v;, 1 =1,2,3. Sow*(v) > 71+3x% = 0. Suppose
Se(v) = A+ 6. Then d(vs) > d(v2) > 6. If Sg(v1) < A+ 5, then v sends %
to v; and receives % from each of vy and vs. So w*(v) > —1 — % + 2 x % =0.
If Sg(v1) > A+ 6, then v receives % from each of vy and v3. So w*(v) >
-1+2x4=0.

If ng(v) = 0, then v receives at least 1 from each adjacent vertex by R2. So
w*(v) ==1+3x 3 =0.

If k =4, then w(v) = 2. By Lemma 7(1), na(v) < 2.
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If na(v) = 2, then the other two adjacent vertices must be 67 -vertices. By
R3, w*(v) >2-2x2+2x1=0.

If ny(v) = 1, then ng(v) < 1. (If n3(v) > 2, then Sg(v) < A +6, Sg(v1) <
A + 6, a contradiction to Lemma 5.) If ng(v) = 1, then vz, vy are 51 -vertices
by Lemma 5. So w*(v) >2—2—%+2x ¢ = 0by R3. If ng(v) = 0, then
w*(v) >2-2=0.

If ny(v) = 0, then w*(v) >2—4 x £ > 0.

If £ = 5, then w(v) = 5. By Lemma 7(1), na(v) < 3. Suppose na(v) = 3.
By Lemma 7(2), the other two adjacent vertices must be 5T -vertices, and the
5-vertex adjacent to v must be a 5(0)-vertex by Claim 1(1). It follows that
w*(v) > 5—3x2+2x % =0by R4. If ny(v) = 2, then n3(v) <1 by Lemma
5. Hence, w*(v) >5—-2x2—1x 1—2x ¢ >0byRIl, R2, R3 and R4. If
nz(v) =1, then w*(v) >5—-1x2—4x 1 > 0. If ny(v) = 0, then v sends at
most 3 to its neighbors by R2, R3 and R4. So w*(v) >5—5x 3 > 0.

If k =6, then A > 6 and w(v) = 8. By Lemma 7(1), na(v) < 4. If na(v) =4,
then d(vs) + d(vs) > A + 4 by Lemma 7(2). So min{d(vs),d(ve¢)} > 4. By
Claim 1(2) and Claim 1(3), vs,vs are not 4(1)-vertices, 4(2)-vertices, 5(3)-
vertices. By R3, R4, v sends nothing to vs,v. So w*(v) > 8 —-2x4 = 0.
If ny(v) = 3, by Lemma 7(2), d(vs) + d(vs) + d(vg) > A+ 6 > 12. So the
degree sequence of vy, vs,ve is (3,3,67), or (3,4,57) (the 5-vertex is not a
5(3)-vertex by Claim 1(5)), or (3,5%,5T), or (4,47,4%") (there exists at most
one 4(2)-vertex by Claim 1(4)), or (5%,57,5%). By R2, R3 and R4, v sends
at most max{2>< 53 +1,§ + 2 x 1,1+2x %,3>< %} = 2 to v4,v5 and vg
in total. Sow#* (v) > 8—-3x2—-2=0. If 0 < na(v) < 2, then w*(v) >
8 — 2ng(v) — 1 x (k — na(v)) > 0.

If k=7, then A =7 and w(v) = 11. By Lemma 7(1), n2(v) <5.

Suppose ng(v) = 5. By Lemma 7(2), d(ve) + d(v7) > A+ 3 = 10. So the
degree sequence of (vg, v7) is (3,7), or (4,67) or (57,5T). By Claim 1(6), a 7(5)-
vertex is not adjacent to a 3(1)-vertex, and v sends at most max{2,1,2x 1} =1
to vg and vy in total. So w*(v) > 11 —-5%x2—-1=0.

Suppose na(v) = 4. By Lemma 7(2), d(vs) + d(vs) + d(v7) > A+ 5 = 12.
So the degree sequence of (vs,ve, v7) is (3,3,6T), or (3,4%,57) or (47,4F, 4T).
Thus v sends at most max{% x 2, % +1+ %, 3x 1} = 3 to vs, vg and v7 in total.
Sow*(v) >11 -4 x2-3=0.

Suppose na(v) = 3. Then d(vy) + d(vs) + d(ve) + d(vy) > A+ 7 = 14
by Lemma 7(2). So nz(v) < 3. If ng(v) = 3, then d(v;) > 5. So w*(v) >
11-3x2-3x3—-1 = 0. If ng(v) <2, thenw*(v) > 11-3x2-2x2-2x1=0.

Suppose ny(v) = 2. It is easy to check nsg(v) < 4. So w*(v) > 11 —2x 2 —
4 X % — 1 =0 by the discharging rules.

Suppose n2(v) < 1. Then v sends 2 to each 2-neighbor and at most 2 to
each other neighbor. So w*(v) > 11 —-2x1—6 x 7—0

We have checked w*(z) > 0 for all z € V(G) U F(G), a contradiction occurs

because 0 < >y upw*(x) =Y cvupw(z) = —20.
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This completes the proof when A < 7 and hence that of the whole Theorem
3.

Acknowledgment. The author thanks the anonymous reviewers for their
useful comments.
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