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요 약

수요 반응은 력망의 신뢰성을 높이고 비용을 최소화하기 해 수요가 가장 많은 시간 에 고객이 소비 

패턴을 조정하도록 유도한다. 재생 에 지원을 스마트 그리드에 통합하는 것은 간헐 이고 측할 수 없는 특

성으로 인해 상당한 도  과제를 안고 있다. 강화 학습 기법과 결합된 수요 응 략은 이러한 문제를 해결

하고 기존 방식에서는 이러한 종류의 복잡한 요구 사항을 충족하지 못하는 경우 그리드 운 을 최 화할 수 

있는 근 방식으로 부상하고 있다. 본 연구는 재생 에 지 통합을 한 수요 반응에 강화 학습 알고리즘을 

용하는 방법을 찾아 용하는데 을 둔다. 연구의 핵심 목표는 수요 측 유연성을 최 화하고 재생 에

지 활용도를 개선할 뿐 아니라 그리드 안정성을 강화하고자 한다. 연구 결과는 강화 학습을 기반으로 한 수요 

반응 략이 그리드 유연성을 향상시키고 재생 에 지 통합을 진하는 데 효과 이라것을 보여 다. 

ABSTRACT

Demand response is a strategy that encourages customers to adjust their consumption patterns at times of peak 

demand with the aim to improve the reliability of the power grid and minimize expenses. The integration of renewable 

energy sources into smart grids poses significant challenges due to their intermittent and unpredictable nature. Demand 

response strategies, coupled with reinforcement learning techniques, have emerged as promising approaches to address 

these challenges and optimize grid operations where traditional methods fail to meet such kind of complex requirements. 

This research focuses on investigating the application of reinforcement learning algorithms in demand response for 

renewable energy integration. The objectives include optimizing demand-side flexibility, improving renewable energy 

utilization, and enhancing grid stability. The results emphasize the effectiveness of demand response strategies based on 

reinforcement learning in enhancing grid flexibility and facilitating the integration of renewable energy.
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Ⅰ. Introduction

Transforming energy grids to become 

carbon-neutral demands radical alterations in how 

we consume energy, especially to cope with the 

fluctuating nature of wind and solar power 

generation. One approach to reduce this issue is 

demand response, a strategy that encourages users 

to modify their energy consumption from periods of 

low generation to times when energy generation is 

plentiful[1]. With the increasing adoption of 

renewable energy sources[2] like solar and wind, 

which are intermittent in nature, demand response 

can play a vital role in smoothing out the 

imbalances between energy supply and demand. 

Demand response is most often deployed through 

buildings and dealing with the uncertainties 

associated with RESs[3] to prevent instability and 

ensure resource availability, their integration into 

the current grid infrastructure must be done with 

care. The complexity of managing building controls 

increases because of the necessity to adaptively 

shift electrical loads in response to signals from the 

power grid[4]. Participating in demand response 

initiatives offers networks of buildings ways to 

improve control over energy loads and boost 

cost-effectiveness, all while easing the 

unpredictability of power inputs from renewable 

energy sources[5]. Several techniques have been 

proposed to optimize the energy consumption of 

grid-responsive buildings in order to match the 

power grid’s demand. Among the various methods, 

model-based methods are the most researched. 

Specifically, model predictive control (MPC) has 

made considerable contributions to both energy 

management and demand response initiatives[6]. 

Another model-based approach involves modeling 

the demand response problem as a scheduling 

problem formulated as mixed-integer linear 

programming (MILP) problem, which requires 

knowledge of system dynamics for various 

appliances utilized in energy management 

systems[7]. Due to difficulties in dealing with 

time-varying system variables and the need to 

create distinct energy models for each building, the 

feasibility of using model-based methods for 

demand response diminishes as the scale of the 

problem expands. 

As machine learning advances rapidly, 

reinforcement learning (RL) has shown considerable 

potential in addressing demand response as a series 

of decision-making steps in contrast to 

model-based approaches[8]. Unlike traditional 

optimization methods, RL doesn't necessitate 

pre-existing knowledge of system behavior and can 

be employed in a model-free way, simplifying its 

application in real-world scenarios. In recent years 

many RL methods have been proposed. Such as 

proximal policy optimization (PPO) algorithm[9], 

deep deterministic policy gradient (DDPG) off – 

policy algorithm[10], twin delayed DDPG (TD3) 

off-policy algorithm[11] and etc. RL has been 

successfully employed in developing several demand 

response programs[12–15]. In this research we use 

Soft Actor-Critic (SAC) algorithm, a 

state-of-the-art method in the domain of deep 

reinforcement learning, known for its sample 

efficiency and stability during training. SAC stands 

out due to its entropy regularization component, 

which encourages the exploration of various policy 

actions, leading to a more robust and 

comprehensive learning process. This intrinsic 

characteristic of SAC is particularly advantageous 

when dealing with the stochastic nature of 

renewable energy sources and the dynamic 

demands of energy consumption.

Ⅱ. Methodology

2.1 CityLearn challenge

CityLearn[16] is a simulation environment 
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designed to serve as a testbed for developing and 

evaluating algorithms related to demand response 

and energy management in urban settings. Built to 

mimic real-world scenarios, CityLearn allows for 

the simulation of various energy management tasks 

within multiple buildings over extended periods and 

enables the management of a group of buildings 

using either centralized or decentralized multi-agent 

RL control mechanisms, as well as individual-agent 

RL control systems. Each building has three kinds 

of demand: electric demand, cooling and DHW 

demand. Also, buildings include electrical devices 

such as air-to-water heat pumps, electric heaters, 

cooling or heating and domestic hot water (DHW) 

thermal storages, and electrical energy storage, as 

depicted in Fig 1.

 

그림 1. 건물의 에 지 모델
Fig. 1 Energy models of buildings

A heat pump is a versatile device that consumes 

electrical power  from the power grid to meet the 

thermal demand of a building. It operates in two 

modes: heating and cooling. And these two modes 

cannot be used at the same time. Electric energy 

consumed by heat pump is computed as: 










             ⋯ (1)

≤
≤

 ∀∈     ⋯ (2)

Where η epresents the energy conversion 

coefficient, which depends on indoor target and 

outdoor air temperatures and the technical 

efficiency coefficient η . indicates the output 
power capacity of heat pump.

The electric heater generates heating energy,  

for Domestic Hot Water (DHW) by utilizing 

electrical energy from the grid, , in accordance with 

the following formula:

 


       ⋯ (3)

Where ηis heater efficiency and usually greater 
than 0.9.

Battery capacity, C, is defined in kWh and it 

includes a capacity loss coefficient,  which 

indicates the fraction of capacity lost during each 

charge and discharge process. It is defined as 




 units. The new battery capacity , is 

calculated by following equation:

≠         ⋯ (4)
Where   is capacity degradation rate per cycle. 

Battery also involves regulating the inflow and 

outflow of power, which is defined as    and 

  respectively.

The storage includes chilled water and domestic 

hot water (DHW) tanks, which accumulate cooling, 

heating, and DHW energy supplied by heat pumps 

and electric heaters. Operation functional of thermal 

energy storages is analogous to the electric storage 

system. 

The storage includes chilled water and domestic 

hot water (DHW) tanks, which accumulate cooling, 

heating, and DHW energy supplied by heat pumps 

and electric heaters. Operation functional of thermal 
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그림 2. 력 수요와 태양  발 량 비교
Fig. 2 comparison electric demand and solar generation

energy storages is analogous to the electric storage 

system. 

2.2 Observation space

Observation space represents the set of 

observations the agent perceives at every 

decision-making interval. Within the CityLearn 

framework, each building can offer up to 27 distinct 

observations that can be passed to the agent. Also, 

CityLearn provides the user with the capability to 

determine which resources the RL agent can 

access.

2.3 Action space

In CityLearn environment, agents do not directly 

control renewable energy sources. Instead, 

renewable energy is automatically subtracted from 

the total electricity demand, which is a 

straightforward approach. However, given our 

research objective of maximizing renewable energy 

usage, we decided to grant agents control over 

solar energy[17-18] generation. This decision 

enables us to assess the agents' proficiency in 

managing solar energy. To simplify the system and 

prevent simultaneous charging and discharging of 

the battery, we have unified the action space for 

both charging/discharging the battery and 

controlling solar generation usage. A positive action 

(greater than or equal to 0) dictates the proportion 

of solar generation to be utilized immediately, with 

the remainder being stored in the battery. 

Conversely, a negative action (less than 0) signals 

the battery to discharge, supplementing the energy 

demand with stored power while using the entirety 

of the solar generation directly.

It is important to note that the actual amount of 

energy shifted or stored does not always precisely 

align with the action value. This discrepancy arises 

due to the fluctuating nature of building energy 

demands and the battery's current state of charge. 

Our approach thus provides a nuanced and practical 

method for the agents to optimize the use of solar 

energy in conjunction with battery storage, a 

crucial step towards achieving our goal of 

enhancing renewable energy utilization in smart 

grid environments.

In the context of our study, it is crucial to have 

periods during the day when there is excess solar 

generation available for storage. This stored energy 

can then be utilized during times when solar 

generation is not possible. Such a scenario is key 

to evaluating the agents' ability to effectively 

manage solar energy resources. To determine the 

most suitable use for solar generation, we 

conducted an analysis of historical data, comparing 

historical cooling, domestic hot water (DHW), and 

electric demand with solar generation data. Our 

findings indicated that electric demand aligns most 

effectively with solar generation patterns (Fig. 2).

2.4 Reward function

We have designed a reward function that 

integrates the management of solar energy 

utilization with grid stability. This function 

comprises two distinct components, each focusing 

on a specific aspect of energy management. 

Reward for solar energy utilization. For each 

agent, the reward is calculated based on the 

difference between the non-shiftable demand and 

the solar energy directly used, as well as the state 

of charge (SoC) of the battery. 
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 i f〈 and  

   i f〈 and  
  

 i f  
⋯ (5)

Where,  represent the difference between 

non-shiftable load and solar generation for building 

, and  represent the state of charge of the 

battery for building 

Grid Stability Reward. This component focuses 

on the total electricity demand of each building.

  
             ⋯ (6)

However, if reward for grid stability is positive, 

then it is set to 0 to avoid rewarding excessive 

consumption from the grid. The final  for each 

building is a weighted sum of the two reward 

components.

2.5 SAC Reinforcement Learning algorithmn

The Soft Actor-Critic (SAC) algorithm is a 

state-of-the-art reinforcement learning method that 

is particularly suitable for complex, continuous 

control tasks, such as those encountered in energy 

management and optimization in environments. SAC 

is also known for being sample-efficient. 

그림 3. SAC 기반 DR 리를 한 시스템 설계
Fig. 3 System design for SAC based DR 

management

This is particularly beneficial in complex 

simulations like CityLearn, where collecting data 

can be time-consuming and computationally 

expensive. The SAC algorithm's balance between 

exploration and exploitation makes it adaptable to a 

wide range of tasks and environments, including 

the diverse scenarios presented in CityLearn (Fig. 

3.).

Now, let's briefly go through the architecture 

and key components of the SAC algorithm:

Actor Network: This network is responsible for 

policy representation π(a∣s), mapping states to 

actions. The policy is typically represented as a 

neural network with parameters θ, and it outputs a 

probability distribution over actions given the 

current state. The objective for the actor network 

is to maximize the expected return and the entropy 

of the policy. The policy's objective function can be 

represented as:

～  ∙∣  ⋯ (7)
Where  is the action-value function 

estimated by the critic, π∙   is the 

temperature parameter that determines the relative 

importance of the entropy term against the reward, 

and  is the entropy of the policy at state .

Critic Networks: SAC employs two critic 

networks (twin critics), each parameterized by ϕ1 
and ϕ2, which approximate the action-value 

function Q(s,a). The critics are trained to minimize 

the Bellman residual:

～










 ～



min  ϕ′ 

′ 
log∣















⋯ (8)

Entropy Regularization: Entropy regularization is 

a key component of SAC, represented by the 

entropy term π∙   in the actor's objective. 
It is the expectation of the negative log probability 

of the action taken according to the policy:
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Building 

type
Building description Cooling Storage DHW Storage

Battery 

Capacity(kWh)
PV (kW)

1 Medium Office 3 3 210 120

2 Fast-food restaurant 3 3 160 60

3 Standalone Retail 3 3 160 60

4 Strip Mall 3 3 160 60

5, 6, 7, 8, 9 Multi-Family residental 3 3 120 40

표 1. CityLearn 챌린지의 건물과 설명
Table 1. Building and Descriptions in CityLearn Challenge

∙∣  ～  log∣  ⋯ (9)
The temperature parameter  adjusts the 

weighting of this entropy term in the overall 

objective, balancing exploration and exploitation.

Replay Buffer: SAC uses a replay buffer to store 

past experiences. The replay buffer  stores tuples 

of experience  . It is used to sample 

mini batches for training, ensuring that the data is 

uncorrelated and stable.

Soft Updates: The target networks in SAC are 

updated using a soft updating mechanism, which 

helps in stabilizing the learning process. This 

process is controlled by a hyperparameter τ 
typically a small value close to 0. The update rule 

for each parameter ϕ in the target network is:

ϕ←ϕ ϕ   ⋯ (10)
Automatic Entropy Tuning: SAC can 

automatically adjust the weight of the entropy term 

in its objective function, balancing exploration and 

exploitation based on the specific demands of the 

environment.

Ⅲ. Experiments and results

3.1 Data

The platform includes four energy demand 

datasets, simulated with EnergyPlus for four 

distinct U.S. climate zones . In this research we 

use hot-humid climate of Z1, showcasing a year's 

worth of energy data for a micro-grid consisting of 

nine buildings, with data recorded every hour. 

Table 1 illustrates the composition of this building 

group. As our research goal is maximizing the 

utilization of renewable energy, we add all 

buildings all storages and capacity of these 

storages depends on electricity demands of 

buildings.

3.2 Simulation parameters

 In this experiment, we have implemented a 

decentralized approach to enhance the efficiency of 

demand response management. Each building is 

equipped with individual measurement devices, 

control systems, and actuators. Consequently, the 

number of elements in the State, Action, and 

Reward categories is limited to nine. A notable 

distinction, however, is that the “net electricity 

consumption” variable represents the aggregated 

electricity usage of all nine buildings at a given 

moment within the State. We can also track solar 

generation usage by “electric consumption 

appliances”.  This setup enables the trained 

controller to modify its energy utilization strategy 

based on the observation of net electricity 

consumption. The hyperparameters used in training 

the network are shown in Table 2.
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그림 5. 태양  발 이 있는 총 력 수요와 장소 제어를 해 SAC를 사용하는 총 력 수요  DR 
리  태양  발 이 없는 총 력 수요

Fig. 5 Total electricity demand with PV generation and using SAC for storage control and total electricity 
demand without DR management and PV

그림 4. 태양  발 이 있는 력 수요  장소  태양  발  제어를 한 SAC 알고리즘 사용, 
태양  발   DR 리를 제외한 력 수요

Fig. 4 Electricity demand with PV generation and using SAC algorithm for storage and solar generation 
control and Electricity demand without PV generation and DR management

Description Value

Weight for 

rewards

Battery – 0.6, 

thermal stor. – 0.4

Discount factor 0.99

Replay buffer 1e5

Mini batch 256

Learning rate 3e-5

τ 5e-4

Learning episodes 20

표 2. SAC 알고리즘의 매개변수
Table 2. Parameters of SAC algorithm

3.3 Results and analysis

Fig. 4 shows average reward of SAC algorithm 

per episode. This average reward is for both 

controlling solar generation and thermal storages. 

The plot illustrates the average reward per learning 

episode for the SAC algorithm within the CityLearn 

simulation environment. Initially, we observe a 

significant increase in the average reward as the 

SAC algorithm learns from its interactions with the 

environment, indicating an improvement in policy 

and a reduction in associated costs.
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 The reward stabilizes after approximately 5 

episodes, suggesting the algorithm has begun to 

converge towards an optimal policy.

그림 6.  SAC 알고리즘 에피소드당 평균 보상
Fig. 6 Average reward SAC algorithm per episode

Fig. 5 and Fig. 6 illustrate total electricity 

consumption and total electricity appliances 

consumption using SAC algorithm and storages and 

without DR and without storages respectively. 

Notably, the demand profile managed by SAC 

(orange line) demonstrates a consistent reduction in 

electricity consumption compared to the baseline 

scenario devoid of demand response and 

photovoltaic input (blue line). This reduction is 

particularly evident during peak demand periods, 

suggesting that SAC effectively shifts energy usage 

to off-peak times or utilizes stored solar energy, 

thereby flattening the demand curve. 

Furthermore, instances of negative demand 

within the SAC-controlled profile indicate moments 

when solar generation surpasses the building's 

energy consumption, which not only reduces grid 

dependency but also provides opportunities for 

energy storage or export. These observations 

underscore the SAC algorithm's potential in 

optimizing demand response actions to leverage 

renewable energy sources, contributing to a more 

resilient and sustainable energy system.

Table 3 shows evaluation of SAC algorithm’s 

performance by cost functions. Each cost function 

assesses a different aspect of the system's 

efficiency and environmental impact. Ramping 

measures the rate at which the electricity demand 

increases or decreases over time. The value close 

to 1 suggests that the system's performance is 

almost ideal in minimizing large fluctuations in 

energy demand. 1-Load Factor is the ratio of the 

average load over a period to the peak load 

occurring in that period. In our case, the "1-load 

factor" being greater than 1 indicates less than 

ideal performance, with room for improvement in 

smoothing out energy demand.

Cost function value

Ramping 0.9960

1-Load Factor 1.0342

Average Daily Peak 0.7846

Peak Demand 0.8415

Net Electricity Consumption 0.8600

Carbon Emissions 0.8651

Total 0.8969

표 3. SAC 알고리즘 성능에 한 평가 지표
Table 3. Evaluation metrics for SAC algorithm 

performance

Average Daily Peak averages the highest 

electricity demand peaks over each day. Peak 

Demand is the highest recorded electricity demand 

during the evaluation period. Net Electricity 

Consumption refers to the total amount of 

electricity used, accounting for any generation from 

renewable sources. Carbon Emissions calculates the 

total carbon emissions resulting from electricity 

consumption. A lower value indicates a smaller 

carbon footprint and a more environmentally 

friendly energy management system. Total is an 

aggregate score that averages all the other cost 

function values to give an overall performance 

metric. The closer this value is to 0, the better the 

overall performance of the energy management 

system.



SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에 지 통합  최  수요 반응

101

Ⅳ. Key findings

Our research in demand response (DR) using the 

Soft Actor-Critic (SAC) algorithm within the 

CityLearn simulation environment yielded significant 

insights into the optimization of renewable energy 

consumption and grid stability. The results 

demonstrate that, the SAC algorithm successfully 

minimized energy demand volatility, daily peak 

electricity demand, total electricity consumption and 

carbon emissions which reflects a lower 

environmental impact, showing SAC algorithm 

effectively managing energy sources. The results 

hold promise for advancing smart grid technologies 

and contributing to the broader adoption of 

intelligent energy systems that maximize renewable 

energy utilization while ensuring grid stability.

Ⅴ. Discussion

The research outcomes from the demand 

response management using SAC algorithm within 

the CityLearn simulation environment offer a 

compelling narrative for the future of smart energy 

management systems. The SAC algorithm's 

success in our study corroborates theories 

suggesting that machine learning can play a pivotal 

role in advancing the functionality and resilience of 

smart grids.

Despite the promising results, this research is 

not without limitations. One such limitation is the 

occasional drop of non-shiftable load below zero, 

highlighting an opportunity for further refinement of 

the algorithm's predictive and adaptive capabilities. 

This anomaly suggests that the SAC algorithm, 

while robust, may still require additional tuning to 

ensure that the non-shiftable loads are consistently 

predicted and managed within realistic bounds. 

Future iterations of the algorithm should focus on 

enhancing load balancing strategies to ensure a 

consistent and efficient distribution of energy 

consumption throughout the day. 

Ⅵ. Conclusion

Enhancing Smart Grid efficiency through SAC 

Reinforcement Learning algorithm within the 

CityLearn environment has led to significant 

discoveries with substantial implications for the 

field of demand response and energy management. 

By focusing solar generation exclusively on battery 

charging and managing non-shiftable loads, which 

predominantly consist of electrical appliances, the 

study has demonstrated an approach to enhancing 

the efficiency of energy systems while maximizing 

the use of renewable energy sources. Also, the 

strategic use of thermal energy storage systems for 

grid stability has showcased the versatility of the 

SAC algorithm. This aspect of the research 

underlines the potential of integrated energy storage 

solutions in fortifying grid resilience.

The results of the study hold promise for the 

future of smart energy management. They illustrate 

the potential of sophisticated reinforcement learning 

algorithms to not only optimize energy consumption 

within individual buildings but also to contribute to 

the broader goal of creating a sustainable and 

stable energy grid. 
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