DOI QR코드

DOI QR Code

Vibration control performance of particle tuned mass inerter system

  • Zheng Lu (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Deyu Yan (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Chaojie Zhou (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Ruifu Zhang (Department of Disaster Mitigation for Structures, Tongji University)
  • Received : 2023.02.20
  • Accepted : 2024.02.13
  • Published : 2024.02.25

Abstract

To improve the vibration control performance and applicability of traditional particle tuned mass damper (PTMD) and realize the significant characteristic of lightweight design, this study proposes a novel particle tuned mass inerter system (PTMIS) by introducing inerter system (IS) to the PTMD. In the study, the motion equation of single degree of freedom (SDOF) structure attached with PTMIS is established first, then the variation law of the system's vibration reduction performance (VRP) is discussed through parameter analysis, and it is compared with the PTMD to analyze its VRP advantages. Finally, its vibration reduction (VR) mechanism from the perspective of core control force and energy analysis is explored, and its cavity relative displacement from the application perspective is analyzed. The results show that the PTMIS can remarkably improve the vibration control effectiveness of the PTMD. The reason is that the inerter can store energy and transfer the energy to the cavity and particles, which further stimulates the interaction between the two parts, thereby improving the nonlinear energy consumption effectiveness. Also, the IS can amplify the damping element's energy dissipation efficiency. In addition, the PTMIS can effectively reduce the working stroke of the PTMD, and through the analysis of the lightweight characteristics of the PTMIS, it is found that its lightweight advantage can reach nearly 100%.

Keywords

Acknowledgement

Financial support from the National Natural Science Foundation of China (52178296) is highly appreciated. This work is also supported by Fundamental Research Funds for the Central Government Supported Universities (11080) and Top Discipline Plan of Shanghai Universities-Class I (20223YB15).

References

  1. Alujevic, N., Cakmak, D., Wolf, H. and Jokic, M. (2018), "Passive and active vibration isolation systems using inerter", J. Sound Vib., 418, 163-183. https://doi.org/10.1016/j.jsv.2017.12.031.
  2. Chen, Q.J., Zhao, Z.P., Zhang, R.F. and Pan, C. (2018), "Impact of soil-structure interaction on structures with inerter system", J. Sound Vib., 433, 1-15. https://doi.org/10.1016/j.jsv.2018.07.008.
  3. De Domenico, D., Qiao, H.S., Wang, Q.H., Zhu, Z.W. and Marano, G. (2020), "Optimal design and seismic performance of Multi-Tuned Mass Damper Inerter (MTMDI) applied to adjacent high-rise buildings", Struct. Des. Tall. Spec., 29(14), e1781. https://doi.org/10.1002/tal.1781.
  4. Friend, R.D. and Kinra, V.K. (2000), "Particle impact damping", J. Sound Vib., 233(1), 93-118. https://doi.org/10.1006/jsvi.1999.2795.
  5. Garrido, H., Curadelli, O. and Ambrosini, D. (2014), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. http://doi.org/10.1016/j.engstruct.2013.08.044.
  6. Ikage, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. http://doi.org/10.1002/eqe.1138.
  7. Jin, X.L., Chen, M.Z.Q. and Huang, Z.L. (2016), "Minimization of the beam response using inerter-based passive vibration control configurations", Int. J. Mech. Sci., 119, 80-87. https://doi.org/10.1016/j.ijmecsci.2016.10.007.
  8. Kawamata, S., Yoneda, M. and Hangai, Y. (1974), "Development of vibration control system for structures by means of mass pumps", Institute of Industrial Science, University of Tokyo, Tokyo, Japan.
  9. Lu, Z., Chen, X.Y. and Zhou, Y. (2018), "An equivalent method for optimization of particle tuned mass damper based on experimental parametric study", J. Sound Vib., 419, 571-584. https://doi.org/10.1016/j.jsv.2017.05.048.
  10. Lu, Z., Chen, X.Y., Zhang, D.C. and Dai, K.S. (2017a), "Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation", Earthq. Eng. Struct. Dyn., 46(5). 697-714. https://doi.org/10.1002/eqe.2826.
  11. Lu, Z., Wang, D.C. and Zhou, Y. (2017b), "Experimental parametric study on wind-induced vibration control of particle tuned mass damper on a benchmark high-rise building", Struct. Des. Tall. Spec., 26(8), e1359. https://doi.org/10.1002/tal.1359.
  12. Lu, Z., Wang, D.C., Masri, S.F. and Lu, X.L. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., 18(1), 93-115. http://doi.org/10.12989/sss.2016.18.1.093.
  13. Lu, Z., Zhao, S.Q., Ma, C.Z. and Dai, K.S. (2023a), "Experimental and analytical study on the performance of wind turbine tower attached with particle tuned mass damper", Eng. Struct., 294, 116784. http://doi.org/10.1016/j.engstruct.2023.116784.
  14. Lu, Z., Zhou, C.J., Rong, K.J., Zhang, J.W. and Du, J. (2023b), "Vibration reduction mechanism of a novel enhanced particle inerter device", Int. J. Struct. Stab. Dyn., 23(1), 2350009. https://doi.org/10.1142/S0219455423500098.
  15. Marian, L. and Giaralis, A. (2015), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probc. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007.
  16. Masri, S.F. and Caffrey, J.P. (2017a), "Transient response of a SDOF system with an inerter to nonstationary stochastic excitation". J. Appl. Mech., 84(4), 041005. https://doi.org/10.1115/1.4035930.
  17. Masri, S.F., Caffrey, J.P. and Li, H. (2017b), "Transient response of MDOF systems with inerters to nonstationary stochastic excitation", J. Appl. Mech., 84(10), 101003. https://doi.org/10.1115/1.4037551.
  18. Pan, C. and Zhang, R.F. (2018a), "Design of structure with inerter system based on stochastic response mitigation ratio", Struct. Control Hlth. Monit., 25(6), e2169. https://doi.org/10.1002/stc.2169.
  19. Pan, C., Zhang, R.F., Luo, H., Li, C. and Shen. H. (2018b), "Demand-based optimal design of oscillator with parallel-layout viscous inerter damper", Struct. Control Hlth. Monit., 25(1), e2051. https://doi.org/10.1002/stc.2051.
  20. Papalou, A. and Masri, S.F. (1996a), "Performance of particle dampers under random excitation", J. Vib. Acoust.-Trans. ASME, 118(4), 614-621. https://doi.org/10.1115/1.2888343.
  21. Papalou, A. and Masri, S.F. (1996b), "Response of impact dampers with granular materials under random excitation", Earthq. Eng. Struct. Dyn., 25(3), 253-267. https://doi.org/10.1002/(SICI)1096-9845(199603)25:3<253::AID-EQE553>3.0.CO;2-4.
  22. Papalou, A. and Masri, S.F. (1998), "An experimental investigation of particle dampers under harmonic excitation", J. Vib. Control, 4(4), 361-379. https://doi.org/10.1177/107754639800400402.
  23. Roberson, R.E. (1952), "Synthesis of a nonlinear dynamic vibration absorber", J. Frankl. Inst., 254(3), 205-220. https://doi.org/10.1016/0016-0032(52)90457-2.
  24. Shan, J.Z., Liu, J., Loong, C.N. and Wu, W.C. (2021), "Design and analysis of plate-type eddy-current damper with high energy-dissipation capability", Smart Struct. Syst., 27(5), 769-781. https://doi.org/10.12989/sss.2021.27.5.769.
  25. Smith, M.C. (2002), "Synthesis of mechanical networks: The inerter", IEEE Trans. Autom. Control, 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
  26. Smith, M.C. and Wang, F.C. (2004), "Performance benefits in passive vehicle suspensions employing inerters", Vehic. Syst. Dyn., 42(4), 235-257. https://doi.org/10.1080/00423110412331289871.
  27. Yan, W.M., Xu, W.B., Wang, J. and Chen, Y.M. (2014), "Experimental research on the effects of a tuned particle damper on a viaduct system under seismic loads", J. Bridge. Eng., 19(3), UNSP 04013004. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000525.
  28. Zhang, R.F., Cao, Y.R. and Pan, C. (2019a), "Inerter system and its state-of-the-art", Eng. Mech., 36(10), 8-27. https://doi.org/10.6052/j.issn.1000-4750.2018.09.0496.
  29. Zhang, R.F., Zhao, Z.P. and Dai, K.S. (2019b), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct. 2018.11.020.
  30. Zhang, R.F., Zhao, Z.P. and Pan, C. (2018), "Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks", Soil Dyn Earthq. Eng., 114, 639-649. https://doi.org/10.1016/j.soildyn.2018.07.036.
  31. Zhang, R.F., Zhao, Z.P., Pan, C., Ikago, K. and Xue, S.T. (2020), "Damping enhancement principle of inerter system", Struct. Control. Hlth. Monit., 27(5), 21. https://doi.org/10.1002/stc.2523.
  32. Zhao, Z.P., Chen, Q.J., Zhang, R.F., Pan, C. and Jiang, Y.Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845.
  33. Zhao, Z.P., Zhang, R.F. and Lu, Z. (2019b), "A particle inerter system for structural seismic response mitigation", J. Frankl. Inst.-Eng. Appl. Math., 356(14), 7669-7688. https://doi.org/10.1016/j.jfranklin.2019.02.001.
  34. Zhao, Z.P., Zhang, R.F., Jiang, Y.Y. and Pan, C. (2019a), "Seismic response mitigation of structures with a friction pendulum inerter system", Eng. Struct., 193, 110-120. https://doi.org/10.1016/j.engstruct.2019.05.024.