Acknowledgement
이 논문은 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다.
References
- S. J. Lee and Y. Kim, A study on the demonstration of yellow plume elimination system from combined cycle power plant using liquid injection system, J. Korea Acad. Industr. Coop. Soc., 21, 317-324 (2020).
- S. P. Cho, Air pollution control system for combined cycle power plants in Korea, KCI News, 25, 28-33 (2022).
- M. An, S. Kim, and S. Lee, NOx reduction analysis from hybrid De-NOx facility of combined cycle power plant, KSFM, 24, 62-66 (2021).
- D. S. Yun and W. J. Yu, Early detection of combustion abnormality through analysis of blade path temperature pattern in gas turbine, Trans. Korean Soc. Mech. Eng. B., 47, 117-124 (2023). https://doi.org/10.3795/KSME-B.2023.47.2.117
- B. T. Lee and J. Choe, A study on the effect of operating temperature and NH3 on dust collection rate of electrostatic precipitator, Trans. Korean Inst. Elect. Eng., 70, 219-225 (2021).
- K. W. Kim, K. M. Lee, and S. C. Hong, A study of characterization for catalytic oxidation of nitrogen monoxide over Mn/TiO2 catalyst, Appl. Chem. Eng., 25, 474-480 (2014). https://doi.org/10.14478/ace.2014.1061
- I. Nova, C. Ciardelli, E. Tronconi, E. Chatterjee, and B. Bandl-Konrad, NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction, Catal. Today, 114, 3-12 (2006). https://doi.org/10.1016/j.cattod.2006.02.012
- H. j. Kim, S. W. Choi, and C. S. Lee, Activity and characteristics of Cu-Mn oxide catalysts supported on γ-Al2O3, Korean Chem. Eng. Res., 44, 193-199 (2006).
- T. J. Cheon, H. J. Kim, and S. W. Choi, Catalytic oxidation of toluene over Mn-Ce/γ-Al2O3 catalyst doped with Ce, J. Korean Soc. Environ. Eng., 27, 513-518 (2005).
- M. S. Kim, S. W. Kim, and H. S. Chang, A Study on the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst, Clean Technol., 25, 296-301 (2019).
- F. Fan, L. Wang, L. Wang, J. Liu, and M. Wang, Low-temperature selective NO reduction by CO over copper-manganese oxide spinel, Catalyst, 12, 591 (2022)
- H. Wang, H. Chen, Y. Wang, and Y. K. Lyn, Performance and mechanism comparison of manganese oxides at different valence state for catalytic oxidation of NO, Chem. Eng. J., 361, 1161-1172 (2019). https://doi.org/10.1016/j.cej.2018.12.159
- Z. Liu, Y. Yi, S. Zhang, T. Zhu, J. Zhu, and J. Wang, Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures, Catal. Today, 216, 76-81 (2013). https://doi.org/10.1016/j.cattod.2013.06.009
- Y. Z. Zhou, S. Ren, M. Wang, J. Yang, Z. Chen, and L. Chen, Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO, J. Energy Inst., 99, 97-104 (2021). https://doi.org/10.1016/j.joei.2021.08.003
- B. Hillary, P. Sudarsanam, M. H. Amin, and S. K. Bhargava, Nanoscale cobalt-manganese oxide catalyst supported on shape-controlled cerium oxide: Effect of nanointerface configuration on structural, redox, and catalytic properties, Langmuir, 33, 1743-1750 (2017). https://doi.org/10.1021/acs.langmuir.6b03445
- Q. Tang, X. Gong, P. Zhao, and Y. Yang, Copper-manganese oxide catalyst supported on alumina: Physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol, Appl. Catal. A: Gen., 389, 101-107 (2010). https://doi.org/10.1016/j.apcata.2010.09.014
- C. Sun, Y. Tang, F. Gao, J. Sun, K. Ma, C. Tang, and L. Dong, Effect of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalyst for NO removal by CO, Phys. Chem. Chem. Phys., 17, 15996-16006 (2015). https://doi.org/10.1039/C5CP02158H
- M. Aghbolaghy, J. Soltan, and N. Chen, Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene, Catal. Lett., 147, 2421-2433 (2017). https://doi.org/10.1007/s10562-017-2143-0
- W. Sun, X. Li, Q. Zhao, J. Mu, and J. Chen, Fe-Mn mixed oxide catalysts synthesized by one-step urea precipitation method for the selective catalytic reduction of NOx with NH3 at low temperature, Catal. Lett., 148, 227-234 (2018). https://doi.org/10.1007/s10562-017-2209-z
- E. Rezaei and J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts, Chem. Eng. J., 198-199, 482-490 (2012). https://doi.org/10.1016/j.cej.2012.06.016
- Z. Chen, Q. Yang, H. Li, X. Li, L. Wang, and S. C. Tsang, Cr-MnOx mixed-oxdie catalysts for selective catalytic reduction of NOx, J. Catal., 276, 56-65 (2010). https://doi.org/10.1016/j.jcat.2010.08.016
- H. H. Lee, K. H. Park, and W. S. Cha, Characterization of low temperature selective catalytic reduction over Ti added Mn-Cu metal oxides, J. Ind. Eng. Chem., 24, 599-604 (2013).
- C. Xuan, S. Han, L. Wang, X. Zhang, R. Sun, X. Cheng, Z. Wang, C. Ma, T. Zhao, and X. Hou, Mechanism of NO reduction by NH3 over CuMnOx catalysts and the influence mechanism of CO, Catal. Sci. Technol., 13, 3106-3124 (2023). https://doi.org/10.1039/D3CY00403A
- J. R. Li, W. P. Zhang, C. Li, and C. He, Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway, J. Colloid Interface Sci., 591, 396-408 (2021). https://doi.org/10.1016/j.jcis.2021.01.096
- J. R. Li, W. P. Zhang, C. Li, H. Xiao, and C. He, Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts, Appl. Surf. Sci., 550, 149179 (2021).
- Y. Yi, P. Zhang, Z. Qin, C. Yu, W. Li, Q. Qin, B. Li, M. Fan, X. Liang, and L. Dong, Low temperature CO oxidation catalyzed by flower-like Ni-Co-O: How physicochemical properties influence catalytic performance, RSC Adv., 8, 7110-7122 (2018). https://doi.org/10.1039/C7RA12635B
- M. AL-Harbi, R. Hayes, M. Votsmeier, and W. S. Epling, Competitive NO, CO and hydrocarbon oxidation reactions over a disel oxidation cataltyst, Can. J. Chem. Eng., 90, 1527-1538 (2012). https://doi.org/10.1002/cjce.20659