DOI QR코드

DOI QR Code

공침법을 통한 나노로드 형태의 니켈계 양극 소재 개발에 관한 연구

A Study on the Development of Nanorod-Type Ni-Rich Cathode Materials by Using Co-Precipitation Method

  • 박주혁 (계명대학교 화공신소재공학부 신소재공학전공)
  • Joohyuk Park (Department of Advanced Materials Engineering, Keimyung University)
  • 투고 : 2023.12.28
  • 심사 : 2024.01.08
  • 발행 : 2024.03.01

초록

Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1F1A1045466).

참고문헌

  1. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). doi: https://doi.org/10.1038/451652a
  2. J. Liu, J. G. Zhang, Z. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V. V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, and B. Schwenzer, Adv. Funct. Mater., 23, 929 (2013). doi: https://doi.org/10.1002/adfm.201200690
  3. A. Vlad, N. Singh, C. Galande, and P. M. Ajayan, Adv. Energy Mater., 5, 1402115 (2015). doi: https://doi.org/10.1002/aenm.201402115
  4. B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010). doi: https://doi.org/10.1016/j.jpowsour.2009.11.048
  5. K. X. Wang, X. H. Li, and J. S. Chen, Adv. Mater., 27, 527 (2015). doi: https://doi.org/10.1002/adma.201402962
  6. H. K. Kang and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 29 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.1.5
  7. D. M. Moon, D. E. Hyun, J. H. Oh, J. B. Jeon, Y. N. Kim, K. H. Jeong, J. K. Lee, S. M. Koo, D. W. Lee, and J. M. Oh, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 638 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.6.17
  8. S. Shin, H. Cho, Y. J. Jung, S. M. Koo, J. M. Oh, and W. H. Shin, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 10 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.1.2
  9. Y. Kim, M. Kim, T. Lee, E. Kim, M. An, J. Park, J. Cho, and Y. Son, Electrochem. Commun., 147, 107437 (2023). doi: https://doi.org/10.1016/j.elecom.2023.107437
  10. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). doi: https://doi.org/10.1039/C1EE01598B
  11. A. Manthiram, A. Vadivel Murugan, A. Sarkar, and T. Muraliganth, Energy Environ. Sci. 1, 621 (2008). doi: https://doi.org/10.1039/B811802G
  12. H. B. Yahia, M. Shikano, and H. Kobayashi, Chem. Mater., 25, 3687 (2013). doi: https://doi.org/10.1021/cm401942t
  13. Y. Wang, Z. Feng, P. Cui, W. Zhu, Y. Gong, M. A. Girard, G. Lajoie, J. Trottier, Q. Zhang, L. Gu, Y. Wang, W. Zuo, Y. Yang, J. B. Goodenough, and K. Zaghib, Nat. Commun., 12, 13 (2021). doi: https://doi.org/10.1038/s41467-020-20169-1
  14. S. Kalluri, M. Yoon, M. Jo, H. K. Liu, S. X. Dou, J. Cho, and Z. Guo, Adv. Mater., 29, 1605807 (2017). doi: https://doi.org/10.1002/adma.201605807
  15. F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin, and M. M. Doeff, Nat. Commun., 5, 3529 (2014). doi: https://doi.org/10.1038/ncomms4529
  16. J. Kim, H. Ma, H. Cha, H. Lee, J. Sung, M. Seo, P. Oh, M. Park, and J. Cho, Energy Environ. Sci., 11, 1449 (2018). doi: https://doi.org/10.1039/C8EE00155C
  17. H. Kim, M. G. Kim, H. Y. Jeong, H. Nam, and J. Cho, Nano Lett., 15, 2111 (2015). doi: https://doi.org/10.1021/acs.nanolett.5b00045
  18. S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, and D. W. Kim, ACS Appl. Mater. Interfaces, 6, 2546 (2014). doi: https://doi.org/10.1021/am404965p
  19. H. Cha, J. Kim, H. Lee, N. Kim, J. Hwang, J. Sung, M. Yoon, K. Kim, and J. Cho, Adv. Mater., 32, 2003040 (2020). doi: https://doi.org/10.1002/adma.202003040
  20. N. Ikeda, I. Konuma, H. B. Rajendra, T. Aida, and N. Yabuuchi, J. Mater. Chem. A, 9, 15963 (2021). doi: https://doi.org/10.1039/D1TA03066C
  21. A. Mukhopadhyay and B. W. Sheldon, Prog. Mater. Sci., 63, 58 (2014). doi: https://doi.org/10.1016/j.pmatsci.2014.02.001
  22. H. Yu, Y. Qian, M. Otani, D. Tang, S. Guo, Y. Zhu, and H. Zhou, Energy Environ. Sci., 7, 1068 (2014). doi: https://doi.org/10.1039/C3EE42398K
  23. P. Yan, J. Zheng, M. Gu, J. Xiao, J. G. Zhang, and C. M. Wang, Nat. Commun., 8, 14101 (2017). doi: https://doi.org/10.1038/ncomms14101
  24. H. Dong and G. M. Koenig, CrystEngComm, 22, 1514 (2020). doi: https://doi.org/10.1039/C9CE00679F
  25. T. Kauppinen, P. Laine, J. Valikangas, P. Tynjala, T. Hu, J. Salminen, and U. Lassi, ChemElectroChem, 10, e202300265 (2023). doi: https://doi.org/10.1002/celc.202300265