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AN ABELIAN CATEGORY OF WEAKLY COFINITE
MODULES

(GHOLAMREZA PIRMOHAMMADI

ABSTRACT. Let I be an ideal of a commutative Noetherian semi-local
ring R and M be an R-module. It is shown that if dimM < 2 and
Suppr M C V(I), then M is I-weakly cofinite if (and only if) the R-
modules Homp(R/I, M) and Ext}L(R/I, M) are weakly Laskerian. As a
consequence of this result, it is shown that the category of all I-weakly
cofinite modules X with dim X < 2, forms an Abelian subcategory of the
category of all R-modules. Finally, it is shown that if dim R/I < 2, then
for each pair of finitely generated R-modules M and N and each pair of the
integers 4,5 > 0, the R-modules TorZ(N, H}(M)) and Ext’ (N, H7 (M))
are [-weakly cofinite.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring, and I
be an ideal of R. For an R-module M, the ith local cohomology module of M
with support in V() is defined as:

Hi(M) = lim Exti:(R/I", M).
We refer the reader to [8] or [13] for more details about local cohomology.

Hartshorne in [14] defined an R-module X to be I-cofinite if Supp X C V(1)

and Exto(R/I,X) is finitely generated for all i € Ny. Then he asked the
following questions:

Question 1. For which Noetherian rings R and ideals J of R, the modules
H%(M) are J-cofinite for all finitely generated R-modules M and all i € No?

Question 2. Whether the category of I-cofinite modules is an Abelian sub-
category of the category of all R-modules? That is, if f : M — N is an
R-homomorphism of I-cofinite modules, are ker f and coker f I-cofinite?
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Concerning Question 1, there are several results in the literature (see [3-5,
9-11,16,17,20, 26]).

Recall that an R-module M is said to be weakly Laskerian or skinny if the
set of associated primes of any quotient module of M is finite. Bahmanpour in
[2] proved that a given module M over a Noetherian ring R is weakly Laskerian
if and only if it is FSF; see [2, Theorem 3.3]. Recall that by Quy’s definition
[25, Definition 2.1], an R-module M is said to be FSF if it possesses a finitely
generated submodule N such that Supp M/N is a finite set. We recall that,
if I is an ideal of R, then an R-module X is said to be I-weakly cofinite if
Supp X C V/(I) and Ext(R/I, X) is weakly Laskerian for all i > 0.

In the sequel, we denote by €' (R, I)cof and € (R, I)weos the category of all
I-cofinite modules and the category of all I-weakly cofinite modules, respec-
tively. Also, in this paper for each integer n > 0, the symbols €™ (R, I)¢os and
€™ (R, I)weos denote the category of all I-cofinite modules X with dim X <n
and the category of all [-weakly cofinite modules Y with dimY < n, respec-
tively.

With respect to Question 2, there are several papers devoted to this question;
for example see [6,11,12,14,15,18,19,22-24].

In [6] it was shown that for each ideal I of a Noetherian ring R, (R, I)cor
is an Abelian category. A similar result was obtained for €1 (R, I)ycof in [7).

In this paper we prove that (R, I)weoy is also an Abelian category provided
that R has only finitely many maximal ideals. In order to prove this assertion,
first we prove that for an ideal I of a semi-local ring R and a given R-module
M, with dim M < 2 and Suppp M C V(I), M is I-weakly cofinite if (and only
if) the R-modules Homp(R/I, M) and Extp(R/I, M) are weakly Laskerian.
Finally, we prove that if dim R/I < 2, then for each pair of finitely generated
R-modules M and N and each pair of the integers 7,7 > 0, the R-modules
Torf (N, H}(M)) and Exts(N, H}(M)) are I-weakly cofinite. These results
generalize the main results of E. Hatami and M. Aghapournahr in [15].

For each ideal I of a Noetherian ring R and each R-module M, we denote
the submodule [ J;7 (0 :ar I™) of M by I';(M). We denote Suppy R/I = {p €
SpecR : p 2 I} by V(I). For any unexplained notation and terminology we
refer the reader to [8,21].

2. The results

We start this section with some auxiliary lemmas.

Lemma 2.1 (see [15, Lemma 2.5]). Let (R, m) be a Noetherian local ring and
let M Qe an R-module. AThen the R-module M is weakly Laskerian if and only
if the R-module M ®r R is weakly Laskerian.

Corollary 2.2. Let (R,m) be a Noetherian local ring, I be an ideal of R and
let M be an R-module. Then M € €(R,I)weor if and only if M ®r R €
€ (R,IR)wecof-
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Proof. The assertion follows immediately from Lemma 2.1. O

Lemma 2.3 (see [6, Proposition 2.6]). Let I be an ideal of a Noetherian ring
R and M be an R-module such that dim M < 1 and Suppr M C V(I). Then
the following statements are equivalent:

(i) M is I-cofinite.

(ii) The R-modules Hompg(R/I, M) and Exth(R/I, M) are finitely generated.

Lemma 2.4 (see [2, Theorem 3.3]). Let R be a Noetherian ring and let M
be an R-module. Then M is a weakly Laskerian R-module if and only if M
possesses a finitely generated submodule N such that Suppr M/N is a finite
set.

The following lemma plays a key role in the proof of Theorem 2.6.

Lemma 2.5. Let I be an ideal of a Noetherian ring local ring (R, m) and let
M be an R-module with dim M < 2 and Suppyp M C V(I). Then the following
statements are equivalent:

(i) M s I-weakly cofinite.

(ii) The R-modules Homg(R/I, M) and Extk(R/I, M) are weakly Laskerian.

Proof. (i)=(ii) The assertion is clear.

(ii)==(i) In contrary assume that M is not I-weakly cofinite. By using
Lemma 2.1 and Corollary 2.2, without loss of generality we may assume that
(R,m) is a complete Noetherian local ring. Now by the definition there exists an
integer j > 2 such that the R-module Ext%(R/I, M) is not weakly Laskerian.
By Lemma 2.4 there are finitely generated submodules U C Homg(R/I, M)
and V C Exty(R/I, M) such that the set

A= {m} | J (Suppg Homg(R/I,M)/U) | J (Suppg Extp(R/I, M)/V)

is finite. In this situation it is straightforward to see that dim R /p <1 for each
p € A. Since the R-module Ext}(R/I, M) is not weakly Laskerian it follows
that the R-module Ext},(R/I, M) has a submodule W such that the set

T = Assp Ext}(R/I, M)/W

is infinite. Therefore, there exists a countably infinite subset Q = {q;,}7°, of
T such that QN A = 0. Then, we claim that

Ne)2(Ua)

Assume the opposite. Then, by [20, Lemma 3.2], there exists an integer n > 1
such that Nyeap C q,,. Since q,, # m we see that there is an element p € A
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such that p # m and p C q,,. Now from the relation dim R/p < 1 one can
deduce that q,, = p € A, which is a contradiction. So, we have

0e)=(Ue)

Therefore, one can find an element x € Npea p such that « & U2, q,.
Let S denote the multiplicatively closed subset {1,,z, 2%, 23,...} of R. Then
it is easy to see that

Suppg-1zST'M C V(S71I),

and the S™!R-module S~ M is of dimension not exceeding one. Also, one sees
that the S~!R-modules

Homg 1z(S™'R/S™, S M) ~ S~ (Homp(R/I, M)) ~ S~'U
and
Exti 1p(ST'R/S™TI,STIM) ~ ST (Exth(R/I, M)) ~ S~V

are finitely generated. Hence, by Lemma 2.3 the S~!R-module S™'M is S~'I-
cofinite. Consequently, the S~!R-module

S™HExty(R/I, M)/W) ~ Ext), , ,(ST'R/S™'I, ST M)/S™'W,
is finitely generated and hence the set
Assg-1p STYH(Exth(R/I, M)/W)

is finite. But
S7lq), € Assg1p ST (Exty(R/I, M)/W)

for kK =1,2,..., which is a contradiction. (I

The following theorem is the first main result of this paper.

Theorem 2.6. Let I be an ideal of a semi-local Noetherian ring R and M be
an R-module such that dim M < 2 and Suppr M C V(I). Then the following
statements are equivalent:

(i) M is I-weakly cofinite.

(ii) The R-modules Hompg(R/I, M) and Extk(R/I, M) are weakly Laskerian.

Proof. By using the localization at the maximal ideals of R, the assertion easily
follows from Lemma 2.5. O

Now, we are ready to state and prove our second main result.

Theorem 2.7. Let R be a Noetherian semi-local ring and I be an ideal of R.
Then €*(R, I)yeop is Abelian.
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Proof. Suppose that M, N € €*(R, Iweor and let f : M — N be an R-
homomorphism. By the exact sequences

(2.1) 0 —kerf—M-—imf—0,
and
(2.2) 0 — im f — N — coker f — 0,

it is enough to prove that the R-module ker f is I-weakly cofinite. The exact
sequence (2.1) yields the exact sequence

0 — Hompg(R/I,ker f) — Homp(R/I, M),

which implies that the R-module Hompg(R/I,ker f) is weakly Laskerian. Also,
the exact sequence (2.2) induces the exact sequence

0 — Hompg(R/I,im f) — Hompg(R/I,N),

which shows that the R-module Homg(R/I,im f) is weakly Laskerian likewise.
Furthermore, from the exact sequence (2.1) we achieve the exact sequence

Homp(R/I,im f) — Exty(R/I, ker f) — Extp(R/I, M),

which implies that the R-module Exth(R/I,ker f) is weakly Laskerian too.
Now, the assertion follows from Theorem 2.6. O

Corollary 2.8. Let R be a Noetherian semi-local ring and I be an ideal of R
such that dim R/I < 2. Then €(R,I)wcor is Abelian.

Proof. From the assumption dim R/I < 2 we get the relation €(R, I)wcos =
C*(R, 1) weo ¢ and hence the assertion follows from Theorem 2.7. O

Corollary 2.9. For each ideal I of a Noetherian semi-local ring R the following
statements hold:

(i) Suppose that
Xy xt I it I e

is a complex such that X* € €*(R,I)wcof for all i € Z. Then for each
i € Z the ith cohomology module H'(X*®) is in €*(R,I)wcof-

(ii) Assume that M € €*(R,I)wcos and N is a finitely generated R-module.
Then for each i € Ny, the R-modules Tor®(N, M) and Exts(N, M) are
m %Q(R, I)wcof~

Proof. (1) The assertion follows easily from Corollary 2.8.

(ii) Since N is finitely generated it follows that IV has a free resolution with
finitely generated free R-modules. Now the assertion follows from applying
part (i) and computing the R-modules Tor®(N, M) and Ext%(N, M) by this
free resolution. ]
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Lemma 2.10 (see [1, Lemma 2.3]). Let I be an ideal of a Noetherian ring R
and A be a Serre subcategory of the category of R-modules. Let n € Ny and
M be an R-module such that Extﬁ(R/I,H}(M)) € A for all0 <i<n and
all j € No. If the R-modules Ext’y(R/I, M) and Ext’s™ (R/I, M) are in A,
then the R-modules Homg(R/I, H}(M)) and Exth(R/I, H}(M)) are in A .

Proposition 2.11. For each ideal I of a Noetherian semi-local Ting R with
dim R/I <2, and each R-module M, the following statements are equivalent:

(i) For eachi >0, the R-module Ext’y(R/I, M) ‘s weakly Laskerian.
(ii) For each 0 < i < dim M, the R-module Extzr(R/I, M) is weakly Laske-
rian.

(iii) For each i >0, the R-module H:(M) is I-weakly cofinite.

Proof. (i)==(ii) The assertion is clear.

(ii)==(iii) By Grothendieck’s Vanishing Theorem, one sees that H:(M) =0
for each ¢ > dim M. Therefore, it is enough to prove the assertion for each
0 <7 < dim M. In order to prove this assertion, first we use induction on 7 for
all 0 <i < dim M.

For ¢« = 0, by Lemma 2.10, the R-modules

Homp(R/I,T1(M)), Extp(R/I,T1(M)),

are weakly Laskerian. Hence, by Theorem 2.6 the R-module I'; (M) is I-weakly
cofinite.

Suppose, inductively, that 0 < ¢ < dim M and the result has been proved for
smaller values of i. Then by Lemma 2.10, the R-modules Hompg(R/I, H{(M))
and Exty(R/I, Hi(M)) are weakly Laskerian and so by Theorem 2.6 the R-
module H}(M) is I-weakly cofinite. This completes the inductive step. Now by
[7, Lemma 2.1] the R-modules Hompg(R/I, H&™M (M) is weakly Laskerian.
Also, using the Grothendieck’s Vanishing Theorem it can be seen that the R-
module H#™M (D) is of dimension not exceeding 0. Therefore,

Supp HH™ M (M) = Assg Homp(R/I, HF™M (M)
is a finite set, which means that HH™M (M) is I-weakly cofinite as well.
(iii)==(i) The assertion follows from [22, Proposition 3.9]. d

The following theorem is the final main result of this paper.

Theorem 2.12. Let I be an ideal of a Noetherian semi-local ring R with
dim R/I <2, and let M, N be two finitely generated R-modules. Then for each
pair of integers i,j > 0, the R-modules Torf (N, H}(M)) and Ext’ (N, Hj (M))
are i G (R, I)wcoy-

Proof. The assertion follows from Corollary 2.9 and Proposition 2.11. (|
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