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LIST INJECTIVE COLORING OF PLANAR GRAPHS

WITH GIRTH AT LEAST FIVE

Hongyu Chen

Abstract. A vertex coloring of a graph G is called injective if any two

vertices with a common neighbor receive distinct colors. A graph G is
injectively k-choosable if any list L of admissible colors on V (G) of size k

allows an injective coloring φ such that φ(v) ∈ L(v) whenever v ∈ V (G).
The least k for which G is injectively k-choosable is denoted by χl

i(G).

For a planar graph G, Bu et al. proved that χl
i(G) ≤ ∆+6 if girth g ≥ 5

and maximum degree ∆(G) ≥ 8. In this paper, we improve this result by

showing that χl
i(G) ≤ ∆+ 6 for g ≥ 5 and arbitrary ∆(G).

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let
V (G), E(G), F (G), ∆(G), δ(G) and g(G) be the vertex set, edge set, face
set, maximum degree, minimum degree and girth of G, respectively, and let
NG(v) = {u |uv ∈ E(G)}.

An injective k-coloring of a graph G is a mapping c: V (G) → {1, 2, . . . , k}
such that for any two vertices u, v ∈ V (G), c(u) ̸= c(v) if N(u) ∩ N(v) ̸= ∅.
The injective chromatic number of G, denoted by χi(G), is the least integer k
such that G has an injective k-coloring.

A list assignment of a graph G is a mapping L which assigns a color list L(v)
to each vertex v ∈ V (G). Given a list assignment L of G, an injective coloring
φ of G is called an injective L-coloring if φ(v) ∈ L(v) for each v ∈ V (G). A
graph G is injectively k-choosable if G has an injective L-coloring for any list
assignment L with |L(v)| ≥ k for each v ∈ V (G). The injective choosability
number of G, denoted by χl

i(G), is the least integer k such that G is injectively
k-choosable. Note that χi(G) ≤ χl

i(G) for every graph G. Borodin et al. [1]
proved that for a planar graph, χl

i(G) = χi(G) = ∆ if ∆ ≥ 16 and g = 7, or
∆ ≥ 10 and 8 ≤ g ≤ 9, ∆ ≥ 6 and 10 ≤ g ≤ 11, or ∆ = 5 and g ≥ 12.

A 2-distance k-coloring of a graph G is a mapping c: V (G) → {1, 2, . . . , k}
such that for any two vertices u, v ∈ V (G), c(u) ̸= c(v) if 1 ≤ d(v1, v2) ≤ 2.
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The 2-distance chromatic number of G, denoted by χ2(G), is the least integer
k such that G has a 2-distance k-coloring.

The concept of injective coloring was introduced by Hahn et al. [15] in 2002.
They showed the injective chromatic number of complete graphs, paths, cycles,
stars and proved that χ(G) ≤ χi(G) ≤ ∆2(G) − ∆(G) + 1 if G is connected
and G ̸= K2.

Obviously, an injective coloring is not necessarily proper, and this is the
only difference between an injective coloring and a 2-distance coloring. But if
every edge of a graph is incident with a triangle, they are the same. For the 2-
distance coloring of a planar graph, Wegner [19] posed the following conjecture
in 1977.

Conjecture A. Let G be a planar graph with maximum degree ∆.
(1) χ2(G) ≤ 7 if ∆ = 3;
(2) χ2(G) ≤ ∆+ 5 if 4 ≤ ∆ ≤ 7;
(3) χ2(G) ≤ ⌊ 3∆

2 ⌋+ 1 if ∆ ≥ 8.

On the trivial fact that χi(G) ≤ χ2(G), in 2010, Lužar posed the following
conjecture about planar graphs in [17]. The upper bounds are tight if Conjec-
ture B is true.

Conjecture B. Let G be a planar graph with maximum degree ∆.
(1) χi(G) ≤ 5 if ∆ = 3;
(2) χi(G) ≤ ∆+ 5 if 4 ≤ ∆ ≤ 7;
(3) χi(G) ≤ ⌊ 3∆

2 ⌋+ 1 if ∆ ≥ 8.

Clearly, ∆(G) ≤ χi(G) ≤ |V (G)|, so it seems natural to describe graphs of
χi(G) = ∆(G). For a planar graph, the following sufficient conditions (in terms
of g and ∆) are known: ∆ ≥ 71 and g ≥ 7 [2], ∆ ≥ 4 and g ≥ 13 [9], and
∆ ≥ 3 and g ≥ 19 [18].

Many researches about the injective chromatic number have been studied un-
der the limitation of maximum degree ∆ and maximum average degreemad(G),

where mad(G) = max∅̸=H⊆G{ 2|E(H)|
|V (H)| }, there are the following results.

Theorem 1. Let G be a graph with maximum degree ∆.
(1) χi(G) ≤ ∆+ 3 if mad(G) < 14

5 ; χi(G) ≤ ∆+ 4 if mad(G) < 3; χi(G) ≤
∆+ 8 if mad(G) < 10

3 [14].

(2) χl
i(G) ≤ ∆+ 2 if mad(G) < 14

5 and ∆ ≥ 4; χl
i(G) ≤ 5 if mad(G) < 36

13
and ∆ = 3 [10].

(3) χl
i(G) ≤ ∆+2 if mad(G) < 3 and ∆ ≥ 12; χl

i(G) ≤ ∆+4 if mad(G) < 10
3

and ∆ ≥ 30; χl
i(G) ≤ ∆ + 5 if mad(G) < 10

3 and ∆ ≥ 18; χl
i(G) ≤ ∆ + 6 if

mad(G) < 10
3 and ∆ ≥ 14 [16].

(4) χi(G) ≤ ∆+ 1 if mad(G) ≤ 5
2 ; χi(G) = ∆ if mad(G) < 42

19 [9].

For a planar graph G with girth at least g, mad(G) < 2g
g−2 . The issue of

the injective chromatic number is discussed under the limitation of girth and
maximum degree in [1, 4, 5, 7, 8, 11,12], which can be described as follows.
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Theorem 2. Let G be a planar graph with g(G) ≥ g′ and ∆(G) ≥ D.
(1) If (g′, D) ∈ {(9, 4), (7, 7), (6, 17)}, then χi(G) ≤ ∆+ 1.
(2) If (g′, D) ∈ {(7, 1), (6, 9)}, then χi(G) ≤ ∆+ 2.
(3) If (g′, D) = {(8, 5)}, then χl

i(G) ≤ ∆ + 1. If (g′, D) = {(6, 8)}, then
χl
i(G) ≤ ∆ + 2. If (g′, D) = {(6, 24)}, then χl

i(G) ≤ ∆ + 1. If g′ = 6, then
χl
i(G) ≤ ∆+ 3.

For a planar graph G with girth g ≥ 5, Bu et al. [7] proved that if ∆ ≥ 8,
then χl

i(G) ≤ ∆+ 6. In [5], they proved that if ∆ ≥ 13, then χl
i(G) ≤ ∆+ 4,

and for any ∆, χl
i(G) ≤ ∆+7, and in [3], they improved the result and showed

that if ∆ ≥ 11, then χl
i(G) ≤ ∆ + 4. In [6], Bu et al. proved that if ∆ ≥ 10,

then χl
i(G) ≤ ∆ + 5. So far, for a planar graph G with girth g ≥ 5 and for

any ∆, the best result of injective chromatic number is χi(G) ≤ ∆+ 6 [13]. In
this paper, we improve these results by proving the following theorem, which
is closer to Conjecture B.

Theorem 3. If G is a planar graph with girth g(G) ≥ 5, then χl
i(G) ≤ ∆+6.

2. Structural properties of critical graphs

A graph G is called k-critical if G does not admit any injective L-coloring
with |L(v)| ≥ k for each v ∈ V (G), but any subgraph G does. In this section,
we will investigate some structural properties of critical graphs.

For convenience, we introduce some notations. A k-, k+- or k−- vertex
is a vertex of degree k, at least k, or at most k, respectively. Similarly, we
can define the k-, k+- or k−-face. A k-, k+- or k−-neighbor of v is a k-,
k+- or k−-vertex adjacent to v. For each v ∈ V (G), let v1, v2, . . . , vd(v) be
the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(vd(v)). Let nk(v) be the

number of k-neighbors of v, nk+(v) be the number of k+-neighbors of v, and
SG(v) =

∑
u∈N(v)(d(u)− 1) =

∑
u∈N(v) d(u)− d(v). Obviously, the number of

vertices that have a common neighbor with v in G is at most SG(v). So, every
vertex v has at most SG(v) forbidden colors if the other vertices are injectively
colored. Let G be a (∆ + 6)-critical graph, a 3-vertex v of G is called bad if
SG(v) ≤ ∆+ 5. For integers k and d, a k(d)-vertex is a k-vertex adjacent to d
2-vertices.

At the end of this section, we present the following properties of (∆ + 6)-
critical graphs which have been proved in [4].

Lemma 4. δ(G) ≥ 2.

Lemma 5. For any edge uv ∈ E(G), max{SG(u), SG(v)} ≥ ∆+ 6.

Lemma 6. G has no adjacent 2-vertices.

Lemma 7. Suppose that 3 ≤ d(v) ≤ 7. If v1 is a 2-neighbor of v, r = n3+(v)
and ui (i = 1, . . . , r) is the 3+-neighbor of v, then

(1) r ≥ 2,
(2)

∑r
i=1 d(ui) ≥ ∆+ 6 + 2r − d(v).
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3. Proof of Theorem 3

In this section, we always assume that a planar graph G has been embed-
ded in the plane. The theorem is proved by contradiction. Suppose that the
theorem is false. Let G be a (∆ + 6)-critical graph. It is easy to see that G is
connected and δ(G) ≥ 2.

We apply a discharging procedure to complete the proof by showing that
G does not exist. We assign to each vertex v a charge ω(v) such that ω(v) =
3d(v) − 10 and to each face f a charge ω(f) = 2d(f) − 10. Applying Euler’s
formula |V (G)|−|E(G)|+|F (G)| = 2 and the Handshaking Lemmas for vertices
and faces for a plane graph, we have∑

x∈V ∪F

ω(x) = −20.

If we obtain a new weight ω∗(x) for all x ∈ V (G) ∪ F (G) by transferring
weights from one element to another, then we also have

∑
ω∗(x) = −20. If

these transfers result in ω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G), then we get a
contradiction and the theorem is proved.

In [4], Bu et al. have proved that for a planar graph with girth g ≥ 5 and
∆ ≥ 8, χl

i(G) ≤ ∆ + 6. In the following, we only need to consider the case
when ∆ ≤ 7.

Claim 1. The following configurations are forbidden.
(1) A 5(3)-vertex adjacent to a 5(1)-vertex.
(2) A 6(4)-vertex adjacent to a 4(1)-vertex.
(3) A 6(4)-vertex adjacent to a 5(3)-vertex.
(4) A 6(3)-vertex adjacent to two 4(2)-vertices.
(5) A 6(3)-vertex adjacent to a 5(3)-vertex, a 3-vertex and a 4-vertex.
(6) A 7(5)-vertex adjacent to a 3(1)-vertex.

Proof. For (1), suppose that v is a 5(3)-vertex with d(vi) = 2 for 1 ≤ i ≤ 3 and
d(v4) = 5, where v4 is a 5(1)-vertex. Let u be the adjacent 2-vertex of v4. For
convenience, we assume that d(v5) = ∆. Let L be an arbitrary list assignment
of G with |L(x)| ≥ ∆+ 6 for each x ∈ V (G). By the choice of G, G− vv1 has
an injective L-coloring c. Now we erase the colors on u, v and v1. Our aim is
to recolor u, v and v1 to extend c from G− vv1 to the whole graph G to obtain
a contradiction. Let L′

c(v) be the set of available colors of v. Obviously,

L′
c(v1) ≥ ∆+ 6− (∆ + 5− d(v1)) ≥ 3,

L′
c(v) ≥ ∆+ 6− (2× 3 + 5 +∆− d(v)− 1) ≥ 1,

L′
c(u) ≥ ∆+ 6− (∆ + 5− d(u)− 1) ≥ 4.

So we can recolor v, v1, u in turn. The obtained coloring is an injective L-
coloring of G.

For (2), the proof is quite similar to that of (1), and we omit it.
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For (3), suppose that v is a 6(4)-vertex with d(vi) = 2 for 1 ≤ i ≤ 4 and
d(v5) = 5, where v5 is a 5(3)-vertex. Let u,w, z be the adjacent 2-vertices of v5.
For convenience, we consider the worst case and assume that d(v6) = ∆. Let L
be an arbitrary list assignment of G with |L(x)| ≥ ∆+6 for each x ∈ V (G). By
the choice of G, G− vv1 has an injective L-coloring c. Now we erase the colors
on v1, v, u, w, z. Our aim is to recolor v1, v, u, w, z to extend c from G− vv1 to
the whole graph G to obtain a contradiction. Let L′

c(v) be the set of available
colors of v. Obviously,

L′
c(v1) ≥ ∆+ 6− (∆ + 6− d(v1)) ≥ 2,

L′
c(v) ≥ ∆+ 6− (2× 4 + 5 +∆− d(v)− 3) ≥ 2,

L′
c(u) ≥ ∆+ 6− (∆ + 5− d(u)− 3) ≥ 6,

L′
c(w) ≥ ∆+ 6− (∆ + 5− d(w)− 3) ≥ 6,

L′
c(z) ≥ ∆+ 6− (∆ + 5− d(z)− 3) ≥ 6.

So we can recolor v, v1, u, w, z in turn to obtain an injective L-coloring of G.
For (4), suppose that v is a 6(3)-vertex with d(vi) = 2 for 1 ≤ i ≤ 3 and

d(v4) = d(v5) = 4. Let xi, yi, zi be the other neighbor of vi and d(xi) =
d(yi) = 2 for i = 4, 5, respectively. For convenience, we consider the worst case
and assume that d(v6) = ∆. Let L be an arbitrary list assignment of G with
|L(x)| ≥ ∆+6 for each x ∈ V (G). By the choice of G, G−vv1 has an injective
L-coloring c. Now we erase the colors on v1, v, x4, y4, x5, y5. Our aim is to
recolor v1, v, x4, y4, x5, y5 to extend c from G − vv1 to the whole graph G to
obtain a contradiction. Let L′

c(v) be the set of available colors of v. Obviously,

L′
c(v1) ≥ ∆+ 6− (∆ + 6− d(v1)) ≥ 2,

L′
c(v) ≥ ∆+ 6− (2× 3 + 2× 4 + ∆− d(v)− 4) ≥ 2,

L′
c(x4) ≥ ∆+ 6− (∆ + 4− d(x4)− 2) ≥ 6,

L′
c(y4) ≥ 6, L′

c(x5) ≥ 6, L′
c(y5) ≥ 6.

So we can recolor v, v1, x4, y4, x5, y5 in turn. The obtained coloring is an injec-
tive L-coloring of G.

For (5), suppose that v is a 6(3)-vertex with d(vi) = 2 for 1 ≤ i ≤ 3,
d(v4) = 3, d(v5) = 4 and d(v6) = 5, where v6 is a 5(3)-vertex. Let u,w, z
be the adjacent 2-vertices of v6. Let L be an arbitrary list assignment of G
with |L(x)| ≥ ∆ + 6 for each x ∈ V (G). By the choice of G, G − vv1 has an
injective L-coloring c. Now we erase the colors on v1, v, u, w, z. Our aim is to
recolor v1, v, u, w, z to extend c from G − vv1 to the whole graph G to obtain
a contradiction. Let L′

c(v) be the set of available colors of v. Obviously,

L′
c(v1) ≥ ∆+ 6− (∆ + 6− d(v1)) ≥ 2,

L′
c(v) ≥ ∆+ 6− (2× 3 + 3 + 4 + 5− d(v)− 3) ≥ 3,

L′
c(u) ≥ ∆+ 6− (∆ + 5− d(u)− 3) ≥ 6, L′

c(w) ≥ 6, L′
c(z) ≥ 6.
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So we can recolor v, v1, u, w, z in turn to obtain an injective L-coloring of G.
For (6), suppose that v is a 7(5)-vertex with d(vi) = 2 for 1 ≤ i ≤ 5,

d(v6) = 3, where v6 is a 3(1)-vertex. Let u be the adjacent 2-vertices of v6. For
convenience, we assume that d(v7) = ∆. Let L be an arbitrary list assignment
of G with |L(x)| ≥ ∆+6 for each x ∈ V (G). By the choice of G, G−vv1 has an
injective L-coloring c. Now we erase the colors on v1, v, u. Our aim is to recolor
v1, v, u to extend c from G−vv1 to the whole graph G to obtain a contradiction.
Let L′

c(v) be the set of available colors of v. Obviously, L′
c(v1) ≥ 1, L′

c(v) ≥ 1,
L′
c(u) ≥ 6. So we can recolor v, v1, u in turn to obtain an injective L-coloring

of G. □

We list the following discharging rules.

R1. Each 2-vertex receives 2 from each adjacent 3+-vertex.
R2. Suppose d(v) = 3 and uv ∈ E.

(1) A 3(1)-vertex receives 3
2 from each adjacent 7-vertex.

(2) Suppose d(u) = 3 and SG(u) ≥ ∆+ 6. If SG(v) ≤ ∆+ 5, then v
receives 1

3 from u. Otherwise, v receives nothing from u.

(3) If 4 ≤ d(u) ≤ 5, then v receives 1
3 from u.

(4) If 6 ≤ d(u) ≤ 7 and v is adjacent to a bad 3-vertex, then v receives
2
3 from u. Otherwise, v receives 1

2 from u except v is a 3(1)-vertex.
R3. Each 4(2)-vertex receives 1 from each adjacent 6+-vertex. Each 4(1)-

vertex receives 1
6 from each adjacent 5+-vertex.

R4. Each 5(3)-vertex receives 1
2 from each adjacent 5(0)-vertex, 1

2 from each
adjacent 6+-vertex.

Let f be a k-face of G, k ≥ 5. Obviously, ω∗(f) = 2k − 10 ≥ 0.
Let v be a k-vertex of G, k ≥ 2. We will check that each vertex has a

non-negative charge after the discharging process.
If k = 2, then ω(v) = −4. By R1, ω∗(v) = −4 + 2× 2 = 0.
If k = 3, then ω(v) = −1. By Lemma 7(1), n2(v) ≤ 1. If n2(v) = 1, then

d(v2) + d(v3) ≥ ∆+ 7 by Lemma 7(2), that is, ∆ = 7 and d(v2) = d(v3) = 7.
So ω∗(v) = −1− 2 + 2× 3

2 = 0 by R1 and R2(1).
Suppose n2(v) = 0. If 2 ≤ n3(v) ≤ 3, it is obviously SG(v) ≤ ∆ + 5. So

SG(vi) ≥ ∆ + 6 for i = 1, 2, 3. By R2, v receives at least 1
3 from vi. So

ω∗(v) ≥ −1 + 3× 1
3 = 0.

Suppose n3(v) = 1. If SG(v) ≤ ∆+5, then SG(v1) ≥ ∆+6 by Lemma 5. By
R2, v receives at least 1

3 from vi, i = 1, 2, 3. So ω∗(v) ≥ −1+3× 1
3 = 0. Suppose

SG(v) ≥ ∆ + 6. Then d(v3) ≥ d(v2) ≥ 6. If SG(v1) ≤ ∆ + 5, then v sends 1
3

to v1 and receives 2
3 from each of v2 and v3. So ω∗(v) ≥ −1 − 1

3 + 2 × 2
3 = 0.

If SG(v1) ≥ ∆ + 6, then v receives 1
2 from each of v2 and v3. So ω∗(v) ≥

−1 + 2× 1
2 = 0.

If n3(v) = 0, then v receives at least 1
3 from each adjacent vertex by R2. So

ω∗(v) = −1 + 3× 1
3 = 0.

If k = 4, then ω(v) = 2. By Lemma 7(1), n2(v) ≤ 2.
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If n2(v) = 2, then the other two adjacent vertices must be 6+-vertices. By
R3, ω∗(v) ≥ 2− 2× 2 + 2× 1 = 0.

If n2(v) = 1, then n3(v) ≤ 1. (If n3(v) ≥ 2, then SG(v) < ∆+ 6, SG(v1) <
∆+ 6, a contradiction to Lemma 5.) If n3(v) = 1, then v3, v4 are 5+-vertices
by Lemma 5. So ω∗(v) ≥ 2 − 2 − 1

3 + 2 × 1
6 = 0 by R3. If n3(v) = 0, then

ω∗(v) ≥ 2− 2 = 0.
If n2(v) = 0, then ω∗(v) ≥ 2− 4× 1

3 > 0.
If k = 5, then ω(v) = 5. By Lemma 7(1), n2(v) ≤ 3. Suppose n2(v) = 3.

By Lemma 7(2), the other two adjacent vertices must be 5+-vertices, and the
5-vertex adjacent to v must be a 5(0)-vertex by Claim 1(1). It follows that
ω∗(v) ≥ 5− 3× 2 + 2× 1

2 = 0 by R4. If n2(v) = 2, then n3(v) ≤ 1 by Lemma

5. Hence, ω∗(v) ≥ 5 − 2 × 2 − 1 × 1
3 − 2 × 1

6 > 0 by R1, R2, R3 and R4. If

n2(v) = 1, then ω∗(v) ≥ 5 − 1 × 2 − 4 × 1
3 > 0. If n2(v) = 0, then v sends at

most 1
2 to its neighbors by R2, R3 and R4. So ω∗(v) ≥ 5− 5× 1

2 > 0.
If k = 6, then ∆ ≥ 6 and ω(v) = 8. By Lemma 7(1), n2(v) ≤ 4. If n2(v) = 4,

then d(v5) + d(v6) ≥ ∆ + 4 by Lemma 7(2). So min{d(v5), d(v6)} ≥ 4. By
Claim 1(2) and Claim 1(3), v5, v6 are not 4(1)-vertices, 4(2)-vertices, 5(3)-
vertices. By R3, R4, v sends nothing to v5, v6. So ω∗(v) ≥ 8 − 2 × 4 = 0.
If n2(v) = 3, by Lemma 7(2), d(v4) + d(v5) + d(v6) ≥ ∆ + 6 ≥ 12. So the
degree sequence of v4, v5, v6 is (3, 3, 6+), or (3, 4, 5+) (the 5-vertex is not a
5(3)-vertex by Claim 1(5)), or (3, 5+, 5+), or (4, 4+, 4+) (there exists at most
one 4(2)-vertex by Claim 1(4)), or (5+, 5+, 5+). By R2, R3 and R4, v sends
at most max{2 × 2

3 ,
2
3 + 1, 2

3 + 2 × 1
2 , 1 + 2 × 1

2 , 3 × 1
2} = 2 to v4, v5 and v6

in total. So ω ∗ (v) ≥ 8 − 3 × 2 − 2 = 0. If 0 ≤ n2(v) ≤ 2, then ω∗(v) ≥
8− 2n2(v)− 1× (k − n2(v)) ≥ 0.

If k = 7, then ∆ = 7 and ω(v) = 11. By Lemma 7(1), n2(v) ≤ 5.
Suppose n2(v) = 5. By Lemma 7(2), d(v6) + d(v7) ≥ ∆ + 3 = 10. So the

degree sequence of (v6, v7) is (3,7), or (4, 6
+) or (5+, 5+). By Claim 1(6), a 7(5)-

vertex is not adjacent to a 3(1)-vertex, and v sends at most max{ 2
3 , 1, 2×

1
2} = 1

to v6 and v7 in total. So ω∗(v) ≥ 11− 5× 2− 1 = 0.
Suppose n2(v) = 4. By Lemma 7(2), d(v5) + d(v6) + d(v7) ≥ ∆ + 5 = 12.

So the degree sequence of (v5, v6, v7) is (3, 3, 6
+), or (3, 4+, 5+) or (4+, 4+, 4+).

Thus v sends at most max{ 3
2 ×2, 3

2 +1+ 1
2 , 3×1} = 3 to v5, v6 and v7 in total.

So ω∗(v) ≥ 11− 4× 2− 3 = 0.
Suppose n2(v) = 3. Then d(v4) + d(v5) + d(v6) + d(v7) ≥ ∆ + 7 = 14

by Lemma 7(2). So n3(v) ≤ 3. If n3(v) = 3, then d(v7) ≥ 5. So ω∗(v) ≥
11−3×2−3× 3

2−
1
2 = 0. If n3(v) ≤ 2, then ω∗(v) ≥ 11−3×2−2× 3

2−2×1 = 0.
Suppose n2(v) = 2. It is easy to check n3(v) ≤ 4. So ω∗(v) ≥ 11− 2× 2−

4× 3
2 − 1 = 0 by the discharging rules.

Suppose n2(v) ≤ 1. Then v sends 2 to each 2-neighbor and at most 3
2 to

each other neighbor. So ω∗(v) ≥ 11− 2× 1− 6× 3
2 = 0.

We have checked ω∗(x) ≥ 0 for all x ∈ V (G)∪F (G), a contradiction occurs
because 0 ≤

∑
x∈V ∪F ω∗(x) =

∑
x∈V ∪F ω(x) = −20.
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This completes the proof when ∆ ≤ 7 and hence that of the whole Theorem
3.

Acknowledgment. The author thanks the anonymous reviewers for their
useful comments.
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