DOI QR코드

DOI QR Code

SiC IGBT degradation mechanism investigation under HV-H3TRB tests

  • Ziming Wu (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology) ;
  • Zongbei Dai (Science and Technology On Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronics Research Institute of Ministry of Industry and Information Technology) ;
  • Jian Zhou (Science and Technology On Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronics Research Institute of Ministry of Industry and Information Technology) ;
  • Huafeng Dong (School of Physics and Optoelectronic Engineering, Guangdong University of Technology) ;
  • Wencan Wang (School of Physics and Optoelectronic Engineering, Guangdong University of Technology) ;
  • Feiwan Xie (School of International Education, Guangdong University of Technology) ;
  • Haoran Wang (Three Gorges Intelligent, Industrial Control Technology Company) ;
  • Jiahui Yan (Science and Technology On Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronics Research Institute of Ministry of Industry and Information Technology) ;
  • Xiyu Chen (Science and Technology On Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronics Research Institute of Ministry of Industry and Information Technology) ;
  • Shaohua Yang (Science and Technology On Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronics Research Institute of Ministry of Industry and Information Technology) ;
  • Fugen Wu (State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology)
  • Received : 2023.06.04
  • Accepted : 2023.10.30
  • Published : 2024.02.20

Abstract

The high voltage-high humidity-high temperature reverse bias (HV-H3TRB) test was utilized to evaluate the reliability of silicon carbide insulated gate bipolar transistors (SiC IGBTs). Moisture invasion often induces termination/passivation and metal corrosion. Therefore, the HV-H3TRB test is generally used to assess termination / passivation robustness. However, under the HV-H3TRB test conditions, gate quality degradation may occur. In this study, the dominant degradation mechanism of SiC IGBTs was investigated. The changes of the most sensitive static characteristics (e.g., threshold voltage, breakdown voltage, and leakage current) were recorded. The threshold voltage decreased and leakage current increased substantially after>1000 h of HV-H3TRB tests under 85 ℃/85% RH climate conditions. Capacitance-voltage (C-V) curve measurements indicated that the mobile ions at the SiC/SiO2 interface or in the gate oxide likely caused the threshold-voltage instability in the SiC IGBTs after the HV-H3TRB tests. This instability can be recovered by applying a negative gate bias. Subsequent failure analysis confirmed no corrosion of metals or termination/passivation in the device, which indicates the robustness of the passivation (consisting of phosphor-silicate glass and Si3N4). Therefore, the gate quality appears to be a significant reliability risk for SiC IGBTs under high humidity, high temperature, and high voltage conditions.

Keywords

Acknowledgement

This work has been funded by the Key-Area Research and Development Program of Guangdong Province under Grant 2022B0701180002, Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110679), Guangzhou Basic and Applied Basic Research Project (No. 202201011323 and No. 202201010868). Special thanks go to Dr. S. Yang for the article revision.

References

  1. Wang, Y., et al.: Influence of Humidity on the Power Cycling Lifetime of SiC MOSFETs. IEEE Trans. Compon. Packag. Manuf. Technol. 12(11), 1781-1790 (2022) https://doi.org/10.1109/TCPMT.2022.3223957
  2. Dankovic, D., et al.: A review of pulsed NBTI in P-channel power VDMOSFETs. Microelectron. Reliab. 82, 28-36 (2018) https://doi.org/10.1016/j.microrel.2018.01.003
  3. Tahanout, C., et al. NBTI stress on power VDMOS transistors under low magnetic field. In: 2015 IEEE International Integrated Reliability Workshop (IIRW), IEEE ( 2015)
  4. Abuelnaga, A., Narimani, M., Bahman, A.S.: A review on IGBT module failure modes and lifetime testing. IEEE Access 9, 9643-9663 (2021)
  5. Moeini, R., et al.: Increasing the reliability of wind turbines using condition monitoring of semiconductor devices: a review. IET Renew. Power Gener. 12(2), 182-189 (2018) https://doi.org/10.1049/iet-rpg.2017.0477
  6. Zorn, C., Kaminski, N.: Temperature humidity bias (THB) testing on IGBT modules at high bias levels. In: CIPS 2014, 8th International Conference on Integrated Power Electronics Systems, VDE (2014)
  7. JEDEC: Steady-state Temperature-humidity Bias Life Test. In: JESD22-A101D (2015)
  8. IEC, IEC 60749-5: 2017 Semiconductor Devices - Mechanical and Climatic Test Methods, In: Part 5: Steady-state Temperature Humidity Bias Life Test (2017)
  9. ECPE: ECPE guideline AQG 324 qualification of power modules for use in power electronics converter units in motor vehicles. In: AQG 3242019
  10. ECPE: ECPE guideline PSRRA 01 railway applications HVH3TRB tests for power semiconductor. In: ECPE PSRRA 01 (2019)
  11. Cimmino, D., Ferrero, S.: High-voltage temperature humidity bias test (HV-THB): Overview of current test methodologies and reliability performances. Electronics 9(11), 1884 (2020)
  12. Papadopoulos, C., et al.: The influence of humidity on the high voltage blocking reliability of power IGBT modules and means of protection. Microelectron. Reliab. 88, 470-475 (2018) https://doi.org/10.1016/j.microrel.2018.07.130
  13. Peters, J.-H., et al.: Improved HV-H3TRB robustness of a 1700 V IGBT chip set in standard power modules. Microelectron. Reliab. 126, 114211 (2021)
  14. Leppanen, J., et al.: Aluminium corrosion in power semiconductor devices. Microelectron. Reliab. 137, 114766 (2022)
  15. Kremp, S., Schilling, O.: Humidity robustness for high voltage power modules: Limiting mechanisms and improvement of lifetime. Microelectron. Reliab. 88, 447-452 (2018) https://doi.org/10.1016/j.microrel.2018.06.043
  16. Zorn, C., Kaminski, N.: Temperature-humidity-bias testing on insulated-gate bipolar transistor modules-failure modes and acceleration due to high voltage. IET Power Electron. 8(12), 2329-2335 (2015) https://doi.org/10.1049/iet-pel.2015.0031
  17. Leppanen, J., et al.: A humidity-induced novel failure mechanism in power semiconductor diodes. Microelectron. Reliab. 123, 114207 (2021)
  18. Wang, Y., et al.: Advanced power cycling test integrated with voltage, current, temperature, and humidity stress. IEEE Trans. Power Electron. 38(6), 7685-7696 (2023) https://doi.org/10.1109/TPEL.2023.3246498
  19. Hillman, C., Castillo, B., Pecht, M.: Diffusion and absorption of corrosive gases in electronic encapsulants. Microelectron. Reliab. 43(4), 635-643 (2003) https://doi.org/10.1016/S0026-2714(02)00315-3
  20. Papadopoulos, C., et al.: Humidity robustness of IGBT guard ring termination. In: PCIM Europe 2019, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE (2019)
  21. Hao, J., Rioux, M., Awadelkarim, O.O.: Observation of negative bias temperature instabilities in parasitic p-channel MOSFETs occurring during high-temperature reverse-bias stressing of trench-gated n-channel MOSFETs. In: 2011 IEEE International Integrated Reliability Workshop Final Report, IEEE (2011)
  22. Kostka, B., et al.: A concept for detection of humidity-driven degradation of igbt modules. IEEE Trans. Power Electron. 36(12), 13355-13359 (2021) https://doi.org/10.1109/TPEL.2021.3090149
  23. Hanf, M., et al.: Hydrogen sulphide (H2S) single gas testing on power semiconductor modules under high voltage. Microelectron. Reliab. 138, 114622 (2022)
  24. Kuseian, J.: Naval power systems technology development roadmap. Electric Ships Office 320, PMS (2013)
  25. Lelis, A.J., et al.: Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron. Dev. 62(2), 316-323 (2014) https://doi.org/10.1109/TED.2014.2356172
  26. Han, L., et al.: A review of SiC IGBT: models, fabrications, characteristics, and applications. IEEE Trans. Power Electron. 36(2), 2080-2093 (2020) https://doi.org/10.1109/TPEL.2020.3005940
  27. Zorn, C., Kaminski, N., Piton, M.: Impact of humidity on railway converters. In: PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE (2017)
  28. Zorn, C., et al.: H3TRB Test on 650 V SiC JBS Diodes. In: Materials Science Forum, Trans Tech Publications (2018)
  29. Kitajima, Y., et al.: Lifetime estimation model of HVIGBT considering humidity. In: PCIM Europe 2017, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE (2017)
  30. Karaventzas, V.D., Nawaz, M., Iannuzzo, F.: Reliability assessment of SiC power MOSFETs from the end user's perspective. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE (2016)
  31. Casady, J., et al.: First automotive reliability assessment and drive-train performance of large-area 900V, 10mOhm SiC MOSFETs. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE (2017)
  32. Jormanainen, J., et al.: High humidity, high temperature and high voltage reverse bias-a relevant test for industrial applications. In: PCIM Europe 2018, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE (2018)
  33. Zheleva, T., et al.: Transition layers at the SiO2/SiC interface. Appl. Phys. Lett. 93(2), 022108 (2008)
  34. Navarro, D., et al.: Investigation of 4H-SiC insulated-gate bipolar transistor turn-of performance for achieving low power loss. Jpn. J. Appl. Phys. 55, 04ER12 (2016)
  35. Afanasev, V., et al.: Intrinsic SiC/SiO2 interface states. Physica Status Solidi (A) 162(1), 321-337 (1997) https://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F
  36. Chanthaphan, A., et al.: Investigation of unusual mobile ion effects in thermally grown SiO2 on 4H-SiC (0001) at high temperatures. Appl. Phys. Lett. 100(25), 252103 (2012)
  37. Commercial 1200V/50A SiC IGBTs. Available from: https://www.microchip.com/content/dam/mchp/documents/PSDS/ProductDocuments/DataSheets/APT50GF120B2_LR(G)_E.pdf.
  38. Jouha, W., et al.: Physical study of SiC power MOSFETs towards HTRB stress based on CV characteristics. IEEE Trans. Device Mater. Reliab. 20(3), 506-511 (2020) https://doi.org/10.1109/TDMR.2020.2999029
  39. Moghadam, H.A., et al.: Active defects in MOS devices on 4H-SiC: A critical review. Microelectron. Reliab. 60, 1-9 (2016) https://doi.org/10.1016/j.microrel.2016.02.006
  40. Maresca, L., et al.: Infuence of the SiC/SiO 2 SiC MOSFET interface traps distribution on C-V measurements evaluated by TCAD simulations. IEEE J. Emerging Sel. Top. Power Electron. 9(2), 2171-2179 (2019) https://doi.org/10.1109/JESTPE.2019.2940143
  41. Lelis, A.J., et al.: Temperature-dependence of SiC MOSFET threshold-voltage instability. In: Materials Science Forum, Trans Tech Publications (2009)