DOI QR코드

DOI QR Code

FTS로 증착된 AZO 박막의 두께에 따른 구조적, 전기적, 광학적 특성 변화

Changes in Structural, Electrical, and Optical Properties Depending on the Thickness of AZO Thin Films Deposited with FTS

  • Haechan Kim (Department of Electrical Engineering, Gachon University) ;
  • Hyungmin Kim (Department of Electrical Engineering, Gachon University) ;
  • Seongmin Shin (Department of Electrical Engineering, Gachon University) ;
  • Kyunghwan Kim (Department of Electrical Engineering, Gachon University) ;
  • Jeongsoo Hong (Department of Electrical Engineering, Gachon University)
  • 투고 : 2023.11.06
  • 심사 : 2023.12.05
  • 발행 : 2024.03.01

초록

In this study, the structural, electrical, and optical properties of AZO films of various thicknesses are compared. The AZO films were deposited on a glass substrate by FTS (Facing-Target-Sputtering) This research was conducted to find the optimal thickness for Transparent Conductive Oxide (TCO). AZO has suitable properties for TCO such as low resistivity, and high transmittance. Thin films of all thicknesses showed a transmittance of over 80% in the visible light region and electrical properties improved as thickness increased. It was confirmed that the film of 300 nm thick had the best performance due to its low resistivity, and uniform surface. This research is expected to help find optimal conditions in various fields where TCO is used, such as solar cells, displays, and sensors in the future.

키워드

과제정보

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(RS-2023-00227306) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2022년 산업혁신인재성장지원사업).

참고문헌

  1. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). doi: https://doi.org/10.1063/1.1605805 
  2. C. C. Kuo, Opt. Lasers Eng., 49, 829 (2011). doi: https://doi.org/10.1016/j.optlaseng.2011.03.003 
  3. F. Maldonado and A. Stashans, J. Phys. Chem. Solids, 71, 784 (2010). doi: https://doi.org/10.1016/j.jpcs.2010.02.001 
  4. S. H. Jeong and J. H. Boo, Thin Solid Films, 447, 105 (2004). doi: https://doi.org/10.1016/j.tsf.2003.09.031 
  5. K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, Curr. Appl. Phys., 9, 683 (2009). doi: https://doi.org/10.1016/j.cap.2008.06.006 
  6. M. Sibinski, K. Znajdek, M. Sawczak, and M. Gorski, Microelectron. Eng., 127, 57 (2014). doi: https://doi.org/10.1016/j.mee.2014.04.026 
  7. B. Swatowska, W. Powroznik, H. Czternastek, G. Lewinska, T. Stapinski, R. Pietruszka, B. S. Witkowski, and M. Godlewski, Energies, 14, 6271 (2021). doi: https://doi.org/10.3390/en14196271 
  8. Y. S. Rim, S. M. Kim, H. W. Choi, S. J. Park, and K. H. Kim, Colloids Surf., A, 313, 461 (2008). doi: https://doi.org/10.1016/0040-6090(95)08124-0 
  9. C. Lin, D. C. Sun, S. L. Ming, E. Y. Jiang, and Y. G. Liu, Thin Solid Films, 279, 49 (1996). doi: https://doi.org/10.1016/0040-6090(95)08124-0 
  10. M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, and M. Zerdali, Phys. B, 403, 3326 (2008). doi: https://doi.org/10.1016/j.physb.2008.04.045 
  11. G. H. Gilmer and M. H. Grabow, JOM, 39, 19 (1987). doi: https://doi.org/10.1007/BF03258055 
  12. V. Consonni, G. Rey, H. Roussel, and D. Bellet, J. Appl. Phys., 111, 033523 (2012). doi: https://doi.org/10.1063/1.3684543 
  13. D. Belanger, J. P. Dodelet, B. A. Lombos, and J. I. Dickson, J. Electrochem. Soc., 132, 1398 (1985). doi: https://doi.org/10.1149/1.2114132 
  14. B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, J. Appl. Phys., 101, 033713 (2007). doi: https://doi.org/10.1063/1.2437572 
  15. L. L. Kazmerski, W. B. Berry, and C. W. Allen, J. Appl. Phys., 43, 3515 (1972). doi: https://doi.org/10.1063/1.1661746 
  16. M. Lee, Y. Park, K. Kim, and J. Hong, Thin Solid Films, 703, 137980 (2020). doi: https://doi.org/10.1016/j.tsf.2020.137980 
  17. J. S. Hong, K. W. Jang, Y. S. Park, H. W. Choi, and K. H. Kim, Mol. Cryst. Liq. Cryst., 538, 103 (2011). doi: https://doi.org/10.1080/15421406.2011.563666 
  18. E. Burstein, Phys. Rev., 93, 632 (1954). doi: https://doi.org/10.1103/PhysRev.93.632 
  19. J. Wagner and J. A. del Alamo, J. Appl. Phys., 63, 425 (1988). doi: https://doi.org/10.1063/1.340257 
  20. A. Jain, P. Sagar, and R. M. Mehra, Solid-State Electron., 50, 1420 (2006). doi: https://doi.org/10.1016/j.sse.2006.07.001 
  21. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, and T. Ohshima, Appl. Phys. Lett., 89, 262107 (2006). doi: https://doi.org/10.1063/1.2424308