DOI QR코드

DOI QR Code

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan (Department of Teacher Education, Lishui University) ;
  • Tong Zhang (Sports department, Zhongnan University of Economics and Law) ;
  • Ting Zheng (School of Ecology, Lishui University) ;
  • Tayebeh Mahmoudi (Hoonam Sanat Farnak, Engineering and technology company)
  • Received : 2023.02.19
  • Accepted : 2023.12.01
  • Published : 2024.02.25

Abstract

Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

Keywords

References

  1. Agirseven, D. and Ozis, T. (2010), "An analytical study for Fisher type equations by using homotopy perturbation method", Comput, Mathem. Appl., 60(3), 602-609. https://doi.org/10.1016/j.camwa.2010.05.006.
  2. Akgoz, B. and Civalek, O . (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  3. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  4. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705.
  5. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  6. Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. http://dx.doi.org/10.12989/SCS.2015.19.2.369.
  7. Attia, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. http://dx.doi.org/10.12989/SCS.2015.18.1.187.
  8. vcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/SCS.2019.30.6.603.
  9. Bakhshi Khaniki, H. and Hosseini-Hashemi, S. (2017), "Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method", Mater. Res. Express. 4(6), 065003. https://doi.org/10.1088/2053-1591/aa7111.
  10. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/SCS.2020.36.6.671.
  11. Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Mathem. Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010.
  12. Belabed, Z., Bousahla Abdelmoumen, A., Houari Mohammed Sid, A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103.
  13. Bellifa, H., Bakora, A., Tounsi, A., Bousahla Abdelmoumen, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. http://dx.doi.org/10.12989/SCS.2017.25.3.257.
  14. Benadouda, M., Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/EAS.2017.13.3.255.
  15. Benferhat, R., Daouadji Tahar, H., Mansour Mohamed, S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/EAS.2016.10.6.1429.
  16. Bennai, R., Atmane Hassen, A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/SCS.2015.19.3.521.
  17. Bennai, R., Atmane Hassen, A., Ayache, B., Tounsi, A., Bedia, E.A.A. and Al-Osta Mohammed, A. (2019), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/EAS.2019.16.5.547.
  18. Bochkareva Sergey, A. and Lekomtsev Sergey, V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/SEM.2022.81.6.769.
  19. Chaht Fouzia, L., Kaci, A., Houari Mohammed Sid, A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://dx.doi.org/10.12989/SCS.2015.18.2.425.
  20. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/EAS.2020.19.2.091.
  21. Chen, P.-C., Ting, G.-C. and Li, C.-H. (2020), "A versatile small-scale structural laboratory for novel experimental earthquake engineering", Earthq. Struct., 18(3), 337-348. https://doi.org/10.12989/EAS.2020.18.3.337.
  22. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Advances Concrete Construct., 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001.
  23. Chen, X., Zhang, X., Lu, Y. and Li, Y. (2019), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", Int. J. Mech. Sci., 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001.
  24. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Safety. 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
  25. Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting vibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11), 04023160. https://doi.org/10.1061/JSENDH.STENG-11543.
  26. Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlinear Dyn., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
  27. Deng, J., Wu, R., Sun, Z., Qian, D. and Zhang, Y. (2023), "A prediction model of ultimate forming dimension for profile ring with outer groove in ring rolling process", Int. J. Adv. Manufact. Technol., https://doi.org/10.1007/s00170-023-12528-1.
  28. Dong, Y.-w., Shao, P.-f., Guo, X., Xu, B., Yin, C.-p. and Tan, Z.-y. (2023), "Deformation characterization method of typical double-walled turbine blade structure during casting process", J. Iron Steel Res. Int., 30(10), 2010-2020. https://doi.org/10.1007/s42243-022-00897-y.
  29. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179.
  30. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  31. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concrete Construct., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  32. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
  33. Gao, H., Li, X., Nezhad Abdolreza, H. and Behshad, A. (2022), "Numerical simulation of the flow in pipes with numerical models", Struct. Eng. Mech., 81(4), 523-527. https://doi.org/10.12989/SEM.2022.81.4.523.
  34. Ge, G. and Bo, Z. (2018), "Response of a cantilever model with a surface crack under basal white noise excitation", Comput. Mathem. Appl., 76(11), 2728-2743. https://doi.org/10.1016/j.camwa.2018.09.001.
  35. Golmakani, M.E. and Sadraee Far, M.N. (2016), "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mathem. Appl., 72(3), 785-805. https://doi.org/10.1016/j.camwa.2016.06.022.
  36. Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/EAS.2020.18.4.481.
  37. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2016), "Dynamic behavior of FGM beam using a new first shear deformation theory", Earthq. Struct., 10(2), 451-461. https://doi.org/10.12989/EAS.2016.10.2.451.
  38. Houari Mohammed Sid, A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://dx.doi.org/10.12989/SCS.2016.22.2.257.
  39. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/SCS.2020.35.1.111.
  40. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concrete Construct., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069.
  41. Kar Vishesh, R. and Panda Subrata, K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct. 18(3), 693-709. http://dx.doi.org/10.12989/SCS.2015.18.3.693.
  42. Khaniki, H.B. (2018a), "On vibrations of nanobeam systems", Int. J. Eng. Sci., 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010.
  43. Khaniki, H.B. (2018b), "Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model", Physica E: Low-Dimensional Syst. Nanostruct.,. 99, 310-319. https://doi.org/10.1016/j.physe.2018.02.008.
  44. Khaniki, H.B. (2019), "On vibrations of FG nanobeams", Int. J. Eng. Sci., 135, 23-36. https://doi.org/10.1016/j.ijengsci.2018.11.002.
  45. Khaniki, H.B. and Rajasekaran, S. (2018), "Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory", Mater. Res. Express. 5(5), 055703. https://doi.org/10.1088/2053-1591/aabe62.
  46. Khaniki, H.B., Hosseini-Hashemi, S. and Nezamabadi, A. (2018), "Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method", Alexandria Eng. J., 57(3), 1361-1368. https://doi.org/10.1016/j.aej.2017.06.001.
  47. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magnetohygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Mathem. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  48. Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
  49. Li, J., Wang, Z., Zhang, S., Lin, Y., Wang, L., Sun, C. and Tan, J. (2023a), "A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel", Int. J. Adv. Manufact. Technol., 124(11), 4615-4637. https://doi.org/10.1007/s00170-023-10838-y.
  50. Li, Z. (2020), "Exploration of the encased nanocomposites functionally graded porous arches: Nonlinear analysis and stability behavior", Applied Mathematical Modelling. 82 1-16. https://doi.org/10.1016/j.apm.2020.01.037.
  51. Li, Z. and Zheng, J. (2020a), "Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect", Compos. Structures. 233 111584. https://doi.org/10.1016/j.compstruct.2019.111584.
  52. Li, Z. and Zheng, J. (2020b), "Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading", Thin-Walled Structures. 146 106454. https://doi.org/10.1016/j.tws.2019.106454.
  53. Li, Z., Tang, F., Chen, Y. and Zheng, J. (2019a), "Material distribution optimization of functionally graded arch subjected to external pressure under temperature rise field", Thin-Wall. Struct., 138, 64-78. https://doi.org/10.1016/j.tws.2019.01.034.
  54. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023b), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", ThinWall. Struct., 183, 110370. https://doi.org/10.1016/j.tws.2022.110370.
  55. Li, Z., Zheng, J. and Zhang, Z. (2019c), "Mechanics of the confined functionally graded porous arch reinforced by graphene platelets", Engineering Structures. 201 109817. https://doi.org/10.1016/j.engstruct.2019.109817.
  56. Li, Z., Zheng, J., Chen, Y., Sun, Q. and Zhang, Z. (2019b), "Effect of temperature variations on the stability mechanism of the confined functionally graded porous arch with nanocomposites reinforcement under mechanical loading", Composites Part B: Engineering. 176 107330. https://doi.org/10.1016/j.compositesb.2019.107330.
  57. Li, Z., Zheng, J., Zhang, Z. and He, H. (2019d), "Nonlinear stability and buckling analysis of composite functionally graded arches subjected to external pressure and temperature loading", Engineering Structures. 199 109606. https://doi.org/10.1016/j.engstruct.2019.109606.
  58. Liang, K. and Sun, Q. (2020), "An accurate and efficient implementation of initial geometrical imperfections in the predictor-corrector reduced-order modeling method", Computers & Mathematics with Applications. 79(12), 3429-3446. https://doi.org/10.1016/j.camwa.2020.02.005.
  59. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical Simulation on Crack-Inclusion Interaction for Rib-to-Deck Welded Joints in Orthotropic Steel Deck", Metals. 13(8). https://doi.org/10.3390/met13081402.
  60. Ma, W.-L., Li, X.-F. and Lee, K.Y. (2020), "Third-order shear deformation beam model for flexural waves and free vibration of pipes", The Journal of the Acoustical Society of America. 147(3), 1634-1647. https://doi.org/10.1121/10.0000855.
  61. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Advances in concrete construction. 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233.
  62. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla Abdelmoumen, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel and Composite Structures. 32(5), 595-610. https://doi.org/10.12989/SCS.2019.32.5.595.
  63. Mirjavadi Seyed, S., Forsat, M., Barati Mohammad, R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel and Composite Structures. 35(4), 567-578. https://doi.org/10.12989/SCS.2020.35.4.567.
  64. Nebab, M., Atmane Hassen, A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthquakes and Structures. 17(5), 447-462. https://doi.org/10.12989/EAS.2019.17.5.447.
  65. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of Porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Computers & Mathematics with Applications. 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041.
  66. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Computers & Mathematics with Applications. 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031.
  67. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concrete Construct., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151.
  68. Rajasekaran, S., Khaniki, H.B. and Ghayesh, M.H. (2022), "Thermo-mechanics of multi-directional functionally graded elastic sandwich plates", Thin-Wall. Struct., 176, 109266. https://doi.org/10.1016/j.tws.2022.109266.
  69. Ramteke Prashik, M., Panda Subrata, K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
  70. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses. 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  71. Reddy, J.N. and Kim, J. (2012), "A nonlinear modified couple stress-based third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006.
  72. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/EAS.2019.17.1.031.
  73. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  74. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concrete Construct., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521.
  75. Shan, X. and Huang, A. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-290. https://doi.org/10.12989/anr.2022.12.3.281.
  76. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concrete Construct., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035.
  77. Sharma, N. and Panda, S.K. (2020), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Mathem. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.
  78. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AKSS", Structures, 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289.
  79. Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  80. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
  81. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids. 35(3), 032002. https://doi.org/10.1063/5.0138294.
  82. Ting Cai Yousef Zandi, A.S.A.A.S.A.I.A.R.-V. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water-cement based polymers", Adv. Concrete Construct., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507.
  83. Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion. Nonmetallic solids", Thermophysical properties of matter-The TPRC Data Series, New York: IFI/Plenum.
  84. Wang, C., Wang, Z., Zhang, S., Liu, X. and Tan, J. (2023a), "Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes", J. Comput. Des. Eng., 10(3), 1060-1079. https://doi.org/10.1093/jcde/qwad037.
  85. Wang, H., Wang, F., Qian, D., Chen, F., Dong, Z. and Hua, L. (2023b), "Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations", Int. J. Plasticity. 170, 103745. https://doi.org/10.1016/j.ijplas.2023.103745.
  86. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022a), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elements. 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  87. Wang, Z., Wang, Q., Jia, C. and Bai, J. (2022b), "Thermal evolution of chemical structure and mechanism of oil sands bitumen", Energy, 244, 123190. https://doi.org/10.1016/j.energy.2022.123190.
  88. Wu, C.-P., Chen, Y.-J. and Wang, Y.-M. (2020), "Three-dimensional asymptotic nonlocal elasticity theory for the free vibration analysis of embedded single-walled carbon nanotubes", Comput. Mathem. Appl., 80(1), 161-182. https://doi.org/10.1016/j.camwa.2020.03.006.
  89. Xiao, X., Bu, G., Ou, Z. and Li, Z. (2022), "Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure", Eng. Struct., 252, 113670. https://doi.org/10.1016/j.engstruct.2021.113670.
  90. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780.
  91. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  92. Xue, B., Yang, Q., Jin, Y., Zhu, Q., Lan, J., Lin, Y., Tan, J., Liu, L., Zhang, T., Chirwa, E.M.N. and Zhou, X. (2023), "Genotoxicity assessment of haloacetaldehyde disinfection byproducts via a simplified yeast-based toxicogenomics assay", Environ. Sci. Technol., 57(44), 16823-16833. https://doi.org/10.1021/acs.est.3c04956.
  93. Yang, J. and Shen, H.-S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2.
  94. Zarga, D., Tounsi, A., Bousahla Abdelmoumen, A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. http://dx.doi.org/10.12989/SCS.2019.32.3.389.
  95. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022a), "Distance-based Support Vector Machine to Predict DNA N6-methyladenine Modification", Current Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  96. Zhang, K., Jiang, S., Zhao, R., Wang, P., Jia, C. and Song, Y. (2022b), "Connectivity of organic matter pores in the Lower Silurian Longmaxi Formation shale, Sichuan Basin, Southern China: Analyses from helium ion microscope and focused ion beam scanning electron microscope", Geologic. J., 57(5), 1912-1924. https://doi.org/10.1002/gj.4387.
  97. Zhang, M., Jiang, X. and Arefi, M. (2023a), "Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching", Europ. Phys. J. Plus. 138(3), 227. https://doi.org/10.1140/epjp/s13360-023-03753-4.
  98. Zhang, P., Song, J. and Mahmoudi, T. (2023b), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  99. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023c), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/SCS.2023.49.3.293.
  100. Zhang, Z., Du, J. and Mahmoudi, T. (2023d), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/ANR.2023.15.4.355.
  101. Zhao, H., Zong, G., Wang, H., Zhao, X. and Xu, N. (2023a), "Zero-Sum Game-Based Hierarchical Sliding-Mode Fault-Tolerant Tracking Control for Interconnected Nonlinear Systems via Adaptive Critic Design", IEEE Transact. Automation Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2023.3317902.
  102. Zhao, H., Zong, G., Zhao, X., Wang, H., Xu, N. and Zhao, N. (2023b), "Hierarchical sliding-mode surface-based adaptive critic tracking control for nonlinear multiplayer zero-sum games via generalized fuzzy hyperbolic models", IEEE Transact. Fuzzy Syst., 31(11), 4010-4023. https://doi.org/10.1109/TFUZZ.2023.3273566.
  103. Zhao, Y., Liang, H., Zong, G. and Wang, H. (2023c), "Eventbabed distributed finite-horizon $H_\infty$ consensus control for constrained nonlinear multiagent systems", IEEE Syst. J., 17(4), 5369-5380. https://doi.org/10.1109/JSYST.2023.3318525.
  104. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/SCS.2020.34.2.215.