Acknowledgement
이 연구는 동덕여자대학교 지원으로 수행되었습니다. (2023년)
References
- S. Packialakshmi, B. Anuradha, K. Nagamani, D. J. Sarala, and S. Sujatha, Treatment of industrial wastewater using coconut shell based activated carbon, Mater. Today, 81, 1167-1171 (2023).
- J. O. Ighalo, J. Conradie, C. R. Ohoro, J. F. Amaku, K. O. Oyedotun, N. W. Maxakato, K. G. Akpomie, E. S. Okeke, C. Olisah, A. Malloum, and K. A. Adegoke, Biochar from coconut residues: An overview of production, properties, and applications, Ind. Crops Products, 204, 117300 (2023).
- K. Promdeea, J. Chanvidhwatanakita, S. Satitkunec, C. Boonmeec, T. Kawichaid, S. Jarernpraserte, and T. Vitidsant, Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln, Renew. Sust. Energ. Rev., 75, 1175-1186 (2017). https://doi.org/10.1016/j.rser.2016.11.099
- T. Huang, D. Peng, Z. Chen, X. Xia, Y, Chen, and H. Liu, Microstructures and electrochemical properties of coconut shell-based hard carbons as anode materials for potassium ion batteries, New Carbon Mater., 37, 1125-1134 (2022). https://doi.org/10.1016/S1872-5805(21)60069-0
- D. Hou, Z. Guo, Y. Wang, X. Hou, S. Yi, Z. Zhang, S. Hao, and D. Chen, Microwave-assisted reconstruction of spent graphite and its enhanced energy-storage performance as LIB anodes, Surf. Interfaces, 24, 101098 (2021).
- M. Arnaiz, M. Canal-Rodriguez, D. Carriazo, A. Villaverde, and J. Ajuria, Enabling versatile, custom-made lithium-ion capacitor prototypes: Benefits and drawbacks of using hard carbon instead of graphite, Electrochim. Acta, 437, 141456 (2023).
- D. Alvira, D. Antoran, and J. J. Manya, Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research, Chem. Eng. J., 447, 137468 (2022).
- S. Jayaraman, A. Jain, M. Ulaganathan, E. Edison, M. P. Srinivasan, R. Balasubramanian, V. Aravindan, and S. Madhavi, Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon, Chem. Eng. J., 316, 506-513 (2017). https://doi.org/10.1016/j.cej.2017.01.108
- Y. Huang, Y. Wang, P. Bai, and Y. Xu, Storage mechanism of alkali metal ions in the hard carbon anode: An electrochemical viewpoint, ACS Appl. Mater. Interfaces, 13, 38441-38449 (2021). https://doi.org/10.1021/acsami.1c12150
- S. G. Jeong, S. Ha, and Y. -S. Lee, Manufacturing and application of activated carbon and carbon molecular sieves in gas adsorption and separation processes, Appl. Chem. Eng., 33, 488-495 (2022).
- K. Song, J. -H. Lim, C. -G. Kim, C. -S. Park, and Y. -H. Kim, Enhancement of ammonia adsorption performance by impregnation of metal chlorides on surface-modified activated carbon, Appl. Chem. Eng., 32, 671-678 (2021).
- J. J. Yoo, N. Ko, S. H. Oh, J. Oh, M. Kim, J. Lee, T. Earmme, and J. Bae, Electrochemical properties and adsorption performance of carbon materials derived from coffee grounds, Appl. Chem. Eng., 34, 529-533 (2023). https://doi.org/10.14478/ACE.2023.1068
- O. -N. Hur, S. Park, S. Park, B. -H. Kang, C. -S. Lee, J. -Y. Hong, S. -H. Park, and J. Bae, A study on fabrication of polypyrrole@lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285, 126166 (2022).
- V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: A review, ACS Sustain. Chem. Eng., 2, 1072-1092 (2014). https://doi.org/10.1021/sc500087z
- J. Y. Jeong, D. J. Lee, J. Heo, D. -H. Lim, Y. -G. Seo, J. -H. Ahn, and C. -H. Choi, Development of biomass-derived anode material for lithium-ion battery, Clean Technol., 26, 131-136 (2020).
- R. Nandi, M. K. Jha, S. K. Guchhait, D. Sutradhar, and S. Yadav, Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity, ACS Omega, 5, 4802-4812 (2023).
- K. S. Kim, C. Gi Min, and Y. -S. Lee, Preparation of coffee grounds activated carbon-based supercapacitors with enhanced properties by oil extraction and their electrochemical properties, Appl. Chem. Eng., 34, 426-433 (2023).
- F. Taleb, M. Ammar, and M. Mosbah, Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption, Sci. Rep., 10, 11048 (2020).
- T. Sangprasert, V. Sattayarut, C. Rajrujithong, P. Khanchaitit, P. Khemthong, C. Chanthad, and N. Grisdanurak, Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications, Diam. Relat. Mater., 127, 109164 (2022).
- Q. Xie, S. Qu, Y. Zhang, and P. Zhao, Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries, Appl. Surf. Sci., 537, 148092 (2021).