Acknowledgement
본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원(2023K2A9A2A22000117)과 산업통산자원부의 재원으로 산업집적지경쟁력강화사업(HUKB2305), 그리고 2022년 동국대학교 특별기금해외연수(연구년) 지원에 의하여 이루어졌음.
References
- M. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104, 4271-4302 (2004). https://doi.org/10.1021/cr020731c
- M. Armand and J. Tarascon, Building better batteries, Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
- P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, and A. Jossen, Calendar aging of lithium-ion batteries, J. Electrochem. Soc., 163, A1872-A1880 (2016). https://doi.org/10.1149/2.0411609jes
- P. Keil and A. Jossen, Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking, J. Electrochem. Soc., 164, 6066-6074 (2017).
- E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model, J. Electrochem. Soc., 126, 2047-2051 (1979). https://doi.org/10.1149/1.2128859
- P. Verma, P. Maire, and P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 55, 6332-6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
- S. H. Kang, D. P. Abraham, A. Xiao, and B. L. Lucht, Investigating the solid electrolyte interphase using binder-free graphite electrodes, J. Power Sources, 175, 526-532 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.112
- A, Xiao, L, Yang, B. L. Lucht, S. H. Kang, and D. P. Abraham, Examining the solid electrolyte interphase on binder-free graphite electrodes, J. Electrochem. Soc., 156, A318-A327 (2009). https://doi.org/10.1149/1.3078020
- M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Lithium ion battery graphite solid electrolyte interphase (SEI) revealed by microscopy and spectroscopy. J. Phys. Chem. C., 117, 1257-1267 (2013). https://doi.org/10.1021/jp3118055
- S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
- D. Li, D. Danilov, Z. Zhang, H. Chen, Y. Yang, and P. Notten, Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries, J. Electrochem. Soc., 162, A858-A869 (2015). https://doi.org/10.1149/2.0161506jes
- D. Bedrov, O. Borodin, and J. B., Hooper, Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): Insight from atomistic molecular dynamics simulations, J. Phys. Chem. C, 121, 16098-16109 (2017). https://doi.org/10.1021/acs.jpcc.7b04247
- M. Winter, The solid electrolyte interphase-The most important and the least understood solid electrolyte in rechargeable Li batteries, Phys. Chem., 223, 1395 (2009).
- T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J. Yamaki, Degradation mechanism and life prediction of lithium-ion batteries, J. Electrochem. Soc., 153, A576 (2006).
- K. Edstrom, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, J. Power Sources, 153, 380-384 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.062
- H. J. Ploehn, P. Ramadass, and R. E. White, Solvent diffusion model for aging of lithium-ion battery cells, J. Electrochem. Soc., 151, A456-A462 (2004). https://doi.org/10.1149/1.1644601
- M. B. Pinson, and M., Bazant, Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, J. Electrochem. Soc., 160, A243-A250 (2012).
- M., Tang, S. Lu, and J., Newman, Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon, J. Electrochem. Soc., 159, A1775-A1785 (2012). https://doi.org/10.1149/2.025211jes
- F. Single, B. Horstmann, and A. Latz, Identifying the mechanism of continued SEI growth, Phys. Chem. Chem. Phys., 18, 17810-17814 (2016). https://doi.org/10.1039/C6CP02816K
- F., Single, B. Horstmann, and A. Latz, Revealing SEI morphology: In-depth analysis of a modeling approach, J. Electrochem. Soc., 164, E3132-E3145 (2017). https://doi.org/10.1149/2.0121711jes
- D. Li, D. Danilov, Z. Zhang, H. Chen, Y. Yang, and P. H. L. Notten, Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries, J. Electrochem. Soc., 162, A858-A869 (2015). https://doi.org/10.1149/2.0161506jes
- M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, and R. J. Staniewicz, Aging mechanism in Li ion cells and calendar life predictions, J. Power Sources, 97-98, 13-21 (2001). https://doi.org/10.1016/S0378-7753(01)00722-4
- J. Christensen and J. Newman, A mathematical model for the lithiumion negative electrode solid electrolyte interphase, J. Electrochem. Soc., 151, A1977 (2004).
- R. Ruder, D. Braatz, and U. Krewer, Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries, J. Electrochem. Soc., 164, E3335-E3344 (2017). https://doi.org/10.1149/2.0241711jes
- F. A. Soto, Y. Ma, J. M. Martinez de la Hoz, J. M. Seminario, and P. B. Balbuena, Modeling solid-electrolyte interfacial phenomena in silicon anodes, Chem. Mater., 27, 7990-8000 (2015). https://doi.org/10.1021/acs.chemmater.5b03358
- S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector, H. Li, and S. J. Harris, Direct calculation of Li-ion transport in the solid electrolyte interphase, J. Am. Chem. Soc., 134, 15476-15487 (2012). https://doi.org/10.1021/ja305366r
- V. Sulzer, S. Marquis, R. Timms, M. Robinson, and S. Chapman, Python battery mathematical modelling (PyBaMM), J. Open Res. Softw., 9, 14 (2021).
- S. O'Kane, W. Ai, G. Madabattula, D. Alonso-Alvare, R. Timms, V. Sulzer, J. Edge, B. Wu, G. Offer, and M. Marinescuab, Lithium-ion battery degradation: How to model it, Phys. Chem. Chem. Phys., 24, 7909-7922 (2022). https://doi.org/10.1039/D2CP00417H
- S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, Review of models for predicting the cycling performance of lithium ion batteries, J. Power Sources, 156, 620-628 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.070
- M. Guo, G. Sikha, and R. E. White, Single particle model for a lithium ion cell: Thermal behavior, J. Electrochem. Soc., 158, A122-A132 (2011). https://doi.org/10.1149/1.3521314
- P. Mohtat, S. Lee, V. Sulzer, J. Siegel, and A. Stefanopoulou, Differential expansion and voltage model for li-ion batteries at practical charging rates, J. Electrochem. Soc., 167, 110561 (2020).
- D. H. Jeon and D. Hwang, Life prediction of lithium-ion batteries using electrochemical-based degradation model, Trans. Korean Soc. Mech. Eng., A 47, 595-601 (2023).